mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80237 Approved by: https://github.com/albanD
417 lines
18 KiB
Python
417 lines
18 KiB
Python
import math
|
|
import torch
|
|
from torch import Tensor
|
|
from .optimizer import Optimizer
|
|
from typing import List, Optional
|
|
|
|
__all__ = ['AdamW', 'adamw']
|
|
|
|
class AdamW(Optimizer):
|
|
r"""Implements AdamW algorithm.
|
|
|
|
.. math::
|
|
\begin{aligned}
|
|
&\rule{110mm}{0.4pt} \\
|
|
&\textbf{input} : \gamma \text{(lr)}, \: \beta_1, \beta_2
|
|
\text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)},
|
|
\: \epsilon \text{ (epsilon)} \\
|
|
&\hspace{13mm} \lambda \text{(weight decay)}, \: \textit{amsgrad},
|
|
\: \textit{maximize} \\
|
|
&\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0
|
|
\text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0 \\[-1.ex]
|
|
&\rule{110mm}{0.4pt} \\
|
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
|
|
|
|
&\hspace{5mm}\textbf{if} \: \textit{maximize}: \\
|
|
&\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\
|
|
&\hspace{5mm}\textbf{else} \\
|
|
&\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
|
|
&\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\
|
|
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
|
|
&\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
|
|
&\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\
|
|
&\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\
|
|
&\hspace{5mm}\textbf{if} \: amsgrad \\
|
|
&\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max},
|
|
\widehat{v_t}) \\
|
|
&\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
|
|
\big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\
|
|
&\hspace{5mm}\textbf{else} \\
|
|
&\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
|
|
\big(\sqrt{\widehat{v_t}} + \epsilon \big) \\
|
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
|
&\bf{return} \: \theta_t \\[-1.ex]
|
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
|
\end{aligned}
|
|
|
|
For further details regarding the algorithm we refer to `Decoupled Weight Decay Regularization`_.
|
|
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float, optional): learning rate (default: 1e-3)
|
|
betas (Tuple[float, float], optional): coefficients used for computing
|
|
running averages of gradient and its square (default: (0.9, 0.999))
|
|
eps (float, optional): term added to the denominator to improve
|
|
numerical stability (default: 1e-8)
|
|
weight_decay (float, optional): weight decay coefficient (default: 1e-2)
|
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
|
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
|
(default: False)
|
|
maximize (bool, optional): maximize the params based on the objective, instead of
|
|
minimizing (default: False)
|
|
foreach (bool, optional): whether foreach implementation of optimizer
|
|
is used (default: None)
|
|
capturable (bool, optional): whether this instance is safe to capture in a CUDA graph.
|
|
Passing True can impair ungraphed performance, so if you don't intend to
|
|
graph capture this instance, leave it False (default: False)
|
|
|
|
.. _Decoupled Weight Decay Regularization:
|
|
https://arxiv.org/abs/1711.05101
|
|
.. _On the Convergence of Adam and Beyond:
|
|
https://openreview.net/forum?id=ryQu7f-RZ
|
|
"""
|
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
|
|
weight_decay=1e-2, amsgrad=False, *, maximize: bool = False,
|
|
foreach: Optional[bool] = None,
|
|
capturable: bool = False):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
defaults = dict(lr=lr, betas=betas, eps=eps,
|
|
weight_decay=weight_decay, amsgrad=amsgrad,
|
|
foreach=foreach, maximize=maximize, capturable=capturable)
|
|
super(AdamW, self).__init__(params, defaults)
|
|
|
|
def __setstate__(self, state):
|
|
super().__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('amsgrad', False)
|
|
group.setdefault('maximize', False)
|
|
group.setdefault('foreach', None)
|
|
group.setdefault('capturable', False)
|
|
state_values = list(self.state.values())
|
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
|
|
if not step_is_tensor:
|
|
for s in state_values:
|
|
s['step'] = torch.tensor(float(s['step']))
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Args:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
self._cuda_graph_capture_health_check()
|
|
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
params_with_grad = []
|
|
grads = []
|
|
exp_avgs = []
|
|
exp_avg_sqs = []
|
|
max_exp_avg_sqs = []
|
|
state_steps = []
|
|
amsgrad = group['amsgrad']
|
|
beta1, beta2 = group['betas']
|
|
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
params_with_grad.append(p)
|
|
if p.grad.is_sparse:
|
|
raise RuntimeError('AdamW does not support sparse gradients')
|
|
grads.append(p.grad)
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = torch.zeros((1,), dtype=torch.float, device=p.device) \
|
|
if self.defaults['capturable'] else torch.tensor(0.)
