mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
This reverts commit 6adadbaf7943f760ea2375619b1783020b69d4e6. Reverted https://github.com/pytorch/pytorch/pull/119459 on behalf of https://github.com/malfet due to broke dynamo, see https://github.com/pytorch/pytorch/actions/runs/7835402753/job/21386634602 ([comment](https://github.com/pytorch/pytorch/pull/119459#issuecomment-1935246413))
3909 lines
173 KiB
Python
3909 lines
173 KiB
Python
# Owner(s): ["module: nestedtensor"]
|
|
|
|
import io
|
|
import itertools
|
|
import sys
|
|
from typing import Optional, Tuple
|
|
import unittest
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn
|
|
import torch.nn.functional as F
|
|
from torch.testing._internal.common_cuda import SM80OrLater
|
|
from torch.testing._internal.common_device_type import (
|
|
dtypes,
|
|
dtypesIfCUDA,
|
|
instantiate_device_type_tests,
|
|
onlyCPU,
|
|
onlyCUDA,
|
|
skipMeta,
|
|
PYTORCH_CUDA_MEMCHECK,
|
|
)
|
|
from torch.testing._internal.common_dtype import floating_types_and_half
|
|
from torch.testing._internal.common_utils import (
|
|
decorateIf,
|
|
freeze_rng_state,
|
|
gradcheck,
|
|
instantiate_parametrized_tests,
|
|
IS_FBCODE,
|
|
parametrize,
|
|
run_tests,
|
|
skipIfSlowGradcheckEnv,
|
|
markDynamoStrictTest,
|
|
xfailIfTorchDynamo,
|
|
subtest,
|
|
TEST_WITH_ROCM,
|
|
TestCase,
|
|
)
|
|
|
|
from torch.nested._internal.nested_tensor import (
|
|
buffer_from_jagged,
|
|
jagged_from_list,
|
|
NestedTensor,
|
|
)
|
|
|
|
# Tests are ported from pytorch/nestedtensor.
|
|
# This makes porting as_nested_tensor easier in the future.
|
|
|
|
|
|
def _iter_constructors():
|
|
# yield as_nested_tensor
|
|
yield torch.nested.nested_tensor
|
|
|
|
# Helper function to generate a pair of random nested tensors
|
|
# one is contiguous, the other is not, but they appear to have same entries
|
|
# an output nested tensor consists of
|
|
# * `len(ragged_sizes)` matrices
|
|
# * matrices[i].shape == (20, ragged_sizes[i])
|
|
|
|
|
|
def random_nt_noncontiguous_pair(ragged_sizes, device="cpu", dtype=torch.float16):
|
|
xs = []
|
|
for size in ragged_sizes:
|
|
xs.append(torch.randn((size, 20), device=device, dtype=dtype))
|
|
# contiguous nested tensor
|
|
ys = []
|
|
for x in xs:
|
|
ys.append(x.transpose(-1, -2))
|
|
nt_contiguous = torch.nested.nested_tensor(ys)
|
|
# noncontiguous nested tensor
|
|
n = len(ragged_sizes)
|
|
nt_noncontiguous = torch.nested.nested_tensor(xs).transpose(-1, -2)
|
|
return nt_contiguous, nt_noncontiguous
|
|
|
|
# Helper functions to pad a noncontiguous nested tensor
|
|
# can be replaced once to_padded_tensor supports noncontiguous memory
|
|
|
|
|
|
def noncontiguous_to_padded_tensor(input, shape=None):
|
|
tensors = input.unbind()
|
|
ntensors = len(tensors)
|
|
assert ntensors > 0
|
|
if shape is None:
|
|
shape = []
|
|
for size in tensors[0].shape:
|
|
shape.append(size)
|
|
for i in range(1, ntensors):
|
|
new_shape = tensors[i].shape
|
|
for j in range(len(shape)):
|
|
shape[j] = max(shape[j], new_shape[j])
|
|
shape = [ntensors] + shape
|
|
result = tensors[0].new_zeros(shape)
|
|
for itensor in range(ntensors):
|
|
tensor = tensors[itensor]
|
|
view = result[itensor]
|
|
for idim in range(tensor.dim()):
|
|
view = view.narrow(idim, 0, tensor.size(idim))
|
|
view.copy_(tensor)
|
|
return result
|
|
|
|
# Helper function to generate a random nested tensor
|
|
|
|
|
|
def random_nt(device, dtype, num_tensors, max_dims, min_dims=None, layout=torch.strided, require_non_empty=True):
|
|
if min_dims is None:
|
|
min_dims = tuple([0] * len(max_dims))
|
|
|
|
assert len(max_dims) == len(min_dims)
|
|
for min_dim, max_dim in zip(min_dims, max_dims):
|
|
assert max_dim > min_dim, "random_nt: max_dim must be greater than min_dim"
|
|
assert min_dim >= 0, "random_nt: min_dim must be non-negative"
|
|
if require_non_empty:
|
|
assert not (min_dim == 0 and max_dim == 1), (
|
|
"random_nt: zero cannot be the only possible value if require_non_empty is True"
|
|
)
|
|
|
|
if require_non_empty:
|
|
# Select a random idx that will be required to be non-empty
|
|
non_zero_idx = torch.randint(low=0, high=num_tensors, size=(1,)).item()
|
|
|
|
ts1 = []
|
|
for i, _ in enumerate(range(num_tensors)):
|
|
tensor_dims = []
|
|
for min_dim, max_dim in zip(min_dims, max_dims):
|
|
new_min_dim = min_dim
|
|
if require_non_empty and i == non_zero_idx and min_dim == 0:
|
|
new_min_dim = 1
|
|
tensor_dims.append(torch.randint(low=new_min_dim, high=max_dim, size=(1,)).item())
|
|
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
|
|
ts1.append(t1)
|
|
|
|
return torch.nested.nested_tensor(ts1, device=device, dtype=dtype, layout=layout)
|
|
|
|
|
|
# Alternate approach to generating a random NT.
|
|
# dims should be something like [5, None, 10], with None indicating that a
|
|
# random ragged structure should be used
|
|
def random_nt_from_dims(dims, device=None, dtype=None, layout=torch.strided, requires_grad=False):
|
|
sizes = [
|
|
[d if d is not None else torch.randint(2, 10, size=(1,)).item() for d in dims[1:]]
|
|
for d in range(dims[0])
|
|
]
|
|
return torch.nested.nested_tensor([
|
|
torch.randn(*size) for size in sizes
|
|
], device=device, dtype=dtype, layout=layout, requires_grad=requires_grad)
|
|
|
|
|
|
# Creates an NT matching another NT's number of components and
|
|
# shape / ragged structure for all dims specified to be -1.
|
|
def random_nt_from_similar(other, dims=None):
|
|
if dims is None:
|
|
return torch.randn_like(other)
|
|
assert len(dims) == other.dim()
|
|
assert dims[0] == -1 or dims[0] == other.size(0)
|
|
|
|
ret_sizes = []
|
|
for t in other.unbind():
|
|
other_size = t.shape
|
|
ret_size = []
|
|
for i, d in enumerate(dims[1:]):
|
|
if d == -1:
|
|
ret_size.append(other_size[i])
|
|
else:
|
|
ret_size.append(d)
|
|
ret_sizes.append(ret_size)
|
|
|
|
return torch.nested.nested_tensor([
|
|
torch.randn(*size) for size in ret_sizes
|
|
], device=other.device)
|
|
|
|
|
|
# makes naming nice for tests that parametrize over layout.
|
|
def layout_name(layout):
|
|
# e.g. "torch.jagged" -> "jagged"
|
|
return layout.__repr__().split(".")[-1]
|
|
|
|
|
|
@markDynamoStrictTest
|
|
class TestNestedTensor(TestCase):
|
|
@parametrize("batch_size", [2, 4])
|
|
@parametrize("max_seq_len", [3, 5])
|
|
@parametrize("vocab_size", [10, 20])
|
|
def test_2d_nested_tensor(self, batch_size, max_seq_len, vocab_size):
|
|
data = []
|
|
nested_tensor_ref_list = []
|
|
for _ in range(batch_size):
|
|
if max_seq_len == 0:
|
|
length = 0
|
|
else:
|
|
length = np.random.randint(low=1, high=max_seq_len)
|
|
row = list(np.random.randint(low=0, high=vocab_size, size=(length,)))
|
|
data.append(row)
|
|
nested_tensor_ref_list.append(torch.Tensor(row))
|
|
nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64)
|
|
nested_tensor_list = nested_tensor.unbind()
|
|
for id in range(batch_size):
|
|
self.assertEqual(
|
|
nested_tensor_list[id],
|
|
nested_tensor_ref_list[id].type(torch.int64)
|
|
)
|
|
|
|
@parametrize("batch_size", [2, 4])
|
|
@parametrize("max_seq_len", [3, 5])
|
|
@parametrize("vocab_size", [10, 20])
|
|
def test_3d_nested_tensor(self, batch_size, max_seq_len, vocab_size):
|
|
data = []
|
|
nested_tensor_ref_list = []
|
|
for _ in range(batch_size):
|
|
if max_seq_len == 0:
|
|
length = 0
|
|
else:
|
|
length = np.random.randint(low=1, high=max_seq_len)
|
|
row = list(np.random.randint(low=0, high=vocab_size, size=(length,)))
|
|
row = [list(item * np.arange(max_seq_len)) for item in row]
|
|
data.append(row)
|
|
nested_tensor_ref_list.append(torch.Tensor(row))
|
|
nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64)
|
|
nested_tensor_list = nested_tensor.unbind()
|
|
for id in range(batch_size):
|
|
self.assertEqual(
|
|
nested_tensor_list[id],
|
|
nested_tensor_ref_list[id].type(torch.int64)
|
|
)
|
|
|
|
@parametrize("batch_size", [2, 4])
|
|
@parametrize("max_seq_len", [3, 5])
|
|
@parametrize("vocab_size", [10, 20])
|
|
def test_3d_nested_tensor_float(self, batch_size, max_seq_len, vocab_size):
|
|
data = []
|
|
nested_tensor_ref_list = []
|
|
for _ in range(batch_size):
|
|
if max_seq_len == 0:
|
|
length = 0
|
|
else:
|
|
length = np.random.randint(low=1, high=max_seq_len)
|
|
row = list(
|
|
np.random.randint(low=0, high=vocab_size, size=(length,)).astype(float)
|
|
)
|
|
row = [list(item * np.arange(max_seq_len)) for item in row]
|
|
data.append(row)
|
|
nested_tensor_ref_list.append(torch.Tensor(row))
|
|
nested_tensor = torch.nested.nested_tensor(data, dtype=torch.float)
|
|
nested_tensor_list = nested_tensor.unbind()
|
|
for id in range(batch_size):
|
|
self.assertEqual(
|
|
nested_tensor_list[id],
|
|
nested_tensor_ref_list[id].type(torch.float)
|
|
)
|
|
|
|
|
|
@torch.inference_mode()
|
|
def _test_unbind_case(self, a, b):
|
|
nt = torch.nested.nested_tensor([a, b])
|
|
a1, b1 = nt.unbind()
|
|
self.assertTrue(a is not a1)
|
|
self.assertTrue(b is not b1)
|
|
|
|
nt = torch.nested.nested_tensor([a, b], dtype=a.dtype)
|
|
a1, b1 = nt.unbind(0)
|
|
self.assertEqual(a, a1)
|
|
self.assertEqual(b, b1)
|
|
|
|
a = torch.randn((2, 3)).add_(1)
|
|
nt = torch.nested.nested_tensor([a])
|
|
self.assertEqual(a, nt.unbind(0)[0])
|
|
|
|
@torch.inference_mode()
|
|
def test_unbind_0(self):
|
|
self._test_unbind_case(
|
|
torch.tensor([1, 2]), torch.tensor([7, 8]),
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def test_unbind_1(self):
|
|
self._test_unbind_case(
|
|
torch.tensor([1]), torch.tensor([7]),
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def test_unbind_3(self):
|
|
self._test_unbind_case(
|
|
torch.tensor([1.0]), torch.tensor([]),
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def test_unbind_4(self):
|
|
self._test_unbind_case(
|
|
torch.tensor([]), torch.tensor([]),
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def test_unbind_dim(self):
|
|
def _test_fn(unbind_fn):
|
|
a = torch.rand(3, 2)
|
|
b = torch.rand(2, 3)
|
|
nt = torch.nested.nested_tensor([a, b])
|
|
self.assertRaises(RuntimeError, lambda: unbind_fn(nt, 1))
|
|
|
|
# Both of these tests are necessary, because we're using
|
|
# torch_function.
|
|
_test_fn(lambda x, dim: x.unbind(dim))
|
|
# TODO: Re-enable this once using torch_dispatch
|
|
# _test_fn(lambda x, dim: torch.unbind(x, dim))
|
|
|
|
@torch.inference_mode()
|
|
def test_nested_tensor(self):
|
|
self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(torch.tensor([3.0])))
|
|
self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(4.0))
|
|
|
|
@torch.inference_mode()
|
|
def test_nested_tensor_matching_dim(self):
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Found dimension 1 for Tensor at index 1 and dimension 0 for Tensor at index 0.",
|
|
lambda: torch.nested.nested_tensor([torch.tensor(1.0), torch.tensor([])]),
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Found dimension 1 for Tensor at index 2 and dimension 0 for Tensor at index 1.",
|
|
lambda: torch.nested.nested_tensor(
|
|
[torch.tensor(1.0), torch.tensor(2.0), torch.tensor([])]
|
|
),
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def test_default_nested_tensor(self):
|
|
self.assertRaises(TypeError, lambda: torch.nested.nested_tensor())
|
|
default_nested_tensor = torch.nested.nested_tensor([])
|
|
default_tensor = torch.tensor([])
|
|
# self.assertEqual(default_nested_tensor.nested_dim(), 1)
|
|
# self.assertEqual(default_nested_tensor.nested_size(), ())
|
|
self.assertEqual(default_nested_tensor.dim(), default_tensor.dim())
|
|
self.assertEqual(default_nested_tensor.layout, default_tensor.layout)
|
|
self.assertEqual(default_nested_tensor.device, default_tensor.device)
|
|
self.assertEqual(default_nested_tensor.dtype, default_tensor.dtype)
|
|
self.assertEqual(
|
|
default_nested_tensor.requires_grad, default_tensor.requires_grad
|
|
)
|
|
self.assertIsNone(default_tensor.grad)
|
|
# TODO: Re-enable once we have a performance driven
|
|
# use case and implementation.
|
|
# self.assertEqual(default_nested_tensor.is_pinned(),
|
|
# default_tensor.is_pinned())
|
|
|
|
@torch.inference_mode()
|
|
def test_dim(self):
|
|
for constructor in _iter_constructors():
|
|
a1 = constructor([])
|
|
self.assertEqual(a1.dim(), 1)
|
|
a1 = constructor([torch.tensor(3.0)])
|
|
self.assertEqual(a1.dim(), 1)
|
|
a1 = constructor([torch.tensor([1, 2, 3, 4])])
|
|
self.assertEqual(a1.dim(), 2)
|
|
|
|
@unittest.skipIf(IS_FBCODE, "numel is not virtual in fbcode.")
|
|
@torch.inference_mode()
|
|
def test_numel(self):
|
|
for constructor in _iter_constructors():
|
|
a1 = constructor([])
|
|
self.assertEqual(a1.numel(), 0)
|
|
a1 = constructor([torch.tensor(3.0), torch.tensor(4.0)])
|
|
self.assertEqual(a1.numel(), 2)
|
|
a1 = constructor([torch.randn(2, 2, 2)])
|
|
self.assertEqual(a1.numel(), 8)
|
|
a1 = constructor([torch.randn([1, 2, 3]), torch.randn(3, 2, 1)])
|
|
self.assertEqual(a1.numel(), 12)
|
|
a1 = constructor([torch.randn([1, 1, 3]), torch.randn(3, 2, 4)])
|
|
self.assertEqual(a1.numel(), 27)
|
|
a1 = constructor([torch.randn([5, 5, 5]), torch.randn(6, 6, 6)])
|
|
self.assertEqual(a1.numel(), 341)
|
|
|
|
# Interesting edge case
|
|
a1 = constructor([torch.randn([1, 2, 3]), torch.randn(1, 2, 0)])
|
|
self.assertEqual(a1.numel(), 6)
|
|
|
|
@torch.inference_mode()
|
|
def test_size(self):
|
|
for constructor in _iter_constructors():
|
|
a1 = constructor([])
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"NestedTensorImpl doesn't support sizes",
|
|
lambda: a1.size(),
|
|
)
|
|
|
|
def test_size_dim(self):
|
|
a = torch.nested.nested_tensor([])
|
|
self.assertEqual(a.size(0), 0)
|
|
|
|
a = torch.nested.nested_tensor([torch.tensor(1)])
|
|
self.assertEqual(a.size(0), 1)
|
|
|
|
a = torch.nested.nested_tensor([torch.tensor(1), torch.tensor(2)])
|
|
self.assertEqual(a.size(0), 2)
|
|
|
|
a = torch.nested.nested_tensor([torch.rand(1, 2),
|
|
torch.rand(1, 8)])
|
|
self.assertEqual(a.size(0), 2)
|
|
self.assertEqual(a.size(1), 1)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Given dimension 2 is irregular and does not have a size", lambda: a.size(2))
|
|
|
|
a = torch.nested.nested_tensor([torch.rand(3, 4),
|
|
torch.rand(5, 4)])
|
|
self.assertEqual(a.size(0), 2)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Given dimension 1 is irregular and does not have a size", lambda: a.size(1))
|
|
self.assertEqual(a.size(2), 4)
|
|
|
|
@unittest.skipIf(IS_FBCODE, "stride is not virtual in fbcode.")
|
|
@torch.inference_mode()
|
|
def test_stride(self):
|
|
for constructor in _iter_constructors():
|
|
a1 = constructor([])
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"NestedTensorImpl doesn't support strides",
|
|
lambda: a1.stride(),
|
|
)
|
|
|
|
@unittest.skipIf(IS_FBCODE, "is_contiguous is not virtual in fbcode.")
|
|
@torch.inference_mode()
|
|
def test_is_contiguous(self):
|
|
# Test empty case
|
|
nt_empty = torch.nested.nested_tensor([])
|
|
assert nt_empty.is_contiguous()
|
|
self.assertEqual(nt_empty, nt_empty.contiguous())
|
|
|
|
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7))
|
|
|
|
# Test contiguous case
|
|
assert nt_contiguous.is_contiguous()
|
|
self.assertEqual(nt_contiguous, nt_contiguous.contiguous())
|
|
|
|
# Test non_contiguous case
|
|
assert not nt_noncontiguous.is_contiguous()
|
|
self.assertEqual(nt_contiguous, nt_noncontiguous.contiguous())
|
|
|
|
# Test querying by memory_format
|
|
self.assertTrue(nt_contiguous.is_contiguous(memory_format=torch.contiguous_format))
|
|
self.assertTrue(not nt_noncontiguous.is_contiguous(memory_format=torch.contiguous_format))
|
|
|
|
@torch.inference_mode()
|
|
def test_repr_string(self):
|
|
a = torch.nested.nested_tensor([])
|
|
expected = "nested_tensor([\n\n])"
|
|
self.assertEqual(str(a), expected)
|
|
self.assertEqual(repr(a), expected)
|
|
|
|
a = torch.nested.nested_tensor([torch.tensor(1.0)])
|
|
expected = "nested_tensor([\n tensor(1.)\n])"
|
|
self.assertEqual(str(a), expected)
|
|
self.assertEqual(repr(a), expected)
|
|
|
|
a = torch.nested.nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])])
|
|
expected = "nested_tensor([\n tensor([[1, 2]]),\n tensor([[4, 5]])\n])"
|
|
self.assertEqual(str(a), expected)
|
|
self.assertEqual(repr(a), expected)
|
|
|
|
def test_to_padded_tensor_on_empty_tensor(self):
|
|
|
|
nt = torch.nested.nested_tensor([])
|
|
empty = torch.nested.to_padded_tensor(nt, 4)
|
|
self.assertEqual(empty, torch.tensor([]))
|
|
|
|
def test_nested_namespace(self):
|
|
nt = torch.nested.nested_tensor([torch.randn(2, 3), torch.randn(4, 5)])
|
|
result = nt.to_padded_tensor(4)
|
|
nested_namespace_result = torch.nested.to_padded_tensor(nt, 4)
|
|
self.assertEqual(result, nested_namespace_result)
|
|
|
|
def test_to(self):
|
|
ntensors = 4
|
|
nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4))
|
|
|
|
def test_copy_behavior(t, non_blocking=False):
|
|
self.assertIs(t, t.to(t, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking))
|
|
self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True))
|
|
|
|
devices = [t.device]
|
|
if t.device.type == 'cuda':
|
|
if t.device.index == -1:
|
|
devices.append(f'cuda:{torch.cuda.current_device()}')
|
|
elif t.device.index == torch.cuda.current_device():
|
|
devices.append('cuda')
|
|
for device in devices:
|
|
self.assertIs(t, t.to(device, non_blocking=non_blocking))
|
|
self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking))
|
|
self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True))
|
|
self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True))
|
|
|
|
test_copy_behavior(nt)
|
|
self.assertEqual(nt.device, nt.to('cpu').device)
|
|
self.assertEqual(nt.device, nt.to('cpu', dtype=torch.float32).device)
|
|
self.assertIs(torch.float32, nt.to('cpu', dtype=torch.float32).dtype)
|
|
self.assertEqual(nt.device, nt.to(torch.float32).device)
|
|
self.assertIs(torch.float32, nt.to(dtype=torch.float32).dtype)
|
|
|
|
def test_data_ptr(getter):
|
|
self.assertEqual(getter(nt), getter(nt.to('cpu')))
|
|
self.assertEqual(getter(nt), getter(nt.to(dtype=nt.dtype, device=nt.device, copy=False)))
|
|
self.assertEqual(getter(nt), getter(nt.to('cpu', copy=False)))
|
|
self.assertNotEqual(getter(nt), getter(nt.to('cpu', copy=True)))
|
|
|
|
test_data_ptr(lambda nt: nt.data_ptr())
|
|
|
|
if torch.cuda.is_available():
|
|
for non_blocking in [True, False]:
|
|
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
|
|
nt2 = random_nt(cuda, torch.float32, ntensors, (4, 4))
|
|
test_copy_behavior(nt2, non_blocking)
|
|
self.assertEqual(nt2.device, nt2.to(cuda, non_blocking=non_blocking).device)
|
|
self.assertEqual(nt.device, nt2.to('cpu', non_blocking=non_blocking).device)
|
|
self.assertEqual(nt2.device, nt.to(cuda, non_blocking=non_blocking).device)
|
|
self.assertIs(torch.int32, nt2.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype)
|
|
self.assertEqual(nt.device, nt2.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device)
|
|
self.assertIs(torch.int32, nt2.to(dtype=torch.int32).dtype)
|
|
self.assertEqual(nt2.device, nt2.to(dtype=torch.int32).device)
|
|
|
|
def test_copy_(self):
|
|
ntensors = 4
|
|
nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4))
|
|
nt_copy = torch.empty_like(nt)
|
|
nt_copy.copy_(nt)
|
|
|
|
for (nt_ub, nt_copy_ub) in zip(nt.unbind(), nt_copy):
|
|
self.assertEqual(nt_ub, nt_copy_ub)
|
|
|
|
nt_error = torch.nested.nested_tensor([torch.tensor([0, 0])])
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"copy_ only supports tensors that are the same size for Nested implementations",
|
|
lambda: nt_error.copy_(nt)
|
|
)
|
|
|
|
if torch.cuda.is_available():
|
|
nt = random_nt(torch.device('cuda'), torch.float32, ntensors, (4, 4))
|
|
nt_copy = torch.empty_like(nt, device=torch.device('cpu'))
|
|
nt_copy.copy_(nt, non_blocking=True)
|
|
torch.cuda.current_stream(torch.cuda.current_device()).synchronize()
|
|
for (nt_ub, nt_copy_ub) in zip(nt.unbind(), nt_copy):
|
|
self.assertEqual(nt_ub, nt_copy_ub)
|
|
|
|
nt_copy = torch.empty_like(nt, device=torch.device('cpu'))
|
|
nt_copy.copy_(nt, non_blocking=False)
|
|
for (nt_ub, nt_copy_ub) in zip(nt.unbind(), nt_copy):
|
|
self.assertEqual(nt_ub, nt_copy_ub)
|
|
|
|
def test_fill_(self):
|
|
ntensors = 4
|
|
nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4))
|
|
nt.fill_(10.)
|
|
for nt_ub in nt.unbind():
|
|
t = torch.empty_like(nt_ub)
|
|
t.fill_(10.)
|
|
self.assertEqual(nt_ub, t)
|
|
|
|
fill_tensor = torch.tensor([11.])
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"fill_ only supports 0-dimension value tensor",
|
|
lambda: nt.fill_(fill_tensor)
|
|
)
|
|
|
|
nt.fill_(fill_tensor[0])
|
|
for nt_ub in nt.unbind():
|
|
t = torch.empty_like(nt_ub)
|
|
t.fill_(11.)
|
|
self.assertEqual(nt_ub, t)
|
|
|
|
def test_zero_(self):
|
|
ntensors = 4
|
|
nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4))
|
|
nt.zero_()
|
|
for nt_ub in nt.unbind():
|
|
t = torch.empty_like(nt_ub)
|
|
t.fill_(0.)
|
|
self.assertEqual(nt_ub, t)
|
|
|
|
@parametrize("func", [torch.ones_like, torch.zeros_like, torch.randn_like],
|
|
name_fn=lambda f: f.__name__)
|
|
def test_like_functions(self, func):
|
|
ntensors = 4
|
|
nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4))
|
|
torch.manual_seed(1)
|
|
nt_like = func(nt)
|
|
|
|
torch.manual_seed(1)
|
|
for nt_ub in nt_like.unbind():
|
|
t_like = func(nt_ub)
|
|
self.assertEqual(nt_ub, t_like)
|
|
|
|
def test_cat(self):
|
|
# dim=0 success case
|
|
# No constraints on ragged structures matching.
|
|
x = random_nt_from_dims([5, None, 10])
|
|
y = random_nt_from_dims([3, 4, None])
|
|
output = torch.cat([x, y], dim=0)
|
|
for out_component, xy_component in zip(
|
|
output.unbind(), itertools.chain(x.unbind(), y.unbind())):
|
|
self.assertEqual(out_component, xy_component)
|
|
|
|
# dim=-1 success case
|
|
# shape (B, *, D)
|
|
x = random_nt_from_dims([5, None, 10])
|
|
# shape (B, *, D'); same structure as x but dim=-1 differs
|
|
y = random_nt_from_similar(x, dims=[-1, -1, 8])
|
|
# should be shape (B, *, D + D') when supported
|
|
output = torch.cat([x, y], dim=-1)
|
|
for out_component, x_component, y_component in zip(output.unbind(), x.unbind(), y.unbind()):
|
|
self.assertEqual(out_component, torch.cat([x_component, y_component], dim=-1))
|
|
|
|
# dim between 0 and -1 success case
|
|
x = random_nt_from_dims([5, None, 2, 3])
|
|
# same structure as x but dim=2 differs
|
|
y = random_nt_from_similar(x, dims=[-1, -1, 4, -1])
|
|
output = torch.cat([x, y], dim=2)
|
|
for out_component, x_component, y_component in zip(output.unbind(), x.unbind(), y.unbind()):
|
|
self.assertEqual(out_component, torch.cat([x_component, y_component], dim=1))
|
|
|
|
# error case: mixed NT / dense inputs
|
|
x = random_nt_from_dims([5, None, 2])
|
|
y = torch.randn(5, 3, 2)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "expected each tensor in given list to be nested"):
|
|
torch.cat([x, y], dim=-1)
|
|
|
|
# error case: NTs with different dims
|
|
x = random_nt_from_dims([5, None, 2])
|
|
y = random_nt_from_dims([5, None, 2, 3])
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "expected all nested tensors to have matching ragged structures outside of the concatenated dim"):
|
|
torch.cat([x, y], dim=-1)
|
|
|
|
# error case: non-contiguous NT
|
|
x, y = random_nt_noncontiguous_pair((2, 3, 4), dtype=torch.float32)
|
|
# transpose to put ragged dim next to batch dim
|
|
x, y = x.transpose(-2, -1), y.transpose(-2, -1)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "only contiguous nested tensors are supported"):
|
|
torch.cat([x, y], dim=-1)
|
|
|
|
# error case: multiple ragged dims in inputs
|
|
x = random_nt_from_dims([5, None, None, 2])
|
|
y = random_nt_from_similar(x)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "only nested tensors with a single ragged dim next to the batch dim are supported"):
|
|
torch.cat([x, y], dim=-1)
|
|
|
|
# error case: ragged dim not next to batch dim
|
|
x = random_nt_from_dims([5, 2, None])
|
|
y = random_nt_from_similar(x)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "only nested tensors with a single ragged dim next to the batch dim are supported"):
|
|
torch.cat([x, y], dim=1)
|
|
|
|
# error case: NTs with different batch sizes
|
|
x = random_nt_from_dims([5, None, 2])
|
|
y = random_nt_from_dims([3, None, 2])
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "expected all nested tensors to have matching ragged structures outside of the concatenated dim"):
|
|
torch.cat([x, y], dim=-1)
|
|
|
|
# error case: NTs with different ragged structures
|
|
x = torch.nested.nested_tensor([
|
|
torch.randn(2, 6),
|
|
torch.randn(4, 6),
|
|
torch.randn(5, 6),
|
|
])
|
|
y = torch.nested.nested_tensor([
|
|
torch.randn(5, 6),
|
|
torch.randn(4, 6),
|
|
torch.randn(2, 6),
|
|
])
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "expected all nested tensors to have matching ragged structures outside of the concatenated dim"):
|
|
torch.cat([x, y], dim=-1)
|
|
|
|
|
|
@markDynamoStrictTest
|
|
class TestNestedTensorDeviceType(TestCase):
|
|
# Helper function to generate a pair of random nested tensors
|
|
# the 2 nested tensors have same shapes
|
|
def random_nt_pair(self, device, dtype, num_tensors, max_dims):
|
|
ts1 = []
|
|
ts2 = []
|
|
for _ in range(num_tensors):
|
|
tensor_dims = tuple([torch.randint(low=0, high=max_dim, size=(1,)).item() for max_dim in max_dims])
|
|
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
|
|
t2 = torch.randn(tensor_dims, device=device, dtype=dtype)
|
|
ts1.append(t1)
|
|
ts2.append(t2)
|
|
return (torch.nested.nested_tensor(ts1, device=device, dtype=dtype),
|
|
torch.nested.nested_tensor(ts2, device=device, dtype=dtype))
|
|
|
|
@dtypes(*floating_types_and_half())
|
|
def test_detach(self, device, dtype):
|
|
a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=False)
|
|
b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=False)
|
|
x = torch.nested.nested_tensor([a, b], requires_grad=True)
|
|
|
|
x_detach = x.detach()
|
|
|
|
z = x_detach * 4
|
|
self.assertFalse(x_detach.requires_grad)
|
|
self.assertFalse(z.requires_grad)
|
|
|
|
a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=True)
|
|
b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=True)
|
|
x = torch.nested.as_nested_tensor([a, b])
|
|
|
|
y = x * 2
|
|
y = y.detach()
|
|
self.assertFalse(y.requires_grad)
|
|
self.assertIsNone(y.grad_fn)
|
|
|
|
z = x + y
|
|
torch.nested.to_padded_tensor(z, 0).sum().backward()
|
|
# This is an incorrect gradient, but we assume that's what the user
|
|
# wanted. detach() is an advanced option.
|
|
self.assertEqual(a.grad, torch.ones(2, 4, device=device, dtype=dtype))
|
|
self.assertEqual(b.grad, torch.ones(5, 4, device=device, dtype=dtype))
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_unbind_noncontiguous(self, device, dtype):
|
|
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
|
|
ub_contiguous = nt_contiguous.unbind()
|
|
ub_noncontiguous = nt_noncontiguous.unbind()
|
|
self.assertEqual(len(ub_contiguous), len(ub_noncontiguous))
|
|
n = len(ub_contiguous)
|
|
for i in range(n):
|
|
self.assertEqual(ub_contiguous[i], ub_noncontiguous[i])
|
|
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
def test_to_then_from_padded_tensor_no_transform0213(self, device, dtype):
|
|
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
|
|
ts = list(torch.unbind(t))
|
|
ts[0] = ts[0][:-1]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
padded = torch.nested.to_padded_tensor(nt, 0)
|
|
|
|
nt_to = torch._nested_from_padded_and_nested_example(padded, nt)
|
|
|
|
for (t1, t2) in zip(nt.unbind(), nt_to.unbind()):
|
|
self.assertEqual(t1, t2)
|
|
self.assertEqual(nt.device, nt_to.device)
|
|
|
|
@dtypes(torch.float)
|
|
@dtypesIfCUDA(torch.float, torch.half)
|
|
@skipMeta
|
|
@torch.inference_mode()
|
|
def test_layer_norm(self, device, dtype):
|
|
def _test(size):
|
|
# Simple shapes test
|
|
t0 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
|
|
t1 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
|
|
ts = [t0, t1, t0, t1]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype)
|
|
nt_result = layer_norm(nt)
|
|
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
|
|
t_result = layer_norm(t.reshape(1, -1, size).squeeze(0))
|
|
self.assertEqual(nt_subresult, t_result)
|
|
|
|
# More complex nt test with different lengths for each tensor
|
|
t0 = torch.randn(4, size, device=device, dtype=dtype, requires_grad=False)
|
|
t1 = torch.randn(10, size, device=device, dtype=dtype, requires_grad=False)
|
|
t2 = torch.randn(7, size, device=device, dtype=dtype, requires_grad=False)
|
|
ts = [t0, t1, t2, t0, t2]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype)
|
|
nt_result = layer_norm(nt)
|
|
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
|
|
t_result = layer_norm(t.reshape(1, -1, size).squeeze(0))
|
|
self.assertEqual(nt_subresult, t_result)
|
|
|
|
if size <= 128:
|
|
# Test with multidimensional tensors after irregular dim
|
|
# (run only with smaller dimensions to ensure fast execution)
|
|
t0 = torch.randn(4, size, size, 4, device=device, dtype=dtype, requires_grad=False)
|
|
t1 = torch.randn(10, size, size, 4, device=device, dtype=dtype, requires_grad=False)
|
|
t2 = torch.randn(7, size, size, 4, device=device, dtype=dtype, requires_grad=False)
|
|
ts = [t0, t1, t2, t0, t2]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
layer_norm = torch.nn.LayerNorm((size, size, 4), device=device, dtype=dtype)
|
|
nt_result = layer_norm(nt)
|
|
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
|
|
t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0))
|
|
self.assertEqual(nt_subresult, t_result)
|
|
|
|
# Test where the normalizing dimensions are not all
|
|
layer_norm = torch.nn.LayerNorm((size, 4), device=device, dtype=dtype)
|
|
nt_result = layer_norm(nt)
|
|
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
|
|
t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0))
|
|
self.assertEqual(nt_subresult, t_result)
|
|
|
|
for size in (1024, 1023, 513, 512, 256, 128, 2, 4, 32):
|
|
_test(size)
|
|
|
|
@dtypes(torch.float)
|
|
@dtypesIfCUDA(torch.float, torch.half)
|
|
@skipMeta
|
|
@torch.inference_mode()
|
|
def test_layer_norm_breaking(self, device, dtype):
|
|
size = 128
|
|
t0 = torch.randn(4, size, size, 4, device=device, dtype=dtype, requires_grad=False)
|
|
t1 = torch.randn(10, size, size, 4, device=device, dtype=dtype, requires_grad=False)
|
|
t2 = torch.randn(7, size, size, 4, device=device, dtype=dtype, requires_grad=False)
|
|
ts = [t0, t1, t2, t0, t2]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
layer_norm = torch.nn.LayerNorm((4, size, size, 4), device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"normalized_shape extends into irregular dimensions for the nested tensor",
|
|
lambda: layer_norm(nt),
|
|
)
|
|
layer_norm = torch.nn.LayerNorm((size + 1, size, 4), device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"The shape at dimension 0",
|
|
lambda: layer_norm(nt),
|
|
)
|
|
|
|
@decorateIf(
|
|
xfailIfTorchDynamo,
|
|
# only fails in python 3.11. TODO: Ensure this is fixed once views work!
|
|
lambda params: params["layout"] == torch.jagged and sys.version_info >= (3, 11)
|
|
)
|
|
@parametrize("layout", [torch.strided, torch.jagged], name_fn=layout_name)
|
|
def test_embedding(self, device, layout):
|
|
inputs = [
|
|
torch.randint(100, (L,), device=device, dtype=torch.int64)
|
|
for L in torch.randint(5, 50, (8,))
|
|
]
|
|
x = torch.nested.nested_tensor(inputs, device=device, dtype=torch.int64, layout=layout)
|
|
emb = torch.nn.Embedding(100, 8, device=device)
|
|
y = emb(x)
|
|
ys = y.unbind()
|
|
for i, inp in enumerate(inputs):
|
|
self.assertEqual(emb(inp), ys[i])
|
|
|
|
|
|
@skipMeta
|
|
@torch.inference_mode()
|
|
@dtypes(*floating_types_and_half())
|
|
def test_masked_fill(self, device, dtype):
|
|
# nested tensor * nested tensor
|
|
(nt, mask) = self.random_nt_pair(device, dtype, 4, (4, 4))
|
|
mask = torch.nested.nested_tensor([m < 0 for m in mask.unbind()])
|
|
ref = torch.nested.nested_tensor([t.masked_fill(m, 0) for (t, m) in zip(nt.unbind(), mask.unbind())])
|
|
out = nt.masked_fill(mask, 0)
|
|
self.assertEqual(ref, out)
|
|
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
def test_to_padded_tensor_simple(self, device, dtype):
|
|
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
|
|
ts = list(torch.unbind(t))
|
|
ts[0] = ts[0][:-1]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
for padding_value in (0, 1):
|
|
padded = torch.nested.to_padded_tensor(nt, padding_value)
|
|
|
|
correct_output = t.clone()
|
|
if padding_value == 0:
|
|
correct_output[0][-1] = torch.zeros_like(correct_output[0][-1])
|
|
else:
|
|
correct_output[0][-1] = torch.ones_like(correct_output[0][-1])
|
|
|
|
self.assertEqual(padded, correct_output)
|
|
self.assertEqual(padded.device, torch.device(device))
|
|
self.assertEqual(padded.dtype, dtype)
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
def test_to_padded_tensor_output_size(self, device, dtype):
|
|
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
|
|
output_size = (4, 6, 5)
|
|
ts = list(torch.unbind(t))
|
|
ts[0] = ts[0][:-1]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
for padding_value in (0, 1):
|
|
padded = torch.nested.to_padded_tensor(nt, padding_value, output_size=output_size)
|
|
correct_output = torch.ones(output_size, device=device, dtype=dtype) * padding_value
|
|
correct_output[:4:, :4, :4] = t.clone()
|
|
if padding_value == 0:
|
|
correct_output[0][3] = torch.zeros_like(correct_output[0][3])
|
|
else:
|
|
correct_output[0][3] = torch.ones_like(correct_output[0][3])
|
|
|
|
self.assertEqual(padded, correct_output)
|
|
self.assertEqual(padded.device, torch.device(device))
|
|
self.assertEqual(padded.dtype, dtype)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_to_padded_tensor_dim2(self, device, dtype):
|
|
ts = [
|
|
torch.randn(160, device=device, dtype=dtype),
|
|
torch.randn(1240, device=device, dtype=dtype),
|
|
torch.randn(2400, device=device, dtype=dtype),
|
|
]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
pad = 42
|
|
correct_output = []
|
|
for t in ts:
|
|
next_output = torch.ones_like(ts[2]) * pad
|
|
correct_output.append(next_output)
|
|
next_output[:t.size(0)].copy_(t)
|
|
correct_output = torch.stack(correct_output)
|
|
padded = torch.nested.to_padded_tensor(nt, pad)
|
|
self.assertEqual(padded, correct_output)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_to_padded_tensor_dim3(self, device, dtype):
|
|
ts = [
|
|
torch.randn(16, 21, device=device, dtype=dtype),
|
|
torch.randn(24, 32, device=device, dtype=dtype),
|
|
torch.randn(40, 53, device=device, dtype=dtype),
|
|
]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
pad = 42
|
|
correct_output = []
|
|
for t in ts:
|
|
next_output = torch.ones_like(ts[2]) * pad
|
|
correct_output.append(next_output)
|
|
next_output[:t.size(0), :t.size(1)].copy_(t)
|
|
correct_output = torch.stack(correct_output)
|
|
padded = torch.nested.to_padded_tensor(nt, pad)
|
|
self.assertEqual(padded, correct_output)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_to_padded_tensor_dim4(self, device, dtype):
|
|
ts = [
|
|
torch.randn(16, 21, 13, device=device, dtype=dtype),
|
|
torch.randn(24, 32, 14, device=device, dtype=dtype),
|
|
torch.randn(40, 53, 16, device=device, dtype=dtype),
|
|
]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
pad = 42
|
|
correct_output = []
|
|
for t in ts:
|
|
next_output = torch.ones_like(ts[2]) * pad
|
|
correct_output.append(next_output)
|
|
next_output[:t.size(0), :t.size(1), :t.size(2)].copy_(t)
|
|
correct_output = torch.stack(correct_output)
|
|
padded = torch.nested.to_padded_tensor(nt, pad)
|
|
self.assertEqual(padded, correct_output)
|
|
|
|
# TODO: test noncontiguous to_padded_tensor
|
|
# For now this tests the functionality of noncontiguous_to_padded_tensor
|
|
# and the error message of to_padded_tensor
|
|
# since to_padded_tensor does not support noncontiguous buffer yet
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
@torch.inference_mode()
|
|
def test_to_padded_tensor_noncontiguous(self, device, dtype):
|
|
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
|
|
# test noncontiguous_to_padded_tensor functionality
|
|
self.assertEqual(
|
|
torch.nested.to_padded_tensor(nt_contiguous, 0.0),
|
|
noncontiguous_to_padded_tensor(nt_noncontiguous))
|
|
# test to_padded_tensor error message
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"for now to_padded_tensor only supports contiguous nested tensor",
|
|
lambda: torch.nested.to_padded_tensor(nt_noncontiguous, 0.0)
|
|
)
|
|
|
|
@skipMeta
|
|
def test_device_checks(self, device):
|
|
nt = torch.nested.nested_tensor([], device=device)
|
|
is_cuda = 'cuda' in str(device)
|
|
self.assertEqual(nt.is_cuda, is_cuda)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_nested_tensor_indexing(self, device, dtype):
|
|
# edge case: empty nested tensor
|
|
nt0 = torch.nested.nested_tensor([])
|
|
self.assertRaises(IndexError, lambda: nt0[0])
|
|
# normal case
|
|
x0 = torch.randn((2, 5), device=device, dtype=dtype)
|
|
x1 = torch.randn((3, 4), device=device, dtype=dtype)
|
|
nt = torch.nested.nested_tensor([x0, x1])
|
|
# single index: only support integer in the batch dimension
|
|
self.assertEqual(nt[0], x0)
|
|
self.assertEqual(nt[-1], x1)
|
|
self.assertRaises(IndexError, lambda: nt[2])
|
|
self.assertRaises(IndexError, lambda: nt[-3])
|
|
self.assertRaises(NotImplementedError, lambda: nt[:])
|
|
self.assertRaises(NotImplementedError, lambda: nt[...])