|
|
# Exponential moving average of gradient values
|
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
# Exponential moving average of squared gradient values
|
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
if amsgrad:
|
|
# Maintains max of all exp. moving avg. of sq. grad. values
|
|
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
|
|
exp_avgs.append(state['exp_avg'])
|
|
exp_avg_sqs.append(state['exp_avg_sq'])
|
|
|
|
if amsgrad:
|
|
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
|
|
|
|
state_steps.append(state['step'])
|
|
|
|
adamw(params_with_grad,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
amsgrad=amsgrad,
|
|
beta1=beta1,
|
|
beta2=beta2,
|
|
lr=group['lr'],
|
|
weight_decay=group['weight_decay'],
|
|
eps=group['eps'],
|
|
maximize=group['maximize'],
|
|
foreach=group['foreach'],
|
|
capturable=group['capturable'])
|
|
|
|
return loss
|
|
|
|
|
|
def adamw(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_avg_sqs: List[Tensor],
|
|
max_exp_avg_sqs: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
|
|
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
|
|
foreach: bool = None,
|
|
capturable: bool = False,
|
|
*,
|
|
amsgrad: bool,
|
|
beta1: float,
|
|
beta2: float,
|
|
lr: float,
|
|
weight_decay: float,
|
|
eps: float,
|
|
maximize: bool):
|
|
r"""Functional API that performs AdamW algorithm computation.
|
|
|
|
See :class:`~torch.optim.AdamW` for details.
|
|
"""
|
|
|
|
if not all(isinstance(t, torch.Tensor) for t in state_steps):
|
|
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")
|
|
|
|
if foreach is None:
|
|
# Placeholder for more complex foreach logic to be added when value is not set
|
|
foreach = False
|
|
|
|
if foreach and torch.jit.is_scripting():
|
|
raise RuntimeError('torch.jit.script not supported with foreach optimizers')
|
|
|
|
if foreach and not torch.jit.is_scripting():
|
|
func = _multi_tensor_adamw
|
|
else:
|
|
func = _single_tensor_adamw
|
|
|
|
func(params,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
amsgrad=amsgrad,
|
|
beta1=beta1,
|
|
beta2=beta2,
|
|
lr=lr,
|
|
weight_decay=weight_decay,
|
|
eps=eps,
|
|
maximize=maximize,
|
|
capturable=capturable)
|
|
|
|
|
|
def _single_tensor_adamw(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_avg_sqs: List[Tensor],
|
|
max_exp_avg_sqs: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
*,
|
|
amsgrad: bool,
|
|
beta1: float,
|
|
beta2: float,
|
|
lr: float,
|
|
weight_decay: float,
|
|
eps: float,
|
|
maximize: bool,
|
|
capturable: bool):
|
|
|
|
for i, param in enumerate(params):
|
|
grad = grads[i] if not maximize else -grads[i]
|
|
exp_avg = exp_avgs[i]
|
|
exp_avg_sq = exp_avg_sqs[i]
|
|
step_t = state_steps[i]
|
|
|
|
if capturable:
|
|
assert param.is_cuda and step_t.is_cuda, "If capturable=True, params and state_steps must be CUDA tensors."
|
|
else:
|
|
assert not step_t.is_cuda, "If capturable=False, state_steps should not be CUDA tensors."
|
|
|
|
# update step
|
|
step_t += 1
|
|
|
|
# Perform stepweight decay
|
|
param.mul_(1 - lr * weight_decay)
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
|
|
|
if capturable:
|
|
step = step_t
|
|
|
|
# 1 - beta1 ** step can't be captured in a CUDA graph, even if step is a CUDA tensor
|
|
# (incurs "RuntimeError: CUDA error: operation not permitted when stream is capturing")
|
|
bias_correction1 = 1 - torch.pow(beta1, step)
|
|
bias_correction2 = 1 - torch.pow(beta2, step)
|
|
|
|
step_size = lr / bias_correction1
|
|
step_size_neg = step_size.neg()
|
|
|
|
bias_correction2_sqrt = bias_correction2.sqrt()
|
|
|
|
if amsgrad:
|
|
# Maintains the maximum of all 2nd moment running avg. till now
|
|
torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])
|
|
# Uses the max. for normalizing running avg. of gradient
|
|
# Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
|
|
# (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
|
|
denom = (max_exp_avg_sqs[i].sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg)
|
|
else:
|
|
denom = (exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg)
|
|
|
|
param.addcdiv_(exp_avg, denom)
|
|
else:
|
|
step = step_t.item()
|
|
|
|
bias_correction1 = 1 - beta1 ** step
|
|
bias_correction2 = 1 - beta2 ** step
|
|
|
|
step_size = lr / bias_correction1
|
|
|
|
bias_correction2_sqrt = math.sqrt(bias_correction2)
|
|
|
|
if amsgrad:
|
|
# Maintains the maximum of all 2nd moment running avg. till now
|
|
torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])
|
|
# Use the max. for normalizing running avg. of gradient
|
|
denom = (max_exp_avg_sqs[i].sqrt() / bias_correction2_sqrt).add_(eps)
|
|
else:
|
|
denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps)
|
|
|
|
param.addcdiv_(exp_avg, denom, value=-step_size)
|
|
|
|
|
|
def _multi_tensor_adamw(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_avg_sqs: List[Tensor],
|
|
max_exp_avg_sqs: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
*,
|
|
amsgrad: bool,
|
|
beta1: float,
|
|
beta2: float,
|
|
lr: float,
|
|
weight_decay: float,
|
|
eps: float,
|
|
maximize: bool,
|
|
capturable: bool):
|
|
if len(params) == 0:
|
|
return
|
|
|
|
if capturable:
|
|
assert all(p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)), \
|
|
"If capturable=True, params and state_steps must be CUDA tensors."