|
|
# tuple of indices: only support integer in the batch dimension
|
|
# + all possible indexing in the original tensor dimensions
|
|
self.assertEqual(nt[0, 0, 0], x0[0, 0])
|
|
self.assertEqual(nt[0, 1, :], x0[1, :])
|
|
self.assertEqual(nt[1, ...], x1)
|
|
self.assertRaises(IndexError, lambda: nt[1, 4, 2])
|
|
self.assertRaises(NotImplementedError, lambda: nt[:, 1, 1])
|
|
# test select on non-batch dimensions
|
|
self.assertEqual(nt.select(1, 0)[0], x0.select(0, 0))
|
|
self.assertEqual(nt.select(1, 0)[1], x1.select(0, 0))
|
|
self.assertRaises(IndexError, lambda: nt.select(1, 3))
|
|
self.assertEqual(nt.select(2, 0)[0], x0.select(1, 0))
|
|
self.assertEqual(nt.select(2, 0)[1], x1.select(1, 0))
|
|
self.assertRaises(IndexError, lambda: nt.select(2, 5))
|
|
# make sure indexing returns a view
|
|
nt[0].fill_(100.0)
|
|
answer = torch.tensor(100.0, device=device, dtype=dtype).expand((2, 5))
|
|
self.assertEqual(nt[0], answer)
|
|
nt[1, 1, :].fill_(200.0)
|
|
answer = torch.tensor(200.0, device=device, dtype=dtype).expand(4)
|
|
self.assertEqual(nt[1, 1, :], answer)
|
|
|
|
# Test that indexing works when requires_grad_(True)
|
|
# previously this was failing because the backward kernel for select.int uses .sizes()
|
|
nt = torch.nested.nested_tensor([x0, x1]).requires_grad_(True)
|
|
self.assertEqual(nt[0], x0)
|
|
self.assertEqual(nt[-1], x1)
|
|
grad_x0 = torch.randn((2, 5), device=device, dtype=dtype)
|
|
nt[0].backward(grad_x0)
|
|
expected_grad = torch.nested.nested_tensor([grad_x0, torch.zeros((3, 4), device=device, dtype=dtype)])
|
|
self.assertEqual(nt.grad, expected_grad)
|
|
|
|
@parametrize("func", [subtest(torch.nn.functional.relu, name='relu'),
|
|
subtest(torch.nn.functional.relu_, name='relu_'),
|
|
subtest(torch.nn.functional.gelu, name='gelu'),
|
|
subtest(torch._C._nn.gelu_, name='gelu_'),
|
|
subtest(torch.tanh, name='tanh'),
|
|
subtest(torch.tanh_, name='tanh_'),
|
|
subtest(torch.neg, name='neg'),
|
|
subtest(torch.nn.functional.silu, name='silu'),
|
|
subtest(partial(torch.nn.functional.silu, inplace=True), name='silu_'),
|
|
subtest(torch.abs, name="abs"),
|
|
subtest(torch.abs_, name="abs_"),
|
|
subtest(torch.sgn, name="sgn"),
|
|
subtest(torch.logical_not, name='logical_not'),
|
|
subtest(torch.sin, name='sin'),
|
|
subtest(torch.cos, name='cos')])
|
|
def test_activations(self, device, func):
|
|
nt, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device=device, dtype=torch.float32)
|
|
nested_result = func(nt)
|
|
self.assertTrue(nested_result.is_nested)
|
|
for t, t_res in zip(nt.unbind(), nested_result.unbind()):
|
|
self.assertEqual(func(t), t_res)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"NestedTensor must be contiguous to get buffer.",
|
|
lambda: func(nt_noncontiguous))
|
|
|
|
@parametrize("func", [subtest(torch.ge, name='ge'),
|
|
subtest(torch.eq, name='eq')])
|
|
def test_binary_ops_with_scalar(self, device, func):
|
|
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair(
|
|
(2, 3, 6, 7), device=device, dtype=torch.float32)
|
|
scalar = 0.0
|
|
|
|
# should work regardless of contiguity
|
|
for nt in (nt_contiguous, nt_noncontiguous):
|
|
nested_result = func(nt, scalar)
|
|
self.assertTrue(nested_result.is_nested)
|
|
for t, t_res in zip(nt.unbind(), nested_result.unbind()):
|
|
self.assertEqual(func(t, scalar), t_res)
|
|
|
|
@dtypes(*floating_types_and_half())
|
|
def test_nested_tensor_chunk(self, device, dtype):
|
|
# Transformer use case
|
|
a = torch.randn(3, 3 * 4, device=device, dtype=dtype)
|
|
b = torch.randn(2, 3 * 4, device=device, dtype=dtype)
|
|
c = torch.randn(1, 3 * 4, device=device, dtype=dtype)
|
|
a_chunks = a.chunk(3, dim=-1)
|
|
b_chunks = b.chunk(3, dim=-1)
|
|
c_chunks = c.chunk(3, dim=-1)
|
|
|
|
a_nt = [a_chunks[0], b_chunks[0], c_chunks[0]]
|
|
b_nt = [a_chunks[1], b_chunks[1], c_chunks[1]]
|
|
c_nt = [a_chunks[2], b_chunks[2], c_chunks[2]]
|
|
|
|
nt = torch.nested.nested_tensor([a, b, c])
|
|
chunked = nt.chunk(3, dim=-1)
|
|
|
|
self.assertEqual(chunked[0], torch.nested.nested_tensor(a_nt))
|
|
self.assertEqual(chunked[1], torch.nested.nested_tensor(b_nt))
|
|
self.assertEqual(chunked[2], torch.nested.nested_tensor(c_nt))
|
|
|
|
for chunk in chunked:
|
|
self.assertFalse(chunk.is_contiguous())
|
|
|
|
# Failure chunking on ragged dimensions
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Chunk for nested tensors is currently only supported for the last dimension.",
|
|
lambda: torch.chunk(nt, 5, dim=1))
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Chunk for nested tensors is currently only supported for the last dimension.",
|
|
lambda: torch.chunk(nt, 5, dim=0))
|
|
|
|
# Failure on non-contiguous nt
|
|
_, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "chunk expects `self` to be contiguous.", lambda: torch.chunk(nt_noncontiguous, 5, dim=-1))
|
|
|
|
# Failure when calling non divisible n_chunks
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "Chunk for nested tensors is only supported for "
|
|
"nested tensors with trailing dimension divisible by chunks.",
|
|
lambda: torch.chunk(nt, 5, dim=-1))
|
|
|
|
# Failure when calling backward on a chunk
|
|
a = torch.randn(3, 3 * 4, device=device, dtype=dtype, requires_grad=True)
|
|
b = torch.randn(2, 3 * 4, device=device, dtype=dtype, requires_grad=True)
|
|
nt_grad = torch.nested.as_nested_tensor([a, b])
|
|
chunked = torch.chunk(nt_grad, 2, dim=-1)
|
|
self.assertRaisesRegex(RuntimeError, "derivative for aten::chunk is not implemented",
|
|
lambda: chunked[0].backward(chunked[0].clone()))
|
|
|
|
@dtypes(*floating_types_and_half())
|
|
def test_nested_tensor_split_with_sizes(self, device, dtype):
|
|
a = torch.randn(3, 20, device=device, dtype=dtype)
|
|
b = torch.randn(2, 20, device=device, dtype=dtype)
|
|
c = torch.randn(1, 20, device=device, dtype=dtype)
|
|
|
|
split_sizes = [4, 6, 10]
|
|
a_splits = a.split_with_sizes(split_sizes, dim=-1)
|
|
b_splits = b.split_with_sizes(split_sizes, dim=-1)
|
|
c_splits = c.split_with_sizes(split_sizes, dim=-1)
|
|
|
|
nt = torch.nested.nested_tensor([a, b, c])
|
|
nt_splits = nt.split_with_sizes(split_sizes, dim=-1)
|
|
|
|
for i, nt_split in enumerate(nt_splits):
|
|
self.assertEqual(nt_split, torch.nested.nested_tensor(
|
|
[a_splits[i], b_splits[i], c_splits[i]]))
|
|
dense_strides = torch.stack([
|
|
torch.tensor(a_splits[i].stride()),
|
|
torch.tensor(b_splits[i].stride()),
|
|
torch.tensor(c_splits[i].stride())
|
|
])
|
|
self.assertEqual(nt_split._nested_tensor_strides(), dense_strides)
|
|
self.assertFalse(nt_split.is_contiguous())
|
|
|
|
# Failure calling on ragged dimensions
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "split_with_sizes for nested tensors is currently only supported for the last dimension.",
|
|
lambda: torch.split_with_sizes(nt, split_sizes, dim=1))
|
|
|
|
# Failure calling on non-last dimension
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "split_with_sizes for nested tensors is currently only supported for the last dimension.",
|
|
lambda: torch.split_with_sizes(nt, split_sizes, dim=0))
|
|
|
|
# Failure on non-contiguous nt
|
|
_, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "split_with_sizes expects `self` to be contiguous.",
|
|
lambda: torch.split_with_sizes(nt_noncontiguous, split_sizes, dim=-1))
|
|
|
|
# Failure when calling with split_sizes that don't cover the full dim size
|
|
bad_split_sizes = [4, 6, 9] # don't add up to 20
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "split_with_sizes expects split_sizes to sum exactly to 20",
|
|
lambda: torch.split_with_sizes(nt, bad_split_sizes, dim=-1))
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
@torch.inference_mode()
|
|
def test_nested_tensor_indexing_noncontiguous(self, device, dtype):
|
|
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
|
|
self.assertEqual(nt_contiguous.size(0), nt_noncontiguous.size(0))
|
|
n = nt_contiguous.size(0)
|
|
for i in range(n):
|
|
self.assertEqual(nt_contiguous[i], nt_noncontiguous[i])
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
@skipMeta
|
|
@torch.inference_mode()
|
|
@parametrize("transpose", [True, False])
|
|
def test_nested_tensor_add(self, device, dtype, transpose):
|
|
if transpose:
|
|
a = torch.randn(2, 2, 2, device=device, dtype=dtype)
|
|
b = torch.rand(2, 2, 2, device=device, dtype=dtype)
|
|
c = a.transpose(-1, -2).contiguous()
|
|
d = b.transpose(-1, -2).contiguous()
|
|
nt1 = torch.nested.nested_tensor([a, b, a, b])
|
|
nt2 = torch.nested.nested_tensor([c, d, c, d]).transpose(-1, -2)
|
|
else:
|
|
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
|
|
ref = torch.nested.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
|
|
out = nt1 + nt2
|
|
self.assertEqual(ref, out)
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
@skipMeta
|
|
@torch.inference_mode()
|
|
@parametrize("transpose", [True, False])
|
|
def test_nested_tensor_sub(self, device, dtype, transpose):
|
|
if transpose:
|
|
a = torch.randn(2, 2, 2, device=device, dtype=dtype)
|
|
b = torch.rand(2, 2, 2, device=device, dtype=dtype)
|
|
c = a.transpose(-1, -2).contiguous()
|
|
d = b.transpose(-1, -2).contiguous()
|
|
nt1 = torch.nested.nested_tensor([a, b, a, b])
|
|
nt2 = torch.nested.nested_tensor([c, d, c, d]).transpose(-1, -2)
|
|
else:
|
|
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
|
|
ref = torch.nested.nested_tensor([t1 - t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
|
|
out = nt1 - nt2
|
|
self.assertEqual(ref, out)
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.float, torch.float16)
|
|
@torch.inference_mode()
|
|
@parametrize("embedding_dim", [8, 128, 256, 384])
|
|
def test_nested_tensor_dense_elementwise(self, device, dtype, embedding_dim):
|
|
def _test_add_mul(nt, t):
|
|
ref_add = torch.nested.nested_tensor(
|
|
[t1 + t2 for (t1, t2) in zip(nt.unbind(), t.unbind())])
|
|
ref_mul = torch.nested.nested_tensor(
|
|
[t1 * t2 for (t1, t2) in zip(nt.unbind(), t.unbind())])
|
|
self.assertEqual(nt.add(t), ref_add)
|
|
self.assertEqual(nt.mul(t), ref_mul)
|
|
|
|
batch_size = 32
|
|
seq_lens = torch.randint(low=0, high=10, size=(batch_size,))
|
|
|
|
# [B, *, D], [B, 1, D] case
|
|
ts = [torch.randn((seq_len, embedding_dim)) for seq_len in seq_lens]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
t = torch.randn((batch_size, 1, embedding_dim), device=device, dtype=dtype)
|
|
_test_add_mul(nt, t)
|
|
|
|
# [B, *], [B, 1] case
|
|
ts = [torch.randn(seq_len) for seq_len in seq_lens]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
|
|
t = torch.randn((batch_size, 1), device=device, dtype=dtype)
|
|
_test_add_mul(nt, t)
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
@skipMeta
|
|
@torch.inference_mode()
|
|
def test_nested_tensor_mul(self, device, dtype):
|
|
# nested tensor * nested tensor
|
|
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
|
|
ref = torch.nested.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
|
|
out = nt1 * nt2
|
|
self.assertEqual(ref, out)
|
|
# nested tensor * scalar
|
|
number = 10.0
|
|
scalar = torch.tensor(number).to(dtype).to(device)
|
|
ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()])
|
|
out_number0 = nt1 * number
|
|
out_number1 = number * nt1
|
|
out_scalar0 = nt1 * scalar
|
|
out_scalar1 = scalar * nt1
|
|
self.assertEqual(out_number0, ref)
|
|
self.assertEqual(out_number1, ref)
|
|
self.assertEqual(out_scalar0, ref)
|
|
self.assertEqual(out_scalar1, ref)
|
|
# error case: numel == 1 but dim > 0
|
|
vector = torch.tensor([number]).to(dtype).to(device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected both self and other to be nested, but got a nested self and non-nested other",
|
|
lambda: nt1.mul(vector)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected both self and other to be nested, but got a non-nested self and nested other",
|
|
lambda: vector.mul(nt1)
|
|
)
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
@skipMeta
|
|
@torch.inference_mode()
|
|
def test_nested_tensor_div(self, device, dtype):
|
|
nt, nt2 = self.random_nt_pair(device, dtype, 4, (4, 4))
|
|
scale = 4.0
|
|
ref = torch.nested.nested_tensor([t / scale for t in nt.unbind()])
|
|
out = nt / 4.0
|
|
self.assertEqual(ref, out)
|
|
ref_transposed = ref.transpose(1, 2)
|
|
out = nt.transpose(1, 2) / 4.0
|
|
self.assertEqual(ref_transposed, out)
|
|
|
|
ref = torch.nested.nested_tensor([t / t2 for (t, t2) in zip(nt.unbind(), nt2.unbind())])
|
|
out = nt / nt2
|
|
self.assertEqual(ref, out)
|
|
|
|
out = nt.transpose(1, 2) / nt2.transpose(1, 2)
|
|
self.assertEqual(ref.transpose(1, 2), out)
|
|
|
|
nt_transpose_copy = torch.nested.nested_tensor([t.transpose(0, 1) for t in nt.unbind()])
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "div requires strides to match when given NestedTensors",
|
|
lambda: nt_transpose_copy.transpose(1, 2) / nt2)
|
|
|
|
nt = torch.nested.nested_tensor([torch.randn(i, 4) for i in [3, 4, 5]], device=device, dtype=dtype)
|
|
nt_chunks = nt.chunk(2, -1)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "div requires offsets to match when given NestedTensors",
|
|
lambda: nt_chunks[0] / nt_chunks[1])
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
@skipMeta
|
|
@torch.inference_mode()
|
|
def test_nested_tensor_add_in_place(self, device, dtype):
|
|
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
|
|
ref = torch.nested.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
|
|
nt1 += nt2
|
|
self.assertEqual(ref, nt1)
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
@skipMeta
|
|
@torch.inference_mode()
|
|
def test_nested_tensor_mul_in_place(self, device, dtype):
|
|
# nested tensor * nested tensor
|
|
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
|
|
ref = torch.nested.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
|
|
nt1 *= nt2
|
|
self.assertEqual(ref, nt1)
|
|
# nested tensor * scalar
|
|
number = 10.0
|
|
scalar = torch.tensor(number).to(dtype).to(device)
|
|
ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()])
|
|
out_number = nt1.clone()
|
|
out_number *= number
|
|
out_scalar = nt1.clone()
|
|
out_scalar *= scalar
|
|
self.assertEqual(out_number, ref)
|
|
self.assertEqual(out_scalar, ref)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"output with shape \[.*\] doesn't match the broadcast shape \[.*\]",
|
|
lambda: scalar.mul_(nt1)
|
|
)
|
|
# error case: numel == 1 but dim > 0
|
|
vector = torch.tensor([number]).to(dtype).to(device)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected both self and other to be nested, but got a nested self and non-nested other",
|
|
lambda: nt1.mul_(vector)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected both self and other to be nested, but got a non-nested self and nested other",
|
|
lambda: vector.mul_(nt1)
|
|
)
|
|
|
|
@onlyCPU
|
|
@skipMeta
|
|
@dtypes(torch.float)
|
|
def test_nested_tensor_sum_dim(self, device, dtype):
|
|
params = ((2, (1, 1)), ((4), (4, 4)), (10, (3, 5, 7)))
|
|
|
|
def test_sum(device, dtype, ntensors, max_sizes, dim, keepdim=True):
|
|
nt = random_nt(device, dtype, ntensors, max_sizes, require_non_empty=False)
|
|
nt2 = nt.clone()
|
|
ub2 = nt2.unbind()
|
|
nt.requires_grad_(True)
|
|
[t.requires_grad_(True) for t in ub2]
|
|
nt_sum = nt.sum(dim=dim, keepdim=keepdim)
|
|
ub2_sum = [t.sum(-1, keepdim=keepdim) for t in ub2]
|
|
self.assertEqual(nt_sum, torch.nested.nested_tensor(ub2_sum))
|
|
|
|
# test backward
|
|
# generate gradient tensor that has the same size as the output
|
|
size = nt_sum._nested_tensor_size()
|
|
gt2 = []
|
|
for i in range(ntensors):
|
|
gt2.append(torch.randn(size[i].tolist(), device=device, dtype=dtype))
|
|
gt = torch.nested.nested_tensor(gt2).clone()
|
|
nt_sum.backward(gt)
|
|
for t2, g2 in zip(ub2_sum, gt2):
|
|
t2.backward(g2)
|
|
self.assertEqual(nt.grad, torch.nested.nested_tensor([t.grad for t in ub2]))
|
|
return
|
|
|
|
for ntensors, max_sizes in params:
|
|
test_sum(device, dtype, ntensors, max_sizes, len(max_sizes))
|
|
|
|
# Test error inputs
|
|
with self.assertRaisesRegex(RuntimeError, "NestedTensor can only be reduced across the last"):
|
|
torch.nested.nested_tensor([torch.tensor([3, 4, 5]), torch.tensor([1, 2])]).sum(0, keepdim=True)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "NestedTensor only allows reduction of a single"):
|
|
torch.nested.nested_tensor([torch.tensor([[3, 4, 5]]), torch.tensor([[1, 2]])]).sum([0, 1], keepdim=True)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "NestedTensor always requires keepdim=True for now."):
|
|
torch.nested.nested_tensor([torch.tensor([3, 4, 5]), torch.tensor([1, 2])]).sum(-1)
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
def test_contiguous(self, device, dtype):
|
|
# Since we don't have access to the buffer in python this is harder to show what
|
|
# we are testing for. When we call chunk on a consistent dim of a NT
|
|
# for chunk_size > 1 the resulting tensors are views of the original NT
|
|
# whose numels is now less than the size of the buffer. Clone was
|
|
# previously creating a new NT with a buffer that was the same size as the
|
|
# original.
|
|
nt_contiguous = torch.nested.nested_tensor([torch.randn(2, 20, device=device, dtype=dtype),
|
|
torch.randn(4, 20, device=device, dtype=dtype)])
|
|
# Split up the last dimension which has a consistent size of 20 into 5 chunks
|
|
chunks = nt_contiguous.chunk(5, dim=-1)
|
|
|
|
# # Check chunks are contiguous after calling contiguous
|
|
for chunk in chunks:
|
|
self.assertFalse(chunk.is_contiguous())
|
|
self.assertTrue(chunk.contiguous().is_contiguous())
|
|
|
|
@dtypes(torch.float, torch.float16)
|
|
@skipMeta
|
|
def test_clone(self, device, dtype):
|
|
nt1 = random_nt(device, dtype, 4, (4, 4), (1, 1))
|
|
nt2 = nt1.clone()
|
|
# Verify the values match
|
|
self.assertEqual(nt1, nt2)
|
|
# Verify modifying nt2 doesn't affect nt1
|
|
nt2.mul_(nt1)
|
|
ub1 = nt1.unbind()
|
|
ub2 = nt2.unbind()
|
|
for i in range(len(ub1)):
|
|
self.assertNotEqual(ub1[i], ub2[i])
|
|
|
|
nt1.clone(memory_format=torch.preserve_format)
|
|
msg = "Nested tensor clone supports Preserve and Contiguous memory formats, called clone with memory format: ChannelsLast"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
nt1.clone(memory_format=torch.channels_last)
|
|
|
|
# cannot test torch.float16 because: RuntimeError: "bernoulli_scalar_cpu_" not implemented for 'Half'
|
|
@decorateIf(xfailIfTorchDynamo, lambda params: params["layout"] == torch.jagged)
|
|
@dtypes(torch.float, torch.double)
|
|
@parametrize("layout", [torch.strided, torch.jagged], name_fn=layout_name)
|
|
def test_dropout(self, device, dtype, layout):
|
|
# edge case: empty nested tensor
|
|
# TODO: support empty NT in jagged layout
|
|
if layout == torch.strided:
|
|
nt0 = torch.nested.nested_tensor([], layout=layout)
|
|
y = torch.nn.functional.dropout(nt0, 0.5)
|
|
self.assertEqual(nt0, y)
|
|
# normal nested tensor
|
|
ntensors = 4
|
|
if layout == torch.jagged:
|
|
nt = random_nt(device, dtype, ntensors, (4, 4), (0, 3), layout=layout)
|
|
else:
|
|
nt = random_nt(device, dtype, ntensors, (4, 4), layout=layout)
|
|
# edge case: invalid dropout
|
|
self.assertRaises(ValueError, lambda: torch.nn.Dropout(-0.1))
|
|
self.assertRaises(ValueError, lambda: torch.nn.Dropout(1.1))
|
|
self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, -0.1))
|
|
self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, 1.1))
|
|
# edge case: no dropout
|
|
dropouter = torch.nn.Dropout(0.0)
|
|
y0 = dropouter(nt)
|
|
y1 = torch.nn.functional.dropout(nt, 0.0)
|
|
self.assertEqual(nt, y0)
|
|
self.assertEqual(nt, y1)
|
|
# edge case: all dropout
|
|
dropouter = torch.nn.Dropout(1.0)
|
|
y0 = dropouter(nt)
|
|
y1 = torch.nn.functional.dropout(nt, 1.0)
|
|
nt0 = torch.zeros_like(nt)
|
|
self.assertEqual(nt0, y0)
|
|
self.assertEqual(nt0, y1)
|
|
# normal case: normal dropout
|
|
p = 0.2
|
|
y = torch.nn.functional.dropout(nt, p)
|
|
expect = nt.clone()
|
|
if layout == torch.jagged:
|
|
expect = torch.where(y == 0.0, y, nt)
|
|
expect /= 1.0 - p
|
|
self.assertEqual(y, expect)
|
|
else:
|
|
expect = nt.clone()
|
|
for i in range(ntensors):
|
|
actual_tensor = y[i].view(-1)
|
|
expect_tensor = expect[i].view(-1)
|
|
for j in range(actual_tensor.shape[0]):
|
|
if actual_tensor[j].item() == 0.0:
|
|
expect_tensor[j] = 0.0
|
|
else:
|
|
expect_tensor[j] /= 1.0 - p
|
|
self.assertEqual(y, expect)
|
|
with freeze_rng_state():
|
|
dropouter = torch.nn.Dropout(p)
|
|
y0 = dropouter(nt)
|
|
with freeze_rng_state():
|
|
y1 = torch.nn.functional.dropout(nt, p)
|
|
self.assertEqual(y0, y1)
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_dropout_noncontiguous(self, device, dtype):
|
|
ntensors = 4
|
|
nt0 = random_nt(device, dtype, ntensors, (4, 4))
|
|
nt1 = nt0.transpose(-1, -2)
|
|
p = 0.3
|
|
with freeze_rng_state():
|
|
dropouter = torch.nn.Dropout(p)
|
|
y0 = dropouter(nt0)
|
|
with freeze_rng_state():
|
|
y1 = torch.nn.functional.dropout(nt1, p).transpose(-1, -2)
|
|
self.assertEqual(y0, y1)
|
|
|
|
# cannot test torch.float16 because: RuntimeError: "softmax_kernel_impl" not implemented for 'Half'
|
|
@dtypes(torch.float, torch.double)
|
|
def test_softmax(self, device, dtype):
|
|
# normal nested tensor
|
|
ntensors = 4
|
|
nt = random_nt(device, dtype, ntensors, (4, 4))
|
|
# error case: softmax across nested dimension
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Cannot apply softmax across nested dimension 0",
|
|
lambda: torch.nn.functional.softmax(nt, 0)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Cannot apply softmax across nested dimension 0",
|
|
lambda: torch.nn.functional.softmax(nt, -3)
|
|
)
|
|
# error case: dimension out of range
|
|
self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, 3))
|
|
self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, -4))
|
|
# normal case: should equal to padding -inf
|
|
softmaxer = torch.nn.Softmax(1)
|
|
y0 = softmaxer(nt)
|
|
y1 = torch.nn.functional.softmax(nt, 1)
|
|
self.assertEqual(y0, y1)
|
|
pt = torch.nested.to_padded_tensor(nt, float("-inf"))
|
|
# if an entire slice is padded, then softmax will return 0.0 / 0.0 = nan
|
|
# however, physically speaking that should be 0.0
|
|
expect = torch.nn.functional.softmax(pt, 1).nan_to_num_(0.0)
|
|
self.assertEqual(torch.nested.to_padded_tensor(y0, 0.0), expect)
|
|
# edge case: empty nested tensor
|
|
nt0 = torch.nested.nested_tensor([])
|
|
y = torch.nn.functional.softmax(nt0, 1)
|
|
self.assertEqual(nt0, y)
|
|
# edge case: nesting scalars
|
|
nt1 = torch.nested.nested_tensor([torch.tensor(0.0), torch.tensor(1.0)])
|
|
self.assertRaises(RuntimeError, lambda: torch.nn.functional.softmax(nt1, 0))
|
|
self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt1, 1))
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
@torch.inference_mode()
|
|
def test_softmax_noncontiguous(self, device, dtype):
|
|
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
|
|
self.assertEqual(
|
|
torch.nn.functional.softmax(nt_contiguous, -1),
|
|
torch.nn.functional.softmax(nt_noncontiguous, -1))
|
|
|
|
def _test_bmm(self, device, dtype):
|
|
# error case: one is nested but the other is not
|
|
nt = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype)
|
|
t = torch.randn(4, device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected both to be nested, but got a nested self and non-nested other",
|
|
lambda: nt.bmm(t)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected both to be nested, but got a non-nested self and nested other",
|
|
lambda: t.bmm(nt)
|
|
)
|
|
# error case: not 3D tensors
|
|
nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype)
|
|
nt2 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"batch1 must be a 3D tensor",
|
|
lambda: nt0.bmm(nt0)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"batch1 must be a 3D tensor",
|
|
lambda: nt0.bmm(nt1)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"batch1 must be a 3D tensor",
|
|
lambda: nt0.bmm(nt2)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"batch1 must be a 3D tensor",
|
|
lambda: nt1.bmm(nt0)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"batch1 must be a 3D tensor",
|
|
lambda: nt1.bmm(nt1)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"batch1 must be a 3D tensor",
|
|
lambda: nt1.bmm(nt2)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"batch2 must be a 3D tensor",
|
|
lambda: nt2.bmm(nt0)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"batch2 must be a 3D tensor",
|
|
lambda: nt2.bmm(nt1)
|
|
)
|
|
# error case: incompatible batch size
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((4, 6)),
|
|
torch.randn((4, 5)),
|
|
torch.randn((4, 7))],
|
|
device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected size for the 1st dimension of batch2 tensor to be: 2 but got: 3.",
|
|
lambda: nt0.bmm(nt1)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected size for the 1st dimension of batch2 tensor to be: 3 but got: 2.",
|
|
lambda: nt1.bmm(nt0)
|
|
)
|
|
# error case: underlying matrices cannot be multiplied
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"0-th nested matrices in batch cannot be multiplied \(2x4 and 2x4\)",
|
|
lambda: nt0.bmm(nt0)
|
|
)
|
|
# normal nested tensor
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype)
|
|
actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0)
|
|
expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(torch.nested.to_padded_tensor(nt1, 0.0))
|
|
if dtype == torch.float16:
|
|
self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3)
|
|
else:
|
|
self.assertEqual(actual, expect)
|
|
|
|
# test tensorcore path
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 8)), torch.randn((3, 16))], device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((8, 8)), torch.randn((16, 8))], device=device, dtype=dtype)
|
|
actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0)
|
|
expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(torch.nested.to_padded_tensor(nt1, 0.0))
|
|
if dtype == torch.float16:
|
|
self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3)
|
|
else:
|
|
self.assertEqual(actual, expect)
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.float, torch.double, torch.float16)
|
|
def test_bmm_cuda(self, device, dtype):
|
|
self._test_bmm(device, dtype)
|
|
|
|
@onlyCPU
|
|
# cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
|
|
@dtypes(torch.float, torch.double)
|
|
def test_bmm_cpu(self, device, dtype):
|
|
self._test_bmm(device, dtype)
|
|
|
|
# cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
|
|
@dtypes(torch.float, torch.double)
|
|
def test_bmm_noncontiguous(self, device, dtype):
|
|
nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype)
|
|
nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair((6, 7), device, dtype)
|
|
self.assertEqual(
|
|
nt0_contiguous.transpose(-1, -2).bmm(nt1_contiguous),
|
|
nt0_noncontiguous.transpose(-1, -2).bmm(nt1_noncontiguous))
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_matmul_with_bmm_path(self, device, dtype):
|
|
def unbind_rebind_matmul(nt1, nt2):
|
|
t1s = nt1.unbind()
|
|
t2s = nt2.unbind()
|
|
out_ts = [t1.matmul(t2) for t1, t2 in zip(t1s, t2s)]
|
|
return torch.nested.nested_tensor(out_ts)
|
|
|
|
# [N, n_head, *, head_dim], [N, n_head, head_dim, *]
|
|
Ns = [1, 2, 5]
|
|
n_heads = np.random.randint(2, 5)
|
|
head_dim = 3
|
|
t1s = []
|
|
t2s = []
|
|
for N in Ns:
|
|
for _ in range(N):
|
|
seq_len1 = np.random.randint(2, 5)
|
|
seq_len2 = np.random.randint(2, 5)
|
|
t1s.append(torch.randn(n_heads, seq_len1, head_dim))
|
|
t2s.append(torch.randn(n_heads, head_dim, seq_len2))
|
|
nt1 = torch.nested.nested_tensor(t1s, device=device, dtype=dtype)
|
|
nt2 = torch.nested.nested_tensor(t2s, device=device, dtype=dtype)
|
|
self.assertEqual(torch.matmul(nt1, nt2), unbind_rebind_matmul(nt1, nt2))
|
|
|
|
# test with noncontiguous
|
|
t3s = []
|
|
t4s = []
|
|
for _ in range(N):
|
|
seq_len = np.random.randint(2, 5)
|
|
t3s.append(torch.randn(seq_len, n_heads, head_dim))
|
|
t4s.append(torch.randn(seq_len, n_heads, head_dim))
|
|
nt3 = torch.nested.nested_tensor(t3s, device=device, dtype=dtype).transpose(1, 2)
|
|
nt4 = torch.nested.nested_tensor(t4s, device=device, dtype=dtype).transpose(1, 2).transpose(2, 3)
|
|
self.assertEqual(torch.matmul(nt3, nt4), unbind_rebind_matmul(nt3, nt4))
|
|
|
|
# cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half'
|
|
@dtypes(torch.float, torch.double)
|
|
def test_matmul(self, device, dtype):
|
|
# error case: one is nested but the other is not
|
|
nt = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype)
|
|
t = torch.randn(4, device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected both to be nested, but got a nested self and non-nested other",
|
|
lambda: torch.matmul(nt, t)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Expected both to be nested, but got a non-nested self and nested other",
|
|
lambda: torch.matmul(t, nt)
|
|
)
|
|
# error case: not 3+D tensors
|
|
nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype)
|
|
nt2 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
|
|
lambda: torch.matmul(nt0, nt0)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
|
|
lambda: torch.matmul(nt0, nt1)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
|
|
lambda: torch.matmul(nt0, nt2)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
|
|
lambda: torch.matmul(nt1, nt0)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
|
|
lambda: torch.matmul(nt1, nt1)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
|
|
lambda: torch.matmul(nt1, nt2)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+",
|
|
lambda: torch.matmul(nt2, nt0)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+",
|
|
lambda: torch.matmul(nt2, nt1)
|
|
)
|
|
# error case: incompatible batch size
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((4, 6)),
|
|
torch.randn((4, 5)),
|
|
torch.randn((4, 7))],
|
|
device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.",
|
|
lambda: torch.matmul(nt0, nt1)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.",
|
|
lambda: torch.matmul(nt1, nt0)
|
|
)
|
|
# error case: incompatible (wrong) batch sizes that shouldn't even broadcast?
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 2, 4)),
|
|
torch.randn((2, 3, 4))],
|
|
device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((3, 4, 6)),
|
|
torch.randn((3, 4, 5))],
|
|
device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"matmul(): For nested tensors, batch dimensions must have the same sizes,",
|
|
lambda: torch.matmul(nt0, nt1)
|
|
)
|
|
# error case: incompatible batch sizes that should technically broadcast
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 2, 4)),
|
|
torch.randn((1, 3, 4))],
|
|
device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((1, 4, 6)),
|
|
torch.randn((3, 4, 5))],
|
|
device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"matmul(): For nested tensors, batch dimensions must have the same sizes,",
|
|
lambda: torch.matmul(nt0, nt1)
|
|
)
|
|
# error case: underlying matrices cannot be multiplied
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"matmul(): Nested tensors cannot be matrix multiplied",
|
|
lambda: torch.matmul(nt0, nt0)
|
|
)
|
|
# normal nested tensor: 3D
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype)
|
|
actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0)
|
|
expect = torch.matmul(torch.nested.to_padded_tensor(nt0, 0.0), torch.nested.to_padded_tensor(nt1, 0.0))
|
|
self.assertEqual(actual, expect)
|
|
# normal nested tensor: 4D (with testing for batch_size=1)
|
|
nt0 = torch.nested.nested_tensor([torch.randn((1, 2, 4)),
|
|
torch.randn((8, 3, 7))],
|
|
device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((1, 4, 6)),
|
|
torch.randn((8, 7, 5))],
|
|
device=device, dtype=dtype)
|
|
actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0)
|
|
expect = torch.matmul(torch.nested.to_padded_tensor(nt0, 0.0), torch.nested.to_padded_tensor(nt1, 0.0))
|
|
self.assertEqual(actual, expect)
|
|
# normal nested tensor: 5D
|
|
nt0 = torch.nested.nested_tensor([torch.randn((8, 9, 2, 4)),
|
|
torch.randn((8, 9, 3, 7))],
|
|
device=device, dtype=dtype)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((8, 9, 4, 6)),
|
|
torch.randn((8, 9, 7, 5))],
|
|
device=device, dtype=dtype)
|
|
actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0)
|
|
expect = torch.matmul(torch.nested.to_padded_tensor(nt0, 0.0), torch.nested.to_padded_tensor(nt1, 0.0))
|
|
self.assertEqual(actual, expect)
|
|
|
|
# only supported on CUDA for now
|
|
@dtypes(torch.float, torch.double)
|
|
def test_matmul_nt_with_broadcasted_t(self, device, dtype):
|
|
# NT (B, *, C, D) with T (D, E) broadcasting case
|
|
nt = random_nt_from_dims([3, None, 4, 5], device=device, dtype=dtype)
|
|
t = torch.randn(5, 6, device=device, dtype=dtype)
|
|
output = torch.matmul(nt, t)
|
|
|
|
# should be equivalent to matmul-ing each component with the dense tensor
|
|
self.assertEqual(nt.size(0), output.size(0))
|
|
for component, out_component in zip(nt, output):
|
|
self.assertEqual(out_component, torch.matmul(component, t))
|
|
|
|
# cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half'
|
|
@dtypes(torch.float, torch.double)
|
|
def test_matmul_noncontiguous(self, device, dtype):
|
|
nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype)
|
|
nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair((6, 7), device, dtype)
|
|
self.assertEqual(
|
|
torch.matmul(nt0_contiguous.transpose(-1, -2), nt1_contiguous),
|
|
torch.matmul(nt0_noncontiguous.transpose(-1, -2), nt1_noncontiguous))
|
|
|
|
@dtypes(torch.float, torch.double)
|
|
def test_linear(self, device, dtype):
|
|
a = torch.randn(1, 2, device=device, dtype=dtype)
|
|
b = torch.randn(2, 2, device=device, dtype=dtype)
|
|
c = torch.randn(3, 2, device=device, dtype=dtype)
|
|
nt = torch.nested.nested_tensor([a, b, c])
|
|
|
|
weight = torch.randn(2, 2, device=device, dtype=dtype)
|
|
bias = torch.randn(2, device=device, dtype=dtype)
|
|
# success case
|
|
torch.functional.F.linear(nt, weight, bias)
|
|
|
|
# invalid nested tensor dimension
|
|
msg = r'Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 2. Dense tensor dim: 2'
|
|
nt1 = torch.nested.nested_tensor([torch.randn(1, device=device, dtype=dtype),
|
|
torch.randn(2, device=device, dtype=dtype)])
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
torch.functional.F.linear(nt1, weight, bias)
|
|
|
|
# invalid weight shape
|
|
msg = r'Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 3. Dense tensor dim: 3'
|
|
weight1 = torch.randn(2, 2, 3, device=device, dtype=dtype)
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
torch.functional.F.linear(nt, weight1, bias)
|
|
|
|
# inconsistent last dim of nested tensor
|
|
msg = r"Expected all tensors in nested tensor to have the same trailing dimension, instead last dimension equals:"
|
|
nt2 = torch.nested.nested_tensor([torch.randn(1, 2, device=device, dtype=dtype),
|
|
torch.randn(2, 3, device=device, dtype=dtype)])
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
torch.functional.F.linear(nt2, weight, bias)
|
|
|
|
# Mismatch of nested tensor last dim and weight dimension
|
|
weight2 = torch.randn(2, 4, device=device, dtype=dtype)
|
|
msg = r"Shape mismatch for NestedTensor Linear: Expected input's \(a nested tensor\) 'last_dim'" \
|
|
r" to equal 'weight.size\(1\), but got: last_dim = 2, and weight.size\(1\) = 4"
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
torch.functional.F.linear(nt, weight2, bias)
|
|
|
|
# Nested tensor input and nested weight
|
|
nt_weight = nt.clone()
|
|
msg = r"Linear does not support nested weight when input is a nested tensor."