|
|
else:
|
|
assert all(not step.is_cuda for step in state_steps), \
|
|
"If capturable=False, state_steps should not be CUDA tensors."
|
|
|
|
if maximize:
|
|
grads = torch._foreach_neg(tuple(grads)) # type: ignore[assignment]
|
|
|
|
# update steps
|
|
torch._foreach_add_(state_steps, 1)
|
|
|
|
# Perform stepweight decay
|
|
torch._foreach_mul_(params, 1 - lr * weight_decay)
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
torch._foreach_mul_(exp_avgs, beta1)
|
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)
|
|
|
|
torch._foreach_mul_(exp_avg_sqs, beta2)
|
|
torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)
|
|
|
|
if capturable:
|
|
# TODO: use foreach_pow if/when foreach_pow is added
|
|
bias_correction1 = [torch.pow(beta1, step) for step in state_steps]
|
|
bias_correction2 = [torch.pow(beta2, step) for step in state_steps]
|
|
# foreach_sub doesn't allow a scalar as the first arg
|
|
torch._foreach_sub_(bias_correction1, 1)
|
|
torch._foreach_sub_(bias_correction2, 1)
|
|
torch._foreach_neg_(bias_correction1)
|
|
torch._foreach_neg_(bias_correction2)
|
|
|
|
# foreach_div doesn't allow a scalar as the first arg
|
|
step_size = torch._foreach_div(bias_correction1, lr)
|
|
torch._foreach_reciprocal_(step_size)
|
|
torch._foreach_neg_(step_size)
|
|
|
|
bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2)
|
|
|
|
if amsgrad:
|
|
# Maintains the maximum of all 2nd moment running avg. till now
|
|
max_exp_avg_sqs = torch._foreach_maximum(max_exp_avg_sqs, exp_avg_sqs) # type: ignore[assignment]
|
|
|
|
# Use the max. for normalizing running avg. of gradient
|
|
max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
|
|
# Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
|
|
# (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
|
|
torch._foreach_div_(max_exp_avg_sq_sqrt, torch._foreach_mul(bias_correction2_sqrt, step_size))
|
|
eps_over_step_size = torch._foreach_div(step_size, eps)
|
|
torch._foreach_reciprocal_(eps_over_step_size)
|
|
denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps_over_step_size)
|
|
else:
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
|
|
torch._foreach_div_(exp_avg_sq_sqrt, torch._foreach_mul(bias_correction2_sqrt, step_size))
|
|
eps_over_step_size = torch._foreach_div(step_size, eps)
|
|
torch._foreach_reciprocal_(eps_over_step_size)
|
|
denom = torch._foreach_add(exp_avg_sq_sqrt, eps_over_step_size)
|
|
|
|
torch._foreach_addcdiv_(params, exp_avgs, denom)
|
|
else:
|
|
bias_correction1 = [1 - beta1 ** step.item() for step in state_steps]
|
|
bias_correction2 = [1 - beta2 ** step.item() for step in state_steps]
|
|
|
|
step_size = [(lr / bc) * -1 for bc in bias_correction1]
|
|
|
|
bias_correction2_sqrt = [math.sqrt(bc) for bc in bias_correction2]
|
|
|
|
if amsgrad:
|
|
# Maintains the maximum of all 2nd moment running avg. till now
|
|
max_exp_avg_sqs = torch._foreach_maximum(max_exp_avg_sqs, exp_avg_sqs) # type: ignore[assignment]
|
|
|
|
# Use the max. for normalizing running avg. of gradient
|
|
max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
|
|
torch._foreach_div_(max_exp_avg_sq_sqrt, bias_correction2_sqrt)
|
|
denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps)
|
|
else:
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
|
|
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
|
|
denom = torch._foreach_add(exp_avg_sq_sqrt, eps)
|
|
|
|
torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)
|