|
|
with self.assertRaisesRegex(RuntimeError, msg):
|
|
torch.functional.F.linear(nt, nt_weight, bias)
|
|
|
|
# TODO: test noncontiguous linear
|
|
# For now this tests the error message of linear
|
|
# since linear does not support noncontiguous buffer yet
|
|
@dtypes(torch.float, torch.double)
|
|
def test_linear_noncontiguous(self, device, dtype):
|
|
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
|
|
weight = torch.randn((8, 5), device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"for now linear only supports contiguous nested tensor",
|
|
lambda: torch.nn.functional.linear(nt_noncontiguous, weight)
|
|
)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_to_padded_tensor_zero_numel_errors(self, device, dtype):
|
|
ts = [torch.ones(1, 0), torch.ones(0, 0)]
|
|
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype, layout=torch.strided)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"at least one constituent tensor should have non-zero numel",
|
|
lambda: torch.nested.to_padded_tensor(nt, 0.0)
|
|
)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_transpose(self, device, dtype):
|
|
nt = random_nt(device, dtype, 4, (4, 4))
|
|
# error case: transpose nested dimension
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Nested tensor dimension 0 cannot be transposed",
|
|
lambda: nt.transpose(0, 1)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"Nested tensor dimension 0 cannot be transposed",
|
|
lambda: nt.transpose(1, -3)
|
|
)
|
|
# error case: dimension out of range
|
|
self.assertRaises(IndexError, lambda: nt.transpose(1, 3))
|
|
self.assertRaises(IndexError, lambda: nt.transpose(-4, -1))
|
|
# normal case
|
|
ntT = nt.transpose(-1, -2)
|
|
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0)
|
|
ptT = pt.transpose(-1, -2)
|
|
self.assertEqual(ptT, ptT_from_ntT)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_squeeze_unsqueeze(self, device, dtype):
|
|
a = torch.arange(6).reshape(2, 3)
|
|
b = torch.arange(15).reshape(5, 3)
|
|
nt = torch.nested.nested_tensor([a, b], device=device, dtype=dtype)
|
|
# error case: squeeze no dimension
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"For nested tensors, squeeze without the dim argument",
|
|
lambda: nt.squeeze()
|
|
)
|
|
# error case: squeeze nested dimension
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"For nested tensors, squeezing dimension 0",
|
|
lambda: nt.squeeze(0)
|
|
)
|
|
# error case: dimension out of range
|
|
self.assertRaises(IndexError, lambda: nt.squeeze(3))
|
|
# error case: squeeze nested tensor of singleton tensors
|
|
c = torch.ones(1)
|
|
nt_singleton = torch.nested.nested_tensor([c, c], device=device, dtype=dtype)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"For nested tensors, squeezing a nested tensor of singleton",
|
|
lambda: nt_singleton.squeeze(1)
|
|
)
|
|
|
|
# squeezing a dim which does not have size 1 should be a no-op
|
|
nt2 = nt.squeeze(-1)
|
|
self.assertEqual(nt, nt2)
|
|
|
|
# test cases that should work
|
|
nt_sizes = nt._nested_tensor_size()
|
|
nt_strides = nt._nested_tensor_strides()
|
|
for i in range(-2, 4):
|
|
if (i == 0):
|
|
# cannot unsqueeze batch dim
|
|
continue
|
|
nt_unsqueezed = nt.unsqueeze(i)
|
|
# negative dim will correspond to unsqueeze() applied at dim = dim + nt.dim() + 1
|
|
wrapped_i = i + nt.dim() + 1 if i < 0 else i
|
|
# col_index into nt size tensor is requires subtraction of 1 to ignore batch dim
|
|
size_idx = wrapped_i - 1
|
|
self.assertEqual(nt_unsqueezed._nested_tensor_size()[:, size_idx], torch.ones(2, dtype=torch.long))
|
|
unsqueezed_stride = nt_unsqueezed._nested_tensor_strides()[:, size_idx]
|
|
if (i == nt.ndim or i == -1):
|
|
self.assertEqual(unsqueezed_stride, torch.ones(2, dtype=torch.long))
|
|
else:
|
|
stride_col_after = nt_strides[:, size_idx]
|
|
size_col_after = nt_sizes[:, size_idx]
|
|
self.assertEqual(unsqueezed_stride, stride_col_after * size_col_after)
|
|
nt_squeezed = nt_unsqueezed.squeeze(i)
|
|
self.assertEqual(nt_squeezed, nt)
|
|
self.assertEqual(nt_squeezed._nested_tensor_size(), nt_sizes)
|
|
self.assertEqual(nt_squeezed._nested_tensor_strides(), nt_strides)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_transpose_inference_mode_interaction(self, device, dtype):
|
|
nt = random_nt(device, dtype, 4, (4, 4))
|
|
# Construct in default mode and transpose while in inference mode
|
|
with torch.inference_mode():
|
|
ntT = nt.transpose(-1, -2)
|
|
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0)
|
|
ptT = pt.transpose(-1, -2)
|
|
self.assertEqual(ptT, ptT_from_ntT)
|
|
|
|
# Construct and transpose while in inference mode
|
|
with torch.inference_mode():
|
|
nt = random_nt(device, dtype, 4, (4, 4))
|
|
ntT = nt.transpose(-1, -2)
|
|
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0)
|
|
ptT = pt.transpose(-1, -2)
|
|
self.assertEqual(ptT, ptT_from_ntT)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_view(self, device, dtype):
|
|
nt = random_nt(device, dtype, 4, (4, 4))
|
|
# error case: empty shape
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"shape '\[\]' is invalid for a nested tensor",
|
|
lambda: nt.view(())
|
|
)
|
|
# error case: empty nested tensor
|
|
nt_empty = torch.nested.nested_tensor([])
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"empty nested tensor cannot be reshaped",
|
|
lambda: nt_empty.view(-1)
|
|
)
|
|
# error case: -1 for batch size
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"view: For now nested view cannot change or infer the implicit batch dimension",
|
|
lambda: nt.view(-1, 2, 3)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"shape '\[.*\]' is invalid for input of size [0-9]+",
|
|
lambda: nt.view(4, 2, 3)
|
|
)
|
|
# normal case
|
|
x0 = torch.randn((2, 20), device=device, dtype=dtype)
|
|
x1 = torch.randn((3, 20), device=device, dtype=dtype)
|
|
nt = torch.nested.nested_tensor([x0, x1])
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0)
|
|
# error case, trying to reshape batch dim to a legit shape
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"For now nested view cannot change or infer the implicit batch dimension",
|
|
lambda: nt.transpose(-1, -2).view(40, -1)
|
|
)
|
|
# inherit only the ragged dimension
|
|
# (2, 20) -> (2, 5, 4)
|
|
# (3, 20) -> (3, 5, 4)
|
|
nt1 = nt.view(2, -1, 5, 4)
|
|
# (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4)
|
|
pt1 = pt.view(2, -1, 5, 4)
|
|
self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1)
|
|
|
|
# more than one -1 (even for "old" dims), should fail
|
|
# this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2)
|
|
# but we ban "inherit old behavior" for >1 dimension
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"only one dimension can be inferred",
|
|
lambda: nt1.view(2, -1, -1, 2, 2)
|
|
)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_view_inference_mode_interaction(self, device, dtype):
|
|
# Construct in default mode and view while in inference mode
|
|
nt = torch.nested.nested_tensor([torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype)
|
|
with torch.inference_mode():
|
|
ntT = nt.view(2, -1, 4, 5)
|
|
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0)
|
|
ptT = pt.view(2, -1, 4, 5)
|
|
self.assertEqual(ptT, ptT_from_ntT)
|
|
# Construct and view while in inference mode
|
|
with torch.inference_mode():
|
|
nt = torch.nested.nested_tensor([torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype)
|
|
ntT = nt.view(2, -1, 4, 5)
|
|
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0)
|
|
ptT = pt.view(2, -1, 4, 5)
|
|
self.assertEqual(ptT, ptT_from_ntT)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_reshape(self, device, dtype):
|
|
nt = random_nt(device, dtype, 4, (4, 4))
|
|
# error case: empty shape
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"shape '\[\]' is invalid for a nested tensor",
|
|
lambda: nt.reshape(())
|
|
)
|
|
# error case: empty nested tensor
|
|
nt_empty = torch.nested.nested_tensor([])
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"empty nested tensor cannot be reshaped",
|
|
lambda: nt_empty.reshape(-1)
|
|
)
|
|
# error case: -1 for batch size
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"reshape: For now nested reshape cannot change or infer the implicit batch dimension",
|
|
lambda: nt.reshape(-1, 2, 3)
|
|
)
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"shape '\[.*\]' is invalid for input of size [0-9]+",
|
|
lambda: nt.reshape(4, 2, 3)
|
|
)
|
|
# normal case
|
|
x0 = torch.randn((2, 20), device=device, dtype=dtype)
|
|
x1 = torch.randn((3, 20), device=device, dtype=dtype)
|
|
nt = torch.nested.nested_tensor([x0, x1]) # (2, (2, 3), 20)
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0)
|
|
# error case, trying to reshape batch dim to a legit shape
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"reshape: For now nested reshape cannot change or infer the implicit batch dimension",
|
|
lambda: nt.transpose(-1, -2).reshape(40, -1)
|
|
)
|
|
# inherit only the ragged dimension
|
|
# (2, 20) -> (2, 5, 4)
|
|
# (3, 20) -> (3, 5, 4)
|
|
nt1 = nt.reshape(2, -1, 5, 4)
|
|
# (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4)
|
|
pt1 = pt.reshape(2, -1, 5, 4)
|
|
self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1)
|
|
|
|
# more than one -1 (even for "old" dims), should fail
|
|
# this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2)
|
|
# but we ban "inherit old behavior" for >1 dimension
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"only one dimension can be inferred",
|
|
lambda: nt1.reshape(2, -1, -1, 2, 2)
|
|
)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_narrow(self, device, dtype):
|
|
nt = random_nt_from_dims([5, None, None, None], device=device, dtype=dtype)
|
|
|
|
# narrow on dim=0 from start to end
|
|
bounds = [(0, 5), (0, 3), (1, 2), (1, 5), (2, 4)]
|
|
for start, end in bounds:
|
|
length = end - start
|
|
narrowed = nt.narrow(dim=0, start=start, length=length)
|
|
# ensure output is a view
|
|
self.assertTrue(narrowed._base is nt)
|
|
for nc, c in zip(narrowed.unbind(), nt.unbind()[start:end]):
|
|
self.assertEqual(nc, c)
|
|
|
|
# dim != 0 is not supported
|
|
for dim in range(1, nt.dim()):
|
|
with self.assertRaisesRegex(RuntimeError, "only dim=0 supported for nested tensors"):
|
|
nt.narrow(dim=dim, start=0, length=1)
|
|
|
|
# error case: non-contiguous NT
|
|
_, nt_noncont = random_nt_noncontiguous_pair((2, 3, 4))
|
|
with self.assertRaisesRegex(RuntimeError, "only contiguous nested tensors supported"):
|
|
nt_noncont.narrow(dim=0, start=0, length=1)
|
|
|
|
@parametrize("input_dim", [3, 4])
|
|
def test_scaled_dot_product_attention(self, device, input_dim):
|
|
|
|
def rand_tensor(*shape):
|
|
return torch.randn(shape, device=device)
|
|
|
|
E = 8
|
|
if input_dim == 3:
|
|
# Shape: (N, L, E); ragged L
|
|
query = torch.nested.nested_tensor([rand_tensor(2, E), rand_tensor(3, E), rand_tensor(4, E)])
|
|
|
|
# Shape: (N, S, E); ragged S
|
|
key = torch.nested.nested_tensor([rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)])
|
|
value = torch.nested.nested_tensor([rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)])
|
|
elif input_dim == 4:
|
|
# In the 4D case the L and S is ragged
|
|
# Shape: (N, N', L, E); ragged N' and L
|
|
query = torch.nested.nested_tensor([rand_tensor(2, 2, E), rand_tensor(3, 3, E), rand_tensor(4, 4, E)])
|
|
# Shape: (N, N', S, E); ragged N' and S
|
|
key = torch.nested.nested_tensor([rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)])
|
|
value = torch.nested.nested_tensor([rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)])
|
|
else:
|
|
self.fail(f"Invalid input_dim {input_dim} encountered in SDP test")
|
|
|
|
def rand_mask(size):
|
|
return torch.randint(0, 2, size=size, dtype=torch.bool, device=device)
|
|
|
|
# Shape: (N, L, S); ragged L and S matching above
|
|
attn_mask = torch.nested.nested_tensor([rand_mask((2, 3)), rand_mask((3, 4)), rand_mask((4, 5))])
|
|
|
|
dropout_p = 0.0 # no dropout for reproducibility
|
|
|
|
# Success case: no attn_mask set and is_causal=False.
|
|
actual = torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, is_causal=False, dropout_p=dropout_p)
|
|
|
|
expected_outputs = []
|
|
for q, k, v in zip(query.unbind(), key.unbind(), value.unbind()):
|
|
output = torch.nn.functional.scaled_dot_product_attention(
|
|
q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attn_mask=None, dropout_p=dropout_p)
|
|
expected_outputs.append(output.squeeze(0))
|
|
expected_output_nested = torch.nested.nested_tensor(expected_outputs)
|
|
self.assertEqual(actual, expected_output_nested)
|
|
|
|
# Error case: explicit attn_mask set.
|
|
with self.assertRaisesRegex(RuntimeError, "not supported when an explicit attn_mask is set"):
|
|
torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=attn_mask, dropout_p=dropout_p)
|
|
|
|
# Error case: is_causal=True.
|
|
with self.assertRaisesRegex(RuntimeError, "not supported when is_causal=True"):
|
|
torch.nn.functional.scaled_dot_product_attention(
|
|
query, key, value, dropout_p=dropout_p, is_causal=True)
|
|
|
|
@dtypes(torch.float, torch.float16, torch.double)
|
|
def test_empty_like(self, device, dtype):
|
|
ntensors = 4
|
|
nt = random_nt(device, dtype, ntensors, (4, 4))
|
|
|
|
# Create empty on same device as original nested tensor
|
|
nt_empty = torch.empty_like(nt)
|
|
assert nt.is_same_size(nt_empty)
|
|
self.assertEqual(nt.dtype, nt_empty.dtype)
|
|
self.assertEqual(nt.device, nt_empty.device)
|
|
self.assertEqual(nt.layout, nt_empty.layout)
|
|
|
|
if torch.cuda.is_available():
|
|
if device == "cpu":
|
|
nt_cuda = torch.empty_like(nt, device='cuda')
|
|
self.assertEqual(torch.device("cuda").type, nt_cuda.device.type)
|
|
else:
|
|
nt_cpu = torch.empty_like(nt, device='cpu')
|
|
self.assertEqual(torch.device("cpu").type, nt_cpu.device.type)
|
|
|
|
# Check changing dtype of empty_like nested tensor output
|
|
dtype_set = {torch.float, torch.float16, torch.double}
|
|
for other_dtype in dtype_set - {dtype}:
|
|
nt_empty_other_dtype = torch.empty_like(nt, dtype=other_dtype)
|
|
self.assertEqual(nt.dtype, dtype)
|
|
self.assertEqual(nt_empty_other_dtype.dtype, other_dtype)
|
|
self.assertEqual(nt.device, nt_empty.device)
|
|
self.assertEqual(nt.layout, nt_empty.layout)
|
|
|
|
# Create tensor for autograd
|
|
nt_empty_req_grad = torch.empty_like(nt, requires_grad=True)
|
|
self.assertEqual(nt_empty_req_grad.requires_grad, True)
|
|
|
|
# Test noncontiguous tensor does not fail to copy
|
|
nt_cont, nt_noncont = random_nt_noncontiguous_pair((2, 3, 6, 7))
|
|
nt_empty = torch.empty_like(nt_cont)
|
|
assert nt_cont.is_same_size(nt_empty)
|
|
nt_empty_non_contig = torch.empty_like(nt_noncont)
|
|
assert nt_noncont.is_same_size(nt_empty_non_contig)
|
|
|
|
# Test the contiguous memory format option
|
|
nt_empty_contig = torch.empty_like(nt_cont, memory_format=torch.contiguous_format)
|
|
assert nt_cont.is_same_size(nt_empty_contig)
|
|
assert nt_empty_contig.is_contiguous()
|
|
|
|
nt_empty_non_contig = torch.empty_like(nt_noncont, memory_format=torch.contiguous_format)
|
|
assert nt_noncont.is_same_size(nt_empty_non_contig)
|
|
assert nt_empty_non_contig.is_contiguous()
|
|
|
|
# Test other memory formats fail
|
|
self.assertRaises(RuntimeError, lambda: torch.empty_like(nt_cont, memory_format=torch.channels_last))
|
|
self.assertRaises(RuntimeError, lambda: torch.empty_like(nt_noncont, memory_format=torch.channels_last))
|
|
self.assertRaises(RuntimeError, lambda: torch.empty_like(nt_cont, memory_format=torch.channels_last_3d))
|
|
self.assertRaises(RuntimeError, lambda: torch.empty_like(nt_noncont, memory_format=torch.channels_last_3d))
|
|
|
|
@markDynamoStrictTest
|
|
class TestNestedTensorAutograd(TestCase):
|
|
# Note [Gradcheck args check_batched_grad=False] the common_utils testing version of gradcheck
|
|
# includes the default parameters used for testing ops with gradcheck. However nested tensor
|
|
# does not support the stack op therefore we turn it off for these tests
|
|
def _create_leaf_nested_tensor_from_list(self, tensor_device, requires_grad=False):
|
|
return torch.nested.nested_tensor([torch.randn(1, 2,),
|
|
torch.randn(7, 8)], requires_grad=requires_grad, device=tensor_device)
|
|
|
|
def _create_nested_tensor_from_list(self, tensor_device, requires_grad=False):
|
|
return torch.nested.as_nested_tensor([torch.randn(1, 2, requires_grad=requires_grad),
|
|
torch.randn(7, 8, requires_grad=requires_grad)], device=tensor_device)
|
|
|
|
def _create_nested_tensor_from_mask(self, tensor_device, requires_grad=False):
|
|
data = torch.randn(2, 3, 4, requires_grad=requires_grad, device=tensor_device)
|
|
mask = torch.ones_like(data[:, :, 0]).bool()
|
|
return torch._nested_tensor_from_mask(data, mask)
|
|
|
|
def test_as_nested_tensor_propagates_gradients(self, device):
|
|
a = torch.arange(3, dtype=torch.float, device=device)
|
|
b = torch.arange(5, dtype=torch.float, device=device)
|
|
nt = torch.nested.as_nested_tensor([a, b])
|
|
# tensors with requires_grad=False are leaves
|
|
self.assertTrue(nt.is_leaf)
|
|
self.assertTrue(not nt.requires_grad)
|
|
|
|
a = torch.arange(3, dtype=torch.float, requires_grad=True, device=device)
|
|
b = torch.arange(5, dtype=torch.float, requires_grad=True, device=device)
|
|
nt2 = torch.nested.as_nested_tensor([a, b])
|
|
fake_grad = torch.nested.nested_tensor([torch.ones_like(a), torch.zeros_like(b)], device=device)
|
|
nt2.backward(fake_grad)
|
|
self.assertEqual(a.grad, fake_grad[0])
|
|
self.assertEqual(b.grad, fake_grad[1])
|
|
|
|
def test_nested_tensor_generates_leaf(self, device):
|
|
a = torch.arange(3, dtype=torch.float, requires_grad=True, device=device)
|
|
b = torch.arange(5, dtype=torch.float, requires_grad=True, device=device)
|
|
|
|
nt = torch.nested.nested_tensor([a, b], requires_grad=False)
|
|
self.assertTrue(nt.is_leaf)
|
|
self.assertTrue(not nt.requires_grad)
|
|
|
|
nt2 = torch.nested.nested_tensor([a, b], requires_grad=True)
|
|
self.assertTrue(nt2.is_leaf)
|
|
self.assertTrue(nt2.requires_grad)
|
|
|
|
fake_grad = torch.nested.nested_tensor([torch.ones_like(a), torch.zeros_like(b)], device=device)
|
|
nt2.backward(fake_grad)
|
|
self.assertEqual(nt2.grad, fake_grad)
|
|
self.assertEqual(a.grad, None)
|
|
self.assertEqual(b.grad, None)
|
|
|
|
def test_set_requires_grad_from_list(self, device):
|
|
nt = self._create_nested_tensor_from_list(device)
|
|
nt.requires_grad_()
|
|
assert nt.requires_grad
|
|
|
|
def test_set_requires_grad_from_mask(self, device):
|
|
nt = self._create_nested_tensor_from_mask(device)
|
|
nt.requires_grad_()
|
|
assert nt.requires_grad
|
|
|
|
def test_backward_for_add_op(self, device):
|
|
nt_1 = self._create_nested_tensor_from_mask(device)
|
|
nt_2 = self._create_nested_tensor_from_mask(device)
|
|
|
|
nt_1.requires_grad_()
|
|
c = nt_1 + nt_2
|
|
|
|
assert nt_1.requires_grad
|
|
assert c.requires_grad
|
|
grad_output = self._create_nested_tensor_from_mask(device)
|
|
c.backward(grad_output)
|
|
|
|
# Grad check doesn't work with nested yet.
|
|
# d/dnt_1 (nt + nt_1) = 1*grad_output
|
|
self.assertEqual(nt_1.grad, grad_output)
|
|
|
|
def test_backward_for_sub_op(self, device):
|
|
nt_1 = self._create_nested_tensor_from_mask(device)
|
|
nt_2 = self._create_nested_tensor_from_mask(device)
|
|
|
|
nt_1.requires_grad_()
|
|
nt_2.requires_grad_()
|
|
c = nt_1 - nt_2
|
|
|
|
assert nt_1.requires_grad
|
|
assert nt_2.requires_grad
|
|
assert c.requires_grad
|
|
grad_output = self._create_nested_tensor_from_mask(device)
|
|
c.backward(grad_output)
|
|
|
|
self.assertEqual(nt_1.grad, grad_output)
|
|
self.assertEqual(nt_2.grad, -1 * grad_output)
|
|
|
|
def test_backward_sub_strided(self, device):
|
|
a = torch.nested.nested_tensor([torch.randn(9, 2, 4), torch.randn(12, 2, 4)], requires_grad=True, device=device)
|
|
b = torch.nested.nested_tensor([torch.randn(9, 4, 2), torch.randn(12, 4, 2)], requires_grad=True, device=device)
|
|
c = a - b.transpose(-1, -2)
|
|
grad_output = c.clone()
|
|
c.backward(grad_output)
|
|
self.assertEqual(a.grad, grad_output)
|
|
self.assertEqual(b.grad, -1 * grad_output.transpose(-1, -2))
|
|
|
|
def test_backward_add_strided(self, device):
|
|
a = torch.nested.nested_tensor([torch.randn(9, 2, 4), torch.randn(12, 2, 4)], requires_grad=True, device=device)
|
|
b = torch.nested.nested_tensor([torch.randn(9, 4, 2), torch.randn(12, 4, 2)], requires_grad=True, device=device)
|
|
c = a + b.transpose(-1, -2)
|
|
grad_output = c.clone()
|
|
c.backward(grad_output)
|
|
self.assertEqual(a.grad, grad_output)
|
|
self.assertEqual(b.grad, grad_output.transpose(-1, -2))
|
|
|
|
# Test Factory Functions
|
|
def test_nested_tensor_to_padded_tensor(self, device):
|
|
for padding_val in [0, 1]:
|
|
nt = self._create_leaf_nested_tensor_from_list(tensor_device=device, requires_grad=True)
|
|
|
|
out = torch.nested.to_padded_tensor(nt, padding_val)
|
|
grad_output = torch.ones(out.shape, device=device)
|
|
out.backward(grad_output)
|
|
|
|
self.assertEqual(nt.grad, torch.nested.nested_tensor([torch.ones(1, 2), torch.ones(7, 8)], device=device))
|
|
|
|
def test_nested_tensor_from_mask_and_to_padded(self, device):
|
|
N, L, D = 2, 4, 4
|
|
mask = torch.ones(N, L, device=device)
|
|
for i in range(1, N):
|
|
end = torch.randint(1, L - 1, (1,), device=device)
|
|
mask[i, end:] = 0
|
|
|
|
mask[0, :] = 1
|
|
mask = mask.bool()
|
|
|
|
data = torch.randn(N, L, D, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(inpt):
|
|
nt = torch._nested_tensor_from_mask(inpt, mask)
|
|
# This implicitly tests to_padded_tensor grads
|
|
return torch.nested.to_padded_tensor(nt, 0)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_nested_tensor_from_padded(self, device):
|
|
nested_size = torch.tensor([[1, 2], [2, 2]])
|
|
padded_tensor = torch.randn(2, 2, 2, dtype=torch.float64, device=device)
|
|
padded_tensor[0, 1, :] = 0
|
|
padded_tensor.requires_grad_()
|
|
|
|
def grad_test_func(tensor, nested_size):
|
|
nt = torch._nested_from_padded(tensor, nested_size, fuse_transform_0213=False)
|
|
# This implicitly tests to_padded_tensor grads
|
|
return torch.nested.to_padded_tensor(nt, 0)
|
|
|
|
data = (padded_tensor, nested_size)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_nested_tensor_from_padded_fused(self, device):
|
|
nested_size = torch.tensor([[1, 8], [2, 8]])
|
|
padded_tensor = torch.randn(2, 2, 2, 4, dtype=torch.float64, device=device)
|
|
padded_tensor[0, 1, :] = 0
|
|
padded_tensor.requires_grad_()
|
|
|
|
def grad_test_func(tensor, nested_size):
|
|
nt = torch._nested_from_padded(tensor, nested_size, fuse_transform_0213=True)
|
|
# This implicitly tests to_padded_tensor grads
|
|
return torch.nested.to_padded_tensor(nt, 0)
|
|
data = (padded_tensor, nested_size)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_nested_tensor_from_list(self, device):
|
|
|
|
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(10, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
c = torch.nested.as_nested_tensor([a, b, c])
|
|
# This implictily tests to_padded_tensor grads
|
|
return torch.nested.to_padded_tensor(c, 0)
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
@decorateIf(
|
|
xfailIfTorchDynamo,
|
|
# only fails in python 3.11. TODO: Debug this!
|
|
lambda params: params["layout"] == torch.jagged and sys.version_info >= (3, 11)
|
|
)
|
|
@parametrize("layout", [torch.strided, torch.jagged], name_fn=layout_name)
|
|
def test_dropout_backward(self, layout):
|
|
if layout == torch.jagged:
|
|
nt = torch.nested.nested_tensor([torch.randn((2, 5)), torch.randn((3, 5))], requires_grad=True, layout=layout)
|
|
else:
|
|
nt = torch.nested.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))], requires_grad=True, layout=layout)
|
|
p = 0.2
|
|
y = torch.nn.functional.dropout(nt, p)
|
|
y.backward(nt.clone().detach())
|
|
self.assertEqual(nt.grad, y)
|
|
|
|
def test_nested_tensor_bmm_gradcheck(self, device):
|
|
a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c, d):
|
|
nt0 = torch.nested.as_nested_tensor([a, b])
|
|
nt1 = torch.nested.as_nested_tensor([c, d])
|
|
result = nt0.bmm(nt1)
|
|
return torch.nested.to_padded_tensor(result, 0.0)
|
|
|
|
data = (a, b, c, d)
|
|
assert torch.autograd.gradcheck(grad_test_func, inputs=data)
|
|
|
|
def test_nested_tensor_bmm_backward(self, device):
|
|
nt0 = torch.nested.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True, device=device)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((6, 4)), torch.randn((6, 5))], requires_grad=True, device=device)
|
|
with torch.no_grad():
|
|
pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True)
|
|
pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True)
|
|
|
|
ynt = nt0.bmm(nt1)
|
|
ypt = pt0.bmm(pt1)
|
|
ynt.backward(ynt.clone())
|
|
ypt.backward(ypt.clone())
|
|
|
|
self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad)
|
|
self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad)
|
|
|
|
def test_nested_tensor_matmul_gradcheck(self, device):
|
|
a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c, d):
|
|
nt0 = torch.nested.as_nested_tensor([a, b])
|
|
nt1 = torch.nested.as_nested_tensor([c, d])
|
|
result = torch.matmul(nt0, nt1)
|
|
return torch.nested.to_padded_tensor(result, 0.0)
|
|
|
|
data = (a, b, c, d)
|
|
assert torch.autograd.gradcheck(grad_test_func, inputs=data)
|
|
|
|
def test_nested_tensor_matmul_backward(self, device):
|
|
nt0 = torch.nested.nested_tensor([torch.randn((7, 2, 6)), torch.randn((7, 3, 6))], requires_grad=True, device=device)
|
|
nt1 = torch.nested.nested_tensor([torch.randn((7, 6, 4)), torch.randn((7, 6, 5))], requires_grad=True, device=device)
|
|
with torch.no_grad():
|
|
pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True)
|
|
pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True)
|
|
|
|
ynt = torch.matmul(nt0, nt1)
|
|
ypt = torch.matmul(pt0, pt1)
|
|
ynt.backward(ynt.clone())
|
|
ypt.backward(ypt.clone())
|
|
|
|
self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad)
|
|
self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad)
|
|
|
|
def test_nested_tensor_transpose_gradcheck(self, device):
|
|
a = torch.randn(2, 5, requires_grad=True, device=device)
|
|
b = torch.randn(3, 4, requires_grad=True, device=device)
|
|
|
|
def grad_test_func(a, b):
|
|
nt = torch.nested.as_nested_tensor([a, b])
|
|
result = nt.transpose(-2, -1).transpose(-2, -1)
|
|
return torch.nested.to_padded_tensor(result, 0.0)
|
|
|
|
data = (a, b)
|
|
assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3)
|
|
|
|
def test_nested_tensor_transpose_backward(self, device):
|
|
nt = torch.nested.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))], requires_grad=True, device=device)
|
|
with torch.no_grad():
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True)
|
|
|
|
ynt = nt.transpose(-2, -1)
|
|
ypt = pt.transpose(-2, -1)
|
|
ynt.backward(ynt.clone())
|
|
ypt.backward(ypt.clone())
|
|
|
|
self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad)
|
|
|
|
def test_nested_tensor_reshape_gradcheck(self, device):
|
|
a = torch.randn(2, 6, requires_grad=True, device=device)
|
|
b = torch.randn(3, 6, requires_grad=True, device=device)
|
|
|
|
def grad_test_func(a, b):
|
|
nt = torch.nested.as_nested_tensor([a, b])
|
|
result = nt.reshape(2, -1, 2, 3)
|
|
return torch.nested.to_padded_tensor(result, 0.0)
|
|
|
|
data = (a, b)
|
|
assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3)
|
|
|
|
def test_nested_tensor_reshape_backward(self):
|
|
nt = torch.nested.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True)
|
|
with torch.no_grad():
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True)
|
|
|
|
ynt = nt.reshape(2, -1, 2, 3)
|
|
ypt = pt.reshape(2, -1, 2, 3)
|
|
ynt.backward(ynt.clone())
|
|
ypt.backward(ypt.clone())
|
|
|
|
self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad)
|
|
|
|
def test_nested_tensor_squeeze_backward(self, device):
|
|
nt = torch.nested.nested_tensor([torch.randn((2, 6, 1)), torch.randn((3, 6, 1))], requires_grad=True, device=device)
|
|
with torch.no_grad():
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True)
|
|
|
|
ynt = nt.squeeze(-1)
|
|
ypt = pt.squeeze(-1)
|
|
ynt.backward(ynt.clone())
|
|
ypt.backward(ypt.clone())
|
|
|
|
self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad)
|
|
|
|
def test_nested_tensor_squeeze_gradcheck(self, device):
|
|
a = torch.randn((2, 6, 1), dtype=torch.float64, requires_grad=True, device=device)
|
|
b = torch.randn((3, 6, 1), dtype=torch.float64, requires_grad=True, device=device)
|
|
|
|
def grad_test_func(a, b):
|
|
nt = torch.nested.as_nested_tensor([a, b])
|
|
result = nt.squeeze(-1)
|
|
return torch.nested.to_padded_tensor(result, 0.0)
|
|
|
|
assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3)
|
|
|
|
def test_nested_tensor_unsqueeze_backward(self, device):
|
|
nt = torch.nested.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True, device=device)
|
|
with torch.no_grad():
|
|
pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True)
|
|
|
|
ynt = nt.unsqueeze(2)
|
|
ypt = pt.unsqueeze(2)
|
|
ynt.backward(ynt.clone())
|
|
ypt.backward(ypt.clone())
|
|
|
|
self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad)
|
|
|
|
def test_nested_tensor_unsqueeze_gradcheck(self, device):
|
|
a = torch.randn((2, 6), dtype=torch.float64, requires_grad=True, device=device)
|
|
b = torch.randn((3, 6), dtype=torch.float64, requires_grad=True, device=device)
|
|
|
|
def grad_test_func(a, b):
|
|
nt = torch.nested.as_nested_tensor([a, b])
|
|
result = nt.unsqueeze(-1)
|
|
return torch.nested.to_padded_tensor(result, 0.0)
|
|
|
|
assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3)
|
|
|
|
def test_nested_tensor_linear(self, device):
|
|
|
|
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
weight = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
bias = torch.randn(2, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c, weight, bias=None):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
# This implicitly tests to_padded_tensor grads
|
|
d = torch.functional.F.linear(nt, weight, bias)
|
|
return torch.nested.to_padded_tensor(d, 0)
|
|
data = (a, b, c, weight, bias)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
# Test linear with no bias added
|
|
data = (a, b, c, weight)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_nested_tensor_linear_plus_transpose(self, device):
|
|
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
weight = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
bias = torch.randn(2, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c, weight, bias=None):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
# This implicitly tests to_padded_tensor grads
|
|
d = torch.functional.F.linear(nt, weight, bias)
|
|
d = d.transpose(-1, -2).contiguous()
|
|
return torch.nested.to_padded_tensor(d, 0)
|
|
data = (a, b, c, weight, bias)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
# Test linear with no bias added
|
|
data = (a, b, c, weight)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_nested_tensor_softmax(self, device):
|
|
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c, dim):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
# This implicitly tests to_padded_tensor grads
|
|
d = torch.functional.F.softmax(nt, dim=dim)
|
|
return torch.nested.to_padded_tensor(d, 0)
|
|
|
|
# softmax over last dim
|
|
data = (a, b, c, -1)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_nested_tensor_linear_backward(self, device):
|
|
a = torch.randn(1, 2, requires_grad=False, device=device)
|
|
b = torch.randn(2, 2, requires_grad=False, device=device)
|
|
c = torch.randn(3, 2, requires_grad=False, device=device)
|
|
|
|
weight = torch.randn(2, 2, requires_grad=True, device=device)
|
|
bias = torch.randn(2, requires_grad=True, device=device)
|
|
nt = torch.nested.as_nested_tensor([a, b, c], device=device)
|
|
|
|
out = torch.functional.F.linear(nt, weight, bias)
|
|
|
|
out.backward(out.clone())
|
|
|
|
assert weight.grad is not None
|
|
assert bias.grad is not None
|
|
|
|
assert a.grad is None
|
|
assert b.grad is None
|
|
assert c.grad is None
|
|
|
|
def test_values_grad_with_broadcast(self, device):
|
|
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
buffer = nt.values()
|
|
return buffer.sum()
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_to_buffer_series_ops_grad_with_broadcast(self, device):
|
|
a = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
buffer = nt.values()
|
|
buffer = buffer * 2
|
|
return buffer.exp()
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_unbind_flow_through(self, device):
|
|
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
ntT = nt.transpose(-1, -2)
|
|
unbound = ntT.unbind()
|
|
d = unbound[0]
|
|
d = torch.pow(d, 2)
|
|
return d
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_split_with_sizes_flow_through(self, device):
|
|
a = torch.randn(2, 5, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 5, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(4, 5, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
splits = nt.split_with_sizes([2, 3], dim=-1)
|
|
unbound = splits[1].unbind()
|
|
d = unbound[0]
|
|
d = torch.pow(d, 2)
|
|
return d
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_indexing_backward(self, device):
|
|
x0 = torch.randn((2, 5))
|
|
x1 = torch.randn((3, 4))
|
|
nt = torch.nested.nested_tensor([x0, x1], device=device, requires_grad=True)
|
|
self.assertEqual(nt[0], x0)
|
|
self.assertEqual(nt[-1], x1)
|
|
grad_x0 = torch.randn((2, 5), device=device)
|
|
nt[0].backward(grad_x0)
|
|
expected_grad = torch.nested.nested_tensor([grad_x0, torch.zeros((3, 4), device=device)])
|
|
self.assertEqual(nt.grad, expected_grad)
|
|
|
|
def test_masked_fill_backward(self, device):
|
|
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
mask = nt.detach().clone().to(bool)
|
|
out = nt.masked_fill(mask, 0)
|
|
out = torch.nested.to_padded_tensor(out, 0)
|
|
return out
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_gelu_backward(self, device):
|
|
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
nt_gelu = torch.nn.functional.gelu(nt)
|
|
return torch.nested.to_padded_tensor(nt_gelu, 0)
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_relu_backward(self, device):
|
|
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
nt_relu = torch.nn.functional.relu(nt)
|
|
return torch.nested.to_padded_tensor(nt_relu, 0)
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_selu_backward(self, device):
|
|
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
nt_relu = torch.nn.functional.silu(nt)
|
|
return torch.nested.to_padded_tensor(nt_relu, 0)
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
def test_abs_backward(self, device):
|
|
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
nt_abs = torch.abs(nt)
|
|
return torch.nested.to_padded_tensor(nt_abs, 0)
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
# Previously would error when input NT doesn't require grad
|
|
# NotImplementedError: Cannot access storage of UndefinedTensorImpl
|
|
def test_layer_norm_backward_edge_case(self, device):
|
|
size = 4
|
|
a = torch.randn(1, 2, size, requires_grad=False, dtype=torch.float64, device=device)
|
|
nt = torch.nested.nested_tensor([a])
|
|
nt_layer_norm = torch.nn.LayerNorm(nt.size(-1), device=device, dtype=torch.float64)
|
|
out = nt_layer_norm(nt)
|
|
out.backward(out.clone())
|
|
|
|
def test_accumulate_grad_different_strides(self, device):
|
|
a = torch.rand(1, 4, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.rand(1, 8, 2, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b):
|
|
nt_1 = torch.nested.as_nested_tensor([a, b])
|
|
nt_2 = nt_1.clone()
|
|
out = torch.nn.functional.scaled_dot_product_attention(nt_1, nt_2, nt_2)
|
|
return torch.nested.to_padded_tensor(out, 0)
|
|
|
|
data = (a, b)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/95562
|
|
@skipIfSlowGradcheckEnv
|
|
@parametrize("size", [1024, 1023, 513, 512, 256, 128, 32, 4, 2])
|
|
def test_layer_norm_backward(self, device, size):
|
|
a = torch.randn(1, 2, size, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(2, 2, size, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(3, 2, size, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
layer_norm = torch.nn.LayerNorm(nt.size(-1), device=device, dtype=torch.float64)
|
|
nt_layer_norm = layer_norm(nt)
|
|
return torch.nested.to_padded_tensor(nt_layer_norm, 0)
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/95562
|
|
@skipIfSlowGradcheckEnv
|
|
# Could either mark slow or reduce size
|
|
@parametrize("size", [128, 32, 4, 2])
|
|
def test_layer_norm_backward_5d(self, device, size):
|
|
a = torch.randn(4, size, size, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(7, size, size, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(10, size, size, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt = torch.nested.as_nested_tensor([a, b, c])
|
|
layer_norm = torch.nn.LayerNorm((size, size, nt.size(-1)), device=device, dtype=torch.float64)
|
|
nt_layer_norm = layer_norm(nt)
|
|
return torch.nested.to_padded_tensor(nt_layer_norm, 0)
|
|
|
|
data = (a, b, c)
|
|
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
|
|
|
|
# Found in torch/testing/_comparison.py
|
|
default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5}
|
|
default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6}
|
|
|
|
def get_rtol(true_value: torch.Tensor, computed_value: torch.Tensor) -> float:
|
|
deviation = true_value - computed_value
|
|
deviation = torch.abs(deviation / true_value)
|
|
# Fill in the nans with the default rtol
|
|
torch.nan_to_num_(deviation, nan=default_rtol[computed_value.dtype])
|
|
return deviation.max().item()
|
|
|
|
|
|
def get_atol(true_value: torch.Tensor, computed_value: torch.Tensor) -> float:
|
|
deviation = true_value - computed_value
|
|
atol = torch.abs(deviation).max().item()
|
|
return atol
|
|
|
|
|
|
def get_tolerances(
|
|
true_value: torch.Tensor,
|
|
computed_value: torch.Tensor,
|
|
fudge_factor: Optional[float] = None,
|
|
) -> Tuple[float, float]:
|
|
"""Returns the absolute and relative tolerances for comparing two tensors."""
|
|
fudge_factor = fudge_factor if fudge_factor is not None else 1.0
|
|
atol = get_atol(true_value, computed_value)
|
|
rtol = get_rtol(true_value, computed_value)
|
|
|
|
atol = fudge_factor * max(atol, default_atol[computed_value.dtype])
|
|
rtol = fudge_factor * max(rtol, default_rtol[computed_value.dtype])
|
|
# torch.isclose() has weird behavior around see:
|
|
# https://github.com/pytorch/pytorch/issues/102400
|
|
if rtol > 1e30:
|
|
rtol = default_rtol[computed_value.dtype]
|
|
return atol, rtol
|
|
|
|
# We can probably parametrizing existing tests instead of having a separate
|
|
# test class as we begin to support more ops. Also maybe rewrite with OpInfos.
|
|
@markDynamoStrictTest
|
|
class TestNestedTensorSubclass(TestCase):
|
|
# TODO: consolidate with the below
|
|
def _get_list_for_jagged_tensor(self, nested_size, device, requires_grad=True):
|
|
Ds = nested_size[1:]
|
|
out = []
|
|
for s in nested_size[0]:
|
|
out.append(
|
|
torch.randn(s, *Ds, requires_grad=requires_grad, device=device, dtype=torch.float64)
|
|
)
|
|
return out
|
|
|
|
def _get_example_tensor_lists(self, include_list_of_lists=True, include_requires_grad=True):
|
|
|
|
def _make_tensor(*shape, include_requires_grad=include_requires_grad, requires_grad=True):
|
|
return torch.randn(
|
|
*shape,
|
|
requires_grad=(requires_grad if include_requires_grad else False)
|
|
)
|
|
|
|
# Purposefully introduce mixed requires_grad settings for the components
|
|
# when include_requires_grad=True.
|
|
example_lists = [
|
|
# (B, *, D) with B=4
|
|
[
|
|
_make_tensor(2, 5),
|
|
_make_tensor(3, 5, requires_grad=False),
|
|
_make_tensor(4, 5, requires_grad=False),
|
|
_make_tensor(6, 5)
|
|
],
|
|
# (B, *, D_0, D_1) with B=5
|
|
[
|
|
_make_tensor(2, 5, 6),
|
|
_make_tensor(3, 5, 6),
|
|
_make_tensor(4, 5, 6, requires_grad=False),
|
|
_make_tensor(5, 5, 6),
|
|
_make_tensor(6, 5, 6),
|
|
],
|
|
]
|
|
|
|
if include_list_of_lists:
|
|
example_lists.append(
|
|
# (B, *, D) with B=3 in list form
|
|
[
|
|
_make_tensor(2, 5, requires_grad=False).tolist(),
|
|
_make_tensor(3, 5).tolist(),
|
|
_make_tensor(4, 5).tolist(),
|
|
])
|
|
|
|
return example_lists
|
|
|
|
def test_tensor_attributes(self, device):
|
|
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
nt, _offsets = jagged_from_list([a, b, c], None)
|
|
|
|
for op in (
|
|
torch.ops.aten.is_non_overlapping_and_dense.default,
|
|
torch.ops.aten.sym_size.default,
|
|
torch.ops.aten.dim.default,
|
|
torch.ops.aten.sym_numel.default,
|
|
torch.ops.aten.sym_stride.default,
|
|
torch.ops.aten.sym_storage_offset.default,
|
|
):
|
|
op(nt)
|
|
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"directly calling torch.ops.aten.size"):
|
|
torch.ops.aten.size.default(nt)
|
|
|
|
singleton_int = torch.nested._internal.nested_tensor.get_tensor_symint(_offsets, coeff=1)
|
|
self.assertEqual(nt.size(), (3, singleton_int, 3))
|
|
self.assertEqual(nt.shape, (3, singleton_int, 3))
|
|
self.assertEqual(nt.dim(), 3)
|
|
self.assertEqual(nt.numel(), 27)
|
|
|
|
def test_linear(self, device):
|
|
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
weight = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c, weight):
|
|
nt, _ = jagged_from_list([a, b, c], None)
|
|
out = torch.nn.functional.linear(nt, weight)
|
|
return buffer_from_jagged(out)
|
|
|
|
gradcheck(grad_test_func, inputs=(a, b, c, weight), check_batched_grad=False)
|
|
|
|
def test_unary_pointwise(self, device):
|
|
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt, _ = jagged_from_list([a, b, c], None)
|
|
out = torch.nn.functional.silu(nt.sin().cos())
|
|
return buffer_from_jagged(out)
|
|
|
|
gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False)
|
|
|
|
def test_unary_pointwise_transposed_inputs(self, device):
|
|
a, b, c = (
|
|
torch.randn(i + 2, 5, requires_grad=True, dtype=torch.float64, device=device) for i in range(3)
|
|
)
|
|
|
|
nt, _ = jagged_from_list([a.detach(), b.detach(), c.detach()], None)
|
|
nt_t = nt.transpose(1, 2)
|
|
self.assertFalse(nt_t.is_contiguous())
|
|
out = torch.nn.functional.silu(nt_t.sin().cos())
|
|
self.assertEqual(out.is_contiguous(), torch.nn.functional.silu(b.transpose(-1, -2).sin().cos()).is_contiguous())
|
|
|
|
self.assertEqual(nt_t.shape, out.shape)
|
|
|
|
a, b, c = (
|
|
torch.randn(i + 2, 5, requires_grad=True, dtype=torch.float64, device=device) for i in range(3)
|
|
)
|
|
|
|
def grad_test_func(a, b, c):
|
|
nt, _ = jagged_from_list([a, b, c], None)
|
|
nt_t = nt.transpose(1, 2)
|
|
out = torch.nn.functional.silu(nt_t.sin().cos())
|
|
return buffer_from_jagged(out)
|
|
|
|
gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False)
|
|
|
|
|
|
def test_binary_pointwise(self, device):
|
|
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
# Incorrect usage: shape check will fail if the offsets tensor are not
|
|
# the same exact tensor object
|
|
nt1, _ = jagged_from_list([a, b, c], None)
|
|
nt2, _ = jagged_from_list([a, b, c], None)
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"cannot call binary pointwise function .* with inputs of shapes",
|
|
lambda: nt1 * nt2)
|
|
|
|
# Correct usage: chain the calls using the same offsets tensor object
|
|
def grad_test_func(a, b, c):
|
|
nt1, offsets = jagged_from_list([a, b, c], None)
|
|
nt2, offsets = jagged_from_list([a, b, c], offsets)
|
|
out = nt1 * nt2
|
|
return buffer_from_jagged(out)
|
|
|
|
gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False)
|
|
|
|
def test_binary_pointwise_transposed(self, device):
|
|
a, b, c = (
|
|
torch.randn(i + 2, 5, dtype=torch.float64, device=device) for i in range(3)
|
|
)
|
|
|
|
nt1, offsets = jagged_from_list([a, b, c], None)
|
|
nt2, offsets = jagged_from_list([a, b, c], offsets)
|
|
|
|
nt1_t = nt1.transpose(1, 2)
|
|
nt2_t = nt2.transpose(1, 2)
|
|
|
|
out = nt1_t * nt2_t
|
|
self.assertFalse(nt1_t.is_contiguous())
|
|
self.assertEqual(out.is_contiguous(), (b.transpose(-1, -2) * b.transpose(-1, -2)).is_contiguous())
|
|
self.assertEqual(out.shape, nt1_t.shape)
|
|
|
|
self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"cannot call binary pointwise function mul.Tensor with inputs of shapes",
|
|
lambda: nt1 * nt2_t,
|
|
)
|
|
|
|
a, b, c = (
|
|
torch.randn(i + 2, 5, requires_grad=True, dtype=torch.float64, device=device) for i in range(3)
|
|
)
|
|
|
|
# Correct usage: chain the calls using the same offsets tensor object
|
|
def grad_test_func(a, b, c):
|
|
nt1, offsets = jagged_from_list([a, b, c], None)
|
|
nt2, offsets = jagged_from_list([a, b, c], offsets)
|
|
nt1_t = nt1.transpose(1, 2)
|
|
nt2_t = nt2.transpose(1, 2)
|
|
out = nt1_t * nt2_t
|
|
return buffer_from_jagged(out)
|
|
|
|
gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False)
|
|
|
|
def test_split(self, device):
|
|
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
nt, _ = jagged_from_list([a, b, c], None)
|
|
out = torch.split(nt, 2, -1)
|
|
self.assertEqual(len(out), 2)
|
|
self.assertEqual(
|
|
out[0], jagged_from_list([a[:, 0:2], b[:, 0:2], c[:, 0:2]], None)[0]
|
|
)
|
|
self.assertEqual(
|
|
out[1], jagged_from_list([a[:, 2:], b[:, 2:], c[:, 2:]], None)[0]
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"split\(\): not supported for NestedTensor on dim=0 or dim=1",
|
|
):
|
|
torch.split(nt, 2, 1)
|
|
|
|
def test_split_with_sizes(self, device):
|
|
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
|
|
nt, _ = jagged_from_list([a, b, c], None)
|
|
out = torch.split(nt, [1, 2], -1)
|
|
self.assertEqual(len(out), 2)
|
|
self.assertEqual(
|
|
out[0], jagged_from_list([a[:, 0:1], b[:, 0:1], c[:, 0:1]], None)[0]
|
|
)
|
|
self.assertEqual(
|
|
out[1], jagged_from_list([a[:, 1:], b[:, 1:], c[:, 1:]], None)[0]
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"split_with_sizes\(\): not supported for NestedTensor on dim=0 or dim=1",
|
|
):
|
|
torch.split(nt, [1, 2], 1)
|
|
|
|
def test_views_inherit_ragged_dim(self, device):
|
|
# view
|
|
nt = random_nt_from_dims(
|
|
[4, None, 8, 10], device=device, dtype=torch.float32, layout=torch.jagged)
|
|
# inherit ragged dim via -1
|
|
view = nt.view(4, -1, 80)
|
|
self.assertEqual(nt.shape[1], view.shape[1])
|
|
# inherit batch and ragged dims via -1
|
|
view2 = nt.view(-1, -1, 80)
|
|
self.assertEqual(nt.shape[:2], view2.shape[:2])
|
|
|
|
# expand
|
|
nt = random_nt_from_dims(
|
|
[3, None, 1], device=device, dtype=torch.float32, layout=torch.jagged)
|
|
# inherit batch and ragged dims via -1
|
|
view = nt.expand(-1, -1, 5)
|
|
self.assertEqual(nt.shape[:2], view.shape[:2])
|
|
|
|
@xfailIfTorchDynamo
|
|
def test_view_ragged_idx_not_one(self, device):
|
|
nt = random_nt_from_dims([2, None, 20], device=device, dtype=torch.float32, layout=torch.jagged)
|
|
|
|
view_transposed = nt.transpose(1, 2).view(2, 20, nt.size(1))
|
|
self.assertEqual((2, 20, nt.size(1)), (view_transposed.size()))
|
|
self.assertEqual(view_transposed._base, nt)
|
|
|
|
def test_unsafe_view(self, device):
|
|
nt = random_nt_from_dims([4, None, 8, 10], device=device, dtype=torch.float32, layout=torch.jagged)
|
|
# basic view
|
|
view1 = torch.ops.aten._unsafe_view(nt, (4, -1, 80))
|
|
self.assertEqual((4, nt.size(1), 80), tuple(view1.size()))
|
|
# _unsafe_view differs from view in that the view information is not tracked
|
|
self.assertTrue(view1._base is None)
|
|
|
|
# test an unsafe_view when ragged_idx != 1, currently only supports identity view
|
|
nt_t = nt.transpose(1, 2)
|
|
view2 = torch.ops.aten._unsafe_view(nt_t, (4, 8, nt.size(1), 10))
|
|
self.assertEqual((4, 8, nt.size(1), 10), tuple(view2.size()))
|
|
self.assertTrue(view2._base is None)
|
|
|
|
@xfailIfTorchDynamo
|
|
@parametrize("requires_grad", [False, True])
|
|
def test_reshape_decomp(self, device, requires_grad):
|
|
# contiguous NT should result in view
|
|
nt = random_nt_from_dims(
|
|
[3, None, 10],
|
|
device=device,
|
|
dtype=torch.float32,
|
|
layout=torch.jagged,
|
|
requires_grad=requires_grad
|
|
)
|
|
view = nt.reshape(-1, -1, 5, 2)
|
|
self.assertEqual(view.shape[:2], nt.shape[:2])
|
|
self.assertTrue(view._is_view() and view._base is nt)
|
|
# make sure gradients flow back
|
|
if requires_grad:
|
|
view.backward(torch.ones_like(view))
|
|
self.assertEqual(nt.grad, torch.ones_like(nt))
|
|
|
|
# non-contiguous NT should result in contiguous copy
|
|
nt = random_nt_from_dims(
|
|
[3, None, 5, 2],
|
|
device=device,
|
|
dtype=torch.float32,
|
|
layout=torch.jagged,
|
|
requires_grad=requires_grad
|
|
)
|
|
nt_noncontig = nt.transpose(-1, -2)
|
|
self.assertFalse(nt_noncontig.is_contiguous())
|
|
copy = nt_noncontig.reshape(-1, -1, 10)
|
|
self.assertTrue(copy.is_contiguous())
|
|
self.assertEqual(copy.shape[:2], nt.shape[:2])
|
|
# make sure gradients flow back
|
|
if requires_grad:
|
|
copy.backward(torch.ones_like(copy))
|
|
self.assertEqual(nt.grad, torch.ones_like(nt))
|
|
|
|
def test_flatten_decomp(self, device):
|
|
nt = random_nt_from_dims(
|
|
[3, None, 5, 2], device=device, dtype=torch.float32, layout=torch.jagged)
|
|
flattened = nt.flatten(-2, -1)
|
|
self.assertEqual(flattened.shape, nt.view(3, -1, 10).shape)
|
|
|
|
nt = random_nt_from_dims(
|
|
[3, None, 5, 2, 6], device=device, dtype=torch.float32, layout=torch.jagged)
|
|
flattened = nt.flatten(-3, -2)
|
|
self.assertEqual(flattened.shape, nt.view(3, -1, 10, 6).shape)
|
|
|
|
def test_chunk(self, device):
|
|
# normal case
|
|
D = 30
|
|
nt = random_nt_from_dims(
|
|
[4, None, D], device=device, dtype=torch.float32, layout=torch.jagged)
|
|
NUM_CHUNKS = 3
|
|
chunks = nt.chunk(NUM_CHUNKS, dim=-1)
|
|
self.assertEqual(len(chunks), NUM_CHUNKS)
|
|
for i in range(NUM_CHUNKS):
|
|
self.assertEqual(chunks[i].shape[-1], D // NUM_CHUNKS)
|
|
|
|
# chunk on batch dim not supported
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "chunk.* not supported for NestedTensor on dim=0 or dim=1"):
|
|
nt.chunk(2, dim=0)
|
|
|
|
# chunk on ragged dim not supported
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "chunk.* not supported for NestedTensor on dim=0 or dim=1"):
|
|
nt.chunk(2, dim=1)
|
|
|
|
def test_squeeze(self, device):
|
|
B = 4
|
|
D = 6
|
|
# squeeze middle dim
|
|
nt = random_nt_from_dims(
|
|
[B, None, 1, D], device=device, dtype=torch.float32, layout=torch.jagged)
|
|
j0 = nt.shape[1]
|
|
|
|
for dim_arg in [-2, 2]:
|
|
out = nt.squeeze(dim_arg)
|
|
self.assertEqual(out.shape, (B, j0, D))
|
|
self.assertEqual(out.unsqueeze(-2), nt)
|
|
|
|
# squeeze last dim
|
|
nt = random_nt_from_dims(
|
|
[B, None, 1], device=device, dtype=torch.float32, layout=torch.jagged)
|
|
j1 = nt.shape[1]
|
|
|
|
for dim_arg in [-1, 2]:
|
|
out = nt.squeeze(dim_arg)
|
|
self.assertEqual(out.shape, (B, j1))
|
|
self.assertEqual(out.unsqueeze(-1), nt)
|
|
|
|
# squeeze on batch dim not supported
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "squeeze.* not supported for NestedTensor on dim=0 or dim=1"):
|
|
nt.squeeze(0)
|
|
|
|
# squeeze on ragged dim not supported
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "squeeze.* not supported for NestedTensor on dim=0 or dim=1"):
|
|
nt.squeeze(1)
|
|
|
|
def test_binary_pointwise_broadcasting(self, device):
|
|
# (B, j0, 3, 4)
|
|
ts = self._get_list_for_jagged_tensor(((2, 3, 4), 3, 4), device, requires_grad=True)
|
|
# (B, j0, ?, ?) + (?) -> (B, j0, ?, ?)
|
|
# (B, j0, ?, ?) + (?, ?) -> (B, j0, ?, ?)
|
|
# (B, j0, ?, ?) + (1, ?, ?) -> (B, j0, ?, ?)
|
|
# Unsupported: (B, j0, ?, ?) + (1, 1, 1, ?, ?) -> (1, B, j0, ?, ?)
|
|
t_sizes = (
|
|
(4,),
|
|
(1, 4),
|
|
(3, 1),
|
|
(1, 3, 1),
|
|
(1, 1, 1, 4),
|
|
# (1, 1, 1, 1, 4), (unsupported today)
|
|
)
|
|
|
|
def grad_test_func(t, *ts):
|
|
nt, _ = jagged_from_list(ts, None)
|
|
out = nt + t
|
|
return buffer_from_jagged(out)
|
|
|
|
for t_size in t_sizes:
|
|
t = torch.rand(t_size, requires_grad=True, device=device, dtype=torch.float64)
|
|
gradcheck(grad_test_func, inputs=(t, *ts), check_batched_grad=False)
|
|
|
|
def test_threshold_backward(self, device):
|
|
ts1 = self._get_list_for_jagged_tensor(((2, 3, 4), 16), device=device, requires_grad=False)
|
|
ts2 = self._get_list_for_jagged_tensor(((2, 3, 4), 16), device=device, requires_grad=False)
|
|
|
|
nt1, offsets = jagged_from_list(ts1, None)
|
|
nt2, offsets = jagged_from_list(ts2, offsets)
|
|
buf1 = buffer_from_jagged(nt1).detach().clone()
|
|
buf2 = buffer_from_jagged(nt2).detach().clone()
|
|
|
|
res_nt = torch.ops.aten.threshold_backward(nt1, nt2, 0.0)
|
|
res_dense = torch.ops.aten.threshold_backward(buf1, buf2, 0.0)
|
|
|
|
self.assertEqual(res_dense, buffer_from_jagged(res_nt))
|
|
|
|
|
|
@parametrize("keepdim", [False, True])
|
|
def test_sum_int_DimList(self, device, keepdim):
|
|
# (B, j0, 3, 4)
|
|
ts = self._get_list_for_jagged_tensor(((2, 3, 4), 3, 4), device=device, requires_grad=True)
|
|
|
|
# Check shape correctness
|
|
reduce_dims = (
|
|
# dims, expected shape, expected keepdim shape
|
|
# j0 is represented as None
|
|
((0, 1), (3, 4), (1, 1, 3, 4)),
|
|
((1, 2), None, None),
|
|
((2, 3), (3, None), (3, None, 1, 1)),
|
|
((0, 1, 3), (3,), (1, 1, 3, 1)),
|
|
((0, 1, 2), (4,), (1, 1, 1, 4)),
|
|
((0, 1, 2, 3), tuple(), (1, 1, 1, 1)),
|
|
)
|
|
for rd, ref_shape_no_keepdim, ref_shape_keepdim in reduce_dims:
|
|
if (0 in rd) ^ (1 in rd):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"applying over the ragged dimension, but not the batch dimension"):
|
|
nt, _ = jagged_from_list(ts, None)
|
|
out = torch.sum(nt, dim=rd, keepdim=keepdim)
|
|
continue
|
|
|
|
nt, _ = jagged_from_list(ts, None)
|
|
out = torch.sum(nt, dim=rd, keepdim=keepdim)
|
|
ref_shape = ref_shape_keepdim if keepdim else ref_shape_no_keepdim
|
|
self.assertEqual(len(out.shape), len(ref_shape))
|
|
for o, r in zip(out.shape, ref_shape):
|
|
if r is not None:
|
|
self.assertEqual(o, r)
|
|
else:
|
|
self.assertTrue(isinstance(o, torch.SymInt))
|
|
|
|
# Check values correctness
|
|
# raggedness not reduced
|
|
nt, _ = jagged_from_list(ts, None)
|
|
out = torch.sum(nt, dim=(2, 3), keepdim=keepdim)
|
|
out_ref = torch.sum(nt.values(), dim=(1, 2))
|
|
self.assertIsInstance(out, NestedTensor)
|
|
# flatten to avoid having to replicate unsqueeze logic depending on keepdim
|
|
self.assertTrue(torch.allclose(out.values().view(-1), out_ref.view(-1)))
|
|
|
|
# raggedness reduced away
|
|
nt, _ = jagged_from_list(ts, None)
|
|
out = torch.sum(nt, dim=(0, 1), keepdim=keepdim)
|
|
out_ref = torch.sum(nt.values(), dim=(0,))
|
|
self.assertNotIsInstance(out, NestedTensor)
|
|
self.assertTrue(torch.allclose(out, out_ref))
|
|
|
|
|
|
|
|
@dtypes(torch.float, torch.double, torch.half)
|
|
@parametrize("requires_grad", [False, True])
|
|
@parametrize("weights_only", [False, True])
|
|
def test_serialization(self, device, dtype, requires_grad, weights_only):
|
|
|
|
def compare_metadata(nt1, nt2):
|
|
self.assertEqual(nt1._nested_tensor_size(), nt2._nested_tensor_size())
|
|
self.assertEqual(nt1._nested_tensor_strides(), nt2._nested_tensor_strides())
|
|
self.assertEqual(nt1._nested_tensor_storage_offsets(),
|
|
nt2._nested_tensor_storage_offsets())
|
|
|
|
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7))
|
|
for a in [nt_contiguous, nt_noncontiguous]:
|
|
buffer = io.BytesIO()
|
|
serialized = torch.save(a, buffer)
|
|
buffer.seek(0)
|
|
b = torch.load(buffer, weights_only=weights_only)
|
|
# should be both conceptually equal and metadata equivalent
|
|
self.assertEqual(a, b)
|
|
compare_metadata(a, b)
|
|
# should be conceptually equal but not necessarily metadata equivalent
|
|
self.assertEqual(b, nt_contiguous)
|
|
self.assertEqual(b, nt_noncontiguous)
|
|
|
|
@unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property")
|
|
@onlyCUDA
|
|
def test_pin_memory(self, device):
|
|
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7))
|
|
for nt in [nt_contiguous, nt_noncontiguous]:
|
|
self.assertFalse(nt.is_pinned())
|
|
pinned = nt.pin_memory(device)
|
|
self.assertTrue(pinned.is_pinned())
|
|
self.assertEqual(nt, pinned)
|
|
self.assertNotEqual(nt.data_ptr(), pinned.data_ptr())
|
|
# test that pin_memory on already pinned tensor has no effect
|
|
self.assertIs(pinned, pinned.pin_memory())
|
|
self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr())
|
|
|
|
def _validate_nt(self, nt, tensor_list, device, dtype, requires_grad):
|
|
# Validate a bunch of properties after NT construction.
|
|
device = torch.device(device)
|
|
first_t = torch.as_tensor(tensor_list[0])
|
|
expected_dim = first_t.dim() + 1
|
|
batch_size = len(tensor_list)
|
|
self.assertEqual(nt.dim(), expected_dim)
|
|
self.assertEqual(nt.device, device)
|
|
self.assertEqual(nt.dtype, dtype)
|
|
self.assertEqual(nt.layout, torch.jagged)
|
|
self.assertEqual(nt.requires_grad, requires_grad)
|
|
self.assertEqual(nt.values().device, device)
|
|
self.assertEqual(nt.offsets().device, device)
|
|
self.assertEqual(nt.shape[0], batch_size)
|
|
self.assertTrue(isinstance(nt.shape[1], torch.SymInt))
|
|
self.assertEqual(nt.shape[2:], first_t.shape[1:])
|
|
|
|
@xfailIfTorchDynamo
|
|
@dtypes(torch.float, torch.double, torch.half)
|
|
@parametrize("requires_grad", [False, True])
|
|
@parametrize("components_require_grad", [False, True])
|
|
def test_jagged_layout_construction_nested_tensor(
|
|
self, device, dtype, requires_grad, components_require_grad):
|
|
for tensor_list in self._get_example_tensor_lists(
|
|
include_list_of_lists=True, include_requires_grad=components_require_grad):
|
|
nt = torch.nested.nested_tensor(
|
|
tensor_list,
|
|
device=device,
|
|
dtype=dtype,
|
|
layout=torch.jagged,
|
|
requires_grad=requires_grad)
|
|
self._validate_nt(nt, tensor_list, device, dtype, requires_grad)
|
|
|
|
# Make sure grads -don't- flow back into original tensors for nested_tensor()
|
|
if requires_grad:
|
|
(nt * 2).backward(torch.ones_like(nt))
|
|
for t in tensor_list:
|
|
t = t if isinstance(t, torch.Tensor) else torch.as_tensor(t)
|
|
self.assertTrue(t.grad is None)
|
|
|
|
@xfailIfTorchDynamo
|
|
@dtypes(torch.float, torch.double, torch.half)
|
|
@parametrize("components_require_grad", [False, True])
|
|
def test_jagged_layout_construction_as_nested_tensor(
|
|
self, device, dtype, components_require_grad):
|
|
# NB: as_nested_tensor(tensor_list) doesn't support lists of lists for tensor_list
|
|
for tensor_list in self._get_example_tensor_lists(
|
|
include_list_of_lists=False, include_requires_grad=components_require_grad):
|
|
nt = torch.nested.as_nested_tensor(
|
|
tensor_list,
|
|
device=device,
|
|
dtype=dtype,
|
|
layout=torch.jagged)
|
|
|
|
# nt.requires_grad=True should be set if at least one component requires grad
|
|
self._validate_nt(nt, tensor_list, device, dtype, components_require_grad)
|
|
|
|
# Make sure grads flow back into original tensors for as_nested_tensor()
|
|
if components_require_grad:
|
|
(nt * 2).backward(torch.ones_like(nt))
|
|
for t in tensor_list:
|
|
if t.requires_grad:
|
|
self.assertEqual(t.grad, torch.ones_like(t) * 2)
|
|
else:
|
|
self.assertTrue(t.grad is None)
|
|
|
|
@xfailIfTorchDynamo
|
|
@unittest.skipIf(PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property")
|
|
@onlyCUDA
|
|
def test_jagged_layout_construction_with_pinned_memory(self, device):
|
|
for tensor_list in self._get_example_tensor_lists():
|
|
nt = torch.nested.nested_tensor(
|
|
tensor_list,
|
|
layout=torch.jagged,
|
|
device="cpu",
|
|
pin_memory=True)
|
|
|
|
self._validate_nt(nt, tensor_list, "cpu", torch.float32, requires_grad=False)
|
|
self.assertTrue(nt.is_pinned())
|
|
|
|
@dtypes(torch.double, torch.half)
|
|
@onlyCUDA
|
|
def test_device_dtype_transfer_maintains_offsets(self, device, dtype):
|
|
for tensor_list in self._get_example_tensor_lists():
|
|
orig_device = torch.device("cpu")
|
|
orig_dtype = torch.float32
|
|
nt = torch.nested.nested_tensor(
|
|
tensor_list,
|
|
layout=torch.jagged,
|
|
device=orig_device,
|
|
dtype=orig_dtype)
|
|
|
|
self.assertEqual(torch.int64, nt.offsets().dtype)
|
|
nt = nt.to(device=device).to(dtype=dtype)
|
|
|
|
# offsets should still be int64 on the original device
|
|
self.assertEqual(orig_device, nt.offsets().device)
|
|
self.assertEqual(torch.int64, nt.offsets().dtype)
|
|
|
|
def test_unbind(self, device):
|
|
for tensor_list in self._get_example_tensor_lists():
|
|
nt = torch.nested.nested_tensor(
|
|
tensor_list,
|
|
layout=torch.jagged,
|
|
device=device)
|
|
out = nt.unbind()
|
|
self.assertEqual(len(out), len(tensor_list))
|
|
for i, t in enumerate(out):
|
|
self.assertEqual(t, tensor_list[i])
|
|
|
|
@xfailIfTorchDynamo
|
|
def test_layer_norm_2(self, device):
|
|
test_tensor_list = self._get_list_for_jagged_tensor(
|
|
((2, 3, 4), 3), device=device, requires_grad=True
|
|
)
|
|
bias = torch.randn(3, requires_grad=False, dtype=torch.float64, device=device)
|
|
|
|
def grad_test_func(a, b, c, bias):
|
|
nt, _ = jagged_from_list([a, b, c], None)
|
|
out = torch.nn.functional.layer_norm(nt, (nt.shape[-1],), bias=bias)
|
|
return buffer_from_jagged(out)
|
|
|
|
gradcheck(
|
|
grad_test_func, inputs=(*test_tensor_list, bias), check_batched_grad=False
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"layer_norm\(\): normalizing over ragged dim not supported for nested tensors",
|
|
):
|
|
nt, _ = jagged_from_list(test_tensor_list, None)
|
|
_ = torch.nn.functional.layer_norm(nt, (nt.shape[-2], nt.shape[-1]))
|
|
|
|
def test_narrow(self, device):
|
|
starts = torch.tensor([0, 1, 2, 3, 4], device=device, dtype=torch.int64)
|
|
lengths = torch.tensor([3, 2, 2, 1, 5], device=device, dtype=torch.int64)
|
|
nt = torch.nested.narrow(
|
|
torch.arange(0, 10, device=device, dtype=torch.int64).unsqueeze(0).expand(5, -1).clone().detach(),
|
|
1,
|
|
starts,
|
|
lengths,
|
|
layout=torch.jagged
|
|
)
|
|
|
|
# TODO: Use this approach when unbind is functional
|
|
# unbinded_nt = nt.unbind()
|
|
# for i in range(starts.shape[0]):
|
|
# self.assertEqual(torch.arange(starts[i], starts[i] + lengths[i], device=device, dtype=torch.int64), unbinded_nt[i])
|
|
for i in range(starts.shape[0]):
|
|
self.assertEqual(
|
|
torch.arange(starts[i], starts[i] + lengths[i], device=device, dtype=torch.int64),
|
|
nt.values()[nt.offsets()[i]:(nt.offsets()[i] + nt.lengths()[i])]
|
|
)
|
|
|
|
def test_is_contiguous(self, device):
|
|
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
|
|
nt_contiguous, _ = jagged_from_list([a, b, c], None)
|
|
|
|
starts_nc = torch.tensor([0, 1, 2, 3, 4], device=device, dtype=torch.int64)
|
|
lengths_nc = torch.tensor([3, 2, 2, 1, 5], device=device, dtype=torch.int64)
|
|
narrow_base = torch.arange(0, 10, device=device, dtype=torch.int64).unsqueeze(0).expand(5, -1).clone()
|
|
nt_noncontiguous = torch.nested.narrow(
|
|
narrow_base,
|
|
1,
|
|
starts_nc,
|
|
lengths_nc,
|
|
layout=torch.jagged
|
|
)
|
|
|
|
starts_c = torch.tensor([1, 0, 0, 0, 0], device=device, dtype=torch.int64)
|
|
lengths_c = torch.tensor([9, 10, 10, 10, 8], device=device, dtype=torch.int64)
|
|
nt_contiguous_narrow = torch.nested.narrow(
|
|
narrow_base,
|
|
1,
|
|
starts_c,
|
|
lengths_c,
|
|
layout=torch.jagged
|
|
)
|
|
|
|
# Test contiguous case
|
|
assert nt_contiguous.is_contiguous()
|
|
|
|
# Test narrow case
|
|
assert not nt_noncontiguous.is_contiguous()
|
|
assert nt_contiguous_narrow.is_contiguous()
|
|
|
|
# Test querying by memory_format
|
|
self.assertTrue(nt_contiguous.is_contiguous(memory_format=torch.contiguous_format))
|
|
self.assertTrue(not nt_noncontiguous.is_contiguous(memory_format=torch.contiguous_format))
|
|
self.assertTrue(nt_contiguous_narrow.is_contiguous(memory_format=torch.contiguous_format))
|
|
|
|
def test_noncontiguous_pointwise(self, device):
|
|
a = torch.randn(2, 3, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
b = torch.randn(3, 3, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
c = torch.randn(4, 3, 4, requires_grad=True, dtype=torch.float64, device=device)
|
|
nt, _ = jagged_from_list([a, b, c], None)
|
|
# transpose ragged dim
|
|
transposed = nt.transpose(1, 2)
|
|
self.assertFalse(transposed.is_contiguous())
|
|
clone = transposed.clone()
|
|
|
|
def check_nt_equality(x, y):
|
|
self.assertEqual(x.values(), y.values())
|
|
self.assertEqual(x.offsets(), y.offsets())
|
|
self.assertEqual(x._ragged_idx, y._ragged_idx)
|
|
self.assertEqual(x.shape, y.shape)
|
|
|
|
self.assertFalse(clone.is_contiguous())
|
|
check_nt_equality(clone, transposed)
|
|
|
|
clone_contig = transposed.clone(memory_format=torch.contiguous_format)
|
|
self.assertTrue(clone_contig.is_contiguous())
|
|
check_nt_equality(clone_contig, transposed)
|
|
|
|
detached = transposed.detach()
|
|
self.assertFalse(clone.is_contiguous())
|
|
check_nt_equality(detached, transposed)
|
|
|
|
def test_to_copy(self, device):
|
|
nt, _ = jagged_from_list(
|
|
[torch.randn(i + 2, 3, 4, requires_grad=True, dtype=torch.float64, device=device) for i in range(3)], None
|
|
)
|
|
|
|
nt_copy_dtype = torch.ops.aten._to_copy(nt, dtype=torch.float16)
|
|
self.assertEqual(torch.float16, nt_copy_dtype.dtype)
|
|
|
|
nt_t = nt.transpose(1, 2)
|
|
nt_t_copy_dtype = torch.ops.aten._to_copy(nt_t, dtype=torch.float16)
|
|
self.assertEqual(torch.float16, nt_t_copy_dtype.dtype)
|
|
|
|
def test_is_same_size(self, device):
|
|
def get_3_tensors():
|
|
return [torch.randn(i + 2, 3, 4, requires_grad=True, dtype=torch.float64, device=device) for i in range(3)]
|
|
|
|
nt1, offsets1 = jagged_from_list(get_3_tensors(), None)
|
|
nt2, offsets1 = jagged_from_list(get_3_tensors(), offsets1)
|
|
|
|
nt3, offsets2 = jagged_from_list(get_3_tensors(), None)
|
|
nt4, offsets2 = jagged_from_list(get_3_tensors(), offsets2)
|
|
|
|
def check_size(nt1, nt2, nt3, nt4):
|
|
self.assertTrue(torch.ops.aten.is_same_size(nt1, nt2))
|
|
self.assertTrue(torch.ops.aten.is_same_size(nt3, nt4))
|
|
self.assertFalse(torch.ops.aten.is_same_size(nt1, nt3))
|
|
|
|
check_size(nt1, nt2, nt3, nt4)
|
|
|
|
nt1_t, nt2_t, nt3_t, nt4_t = (x.transpose(1, 2) for x in (nt1, nt2, nt3, nt4))
|
|
check_size(nt1_t, nt2_t, nt3_t, nt4_t)
|
|
|
|
# Note 1: Math fallback doesn't work with bfloat16 on CUDA
|
|
# Note 2: ROCm doesn't support flash attention or mem_efficient attention for NT
|
|
@xfailIfTorchDynamo
|
|
@unittest.skipIf(
|
|
TEST_WITH_ROCM,
|
|
"ROCm doesn't support flash attention or mem_efficient attention for NT",
|
|
)
|
|
@parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32] if
|
|
SM80OrLater else [torch.float16, torch.float32])
|
|
def test_sdpa(self, device, dtype):
|
|
batch_size = 1
|
|
emb_dims = 128
|
|
n_heads = 8
|
|
head_dims = emb_dims // n_heads
|
|
|
|
sen1 = torch.randn(11, emb_dims, dtype=dtype, device=device)
|
|
sen2 = torch.randn(13, emb_dims, dtype=dtype, device=device)
|
|
|
|
query = torch.nn.Linear(emb_dims, emb_dims, bias=False, device=device, dtype=dtype)
|
|
key = torch.nn.Linear(emb_dims, emb_dims, bias=False, device=device, dtype=dtype)
|
|
value = torch.nn.Linear(emb_dims, emb_dims, bias=False, device=device, dtype=dtype)
|
|
|
|
# Simplest case: 1 sentence, no batching
|
|
x_d1 = sen1.unsqueeze(0)
|
|
x_nt = torch.nested.as_nested_tensor([sen1], layout=torch.jagged)
|
|
|
|
# See note below for why we detach here.
|
|
q_d1 = query(x_d1).view(batch_size, -1, n_heads, head_dims).detach().requires_grad_(True)
|
|
q_d1_t = q_d1.transpose(1, 2)
|
|
k_d1 = key(x_d1).view(batch_size, -1, n_heads, head_dims).detach().requires_grad_(True)
|
|
k_d1_t = k_d1.transpose(1, 2)
|
|
v_d1 = value(x_d1).view(batch_size, -1, n_heads, head_dims).detach().requires_grad_(True)
|
|
v_d1_t = v_d1.transpose(1, 2)
|
|
|
|
q_nt = query(x_nt).view(*x_nt.size()[0:2], n_heads, head_dims).detach().requires_grad_(True)
|
|
q_nt_t = q_nt.transpose(1, 2)
|
|
k_nt = key(x_nt).view(*x_nt.size()[0:2], n_heads, head_dims).detach().requires_grad_(True)
|
|
k_nt_t = k_nt.transpose(1, 2)
|
|
v_nt = value(x_nt).view(*x_nt.size()[0:2], n_heads, head_dims).detach().requires_grad_(True)
|
|
v_nt_t = v_nt.transpose(1, 2)
|
|
|
|
# High Precision Math Reference
|
|
q_d1_f32 = q_d1.to(torch.float32)
|
|
k_d1_f32 = k_d1.to(torch.float32)
|
|
v_d1_f32 = v_d1.to(torch.float32)
|
|
q_d1_f32_t = q_d1_f32.transpose(1, 2)
|
|
k_d1_f32_t = k_d1_f32.transpose(1, 2)
|
|
v_d1_f32_t = v_d1_f32.transpose(1, 2)
|
|
out_ref = torch.ops.aten._scaled_dot_product_attention_math(q_d1_f32_t, k_d1_f32_t, v_d1_f32_t)[0]
|
|
grads_ref = torch.autograd.grad(out_ref.sum(), (q_d1_f32, k_d1_f32, v_d1_f32))
|
|
|
|
# Low Precision Math Reference
|
|
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(q_d1_t, k_d1_t, v_d1_t)[0]
|
|
grads_lp_ref = torch.autograd.grad(out_lp_ref.sum(), (q_d1, k_d1, v_d1))
|
|
|
|
# Compute tolerances
|
|
output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref)
|
|
grad_q_ref_atol, grad_q_ref_rtol = get_tolerances(grads_ref[0], grads_lp_ref[0])
|
|
grad_k_ref_atol, grad_k_ref_rtol = get_tolerances(grads_ref[1], grads_lp_ref[1])
|
|
grad_v_ref_atol, grad_v_ref_rtol = get_tolerances(grads_ref[2], grads_lp_ref[2])
|
|
grad_atols = [grad_q_ref_atol, grad_k_ref_atol, grad_v_ref_atol]
|
|
grad_rtols = [grad_q_ref_rtol, grad_k_ref_rtol, grad_v_ref_rtol]
|
|
|
|
attn_d1 = torch.nn.functional.scaled_dot_product_attention(q_d1_t, k_d1_t, v_d1_t).transpose(1, 2)
|
|
attn_nt = torch.nn.functional.scaled_dot_product_attention(q_nt_t, k_nt_t, v_nt_t).transpose(1, 2)
|
|
|
|
self.assertEqual(attn_d1, attn_nt.unbind()[0].unsqueeze(0), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
|
|
# Simple case: 2 sentences, no extra params
|
|
x_d2 = sen2.unsqueeze(0)
|
|
x_nt = torch.nested.as_nested_tensor([sen1, sen2], layout=torch.jagged)
|
|
|
|
# NB: we make sure the leaf tensor we compute gradients for is the view-ed tensor before
|
|
# it is transposed. This is because today we cannot backward through view or unbind a
|
|
# transposed tensor.
|
|
q_d2 = query(x_d2).view(batch_size, -1, n_heads, head_dims).detach().requires_grad_(True)
|
|
q_d2_t = q_d2.transpose(1, 2)
|
|
k_d2 = key(x_d2).view(batch_size, -1, n_heads, head_dims).detach().requires_grad_(True)
|
|
k_d2_t = k_d2.transpose(1, 2)
|
|
v_d2 = value(x_d2).view(batch_size, -1, n_heads, head_dims).detach().requires_grad_(True)
|
|
v_d2_t = v_d2.transpose(1, 2)
|
|
|
|
q_nt = query(x_nt).view(*x_nt.size()[0:2], n_heads, head_dims).detach().requires_grad_(True)
|
|
q_nt_t = q_nt.transpose(1, 2)
|
|
k_nt = key(x_nt).view(*x_nt.size()[0:2], n_heads, head_dims).detach().requires_grad_(True)
|
|
k_nt_t = k_nt.transpose(1, 2)
|
|
v_nt = value(x_nt).view(*x_nt.size()[0:2], n_heads, head_dims).detach().requires_grad_(True)
|
|
v_nt_t = v_nt.transpose(1, 2)
|
|
|
|
attn_d2 = torch.nn.functional.scaled_dot_product_attention(q_d2_t, k_d2_t, v_d2_t).transpose(1, 2)
|
|
d1_grads = torch.autograd.grad(attn_d1.sum(), (q_d1, k_d1, v_d1))
|
|
d2_grads = torch.autograd.grad(attn_d2.sum(), (q_d2, k_d2, v_d2))
|
|
|
|
def check_forward_backward():
|
|
attn_nt = torch.nn.functional.scaled_dot_product_attention(q_nt_t, k_nt_t, v_nt_t).transpose(1, 2)
|
|
|
|
attn_nts = attn_nt.unbind()
|
|
self.assertEqual(attn_d1, attn_nts[0].unsqueeze(0), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
self.assertEqual(attn_d2, attn_nts[1].unsqueeze(0), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
|
|
nt_grads = torch.autograd.grad(buffer_from_jagged(attn_nt).sum(), (q_nt, k_nt, v_nt))
|
|
for nt_grad, d1_grad, d2_grad, grad_atol, grad_rtol in zip(nt_grads, d1_grads, d2_grads, grad_atols, grad_rtols):
|
|
unbound_nt_grads = nt_grad.unbind()
|
|
self.assertEqual(d1_grad, unbound_nt_grads[0].unsqueeze(0), atol=grad_atol, rtol=grad_rtol)
|
|
self.assertEqual(d2_grad, unbound_nt_grads[1].unsqueeze(0), atol=grad_atol, rtol=grad_rtol)
|
|
|
|
# Default
|
|
check_forward_backward()
|
|
|
|
# Test dispatcher works by calling only mem-effn and math (as they are safe for all devices)
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=True, enable_math=True):
|
|
check_forward_backward()
|
|
|
|
# Test math fallback
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
|
|
# Math fallback doesn't work with bfloat16 on CUDA because
|
|
# "group_gemm_dispatch" not implemented for 'BFloat16'
|
|
if not (str(device).startswith("cuda") and dtype == torch.bfloat16):
|
|
check_forward_backward()
|
|
|
|
# This requires NT -> NT views to work in inductor, which is a TODO
|
|
@unittest.expectedFailure # noqa: E301
|
|
@onlyCUDA
|
|
@parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32] if
|
|
SM80OrLater else [torch.float16, torch.float32])
|
|
def test_sdpa_compile(self, device, dtype):
|
|
batch_size = 1
|
|
emb_dims = 1024
|
|
n_heads = 8
|
|
head_dims = emb_dims // n_heads
|
|
|
|
sen1 = torch.randn(11, emb_dims, dtype=dtype, device=device)
|
|
sen2 = torch.randn(13, emb_dims, dtype=dtype, device=device)
|
|
|
|
query = torch.nn.Linear(emb_dims, emb_dims, bias=False, device=device, dtype=dtype)
|
|
key = torch.nn.Linear(emb_dims, emb_dims, bias=False, device=device, dtype=dtype)
|
|
value = torch.nn.Linear(emb_dims, emb_dims, bias=False, device=device, dtype=dtype)
|
|
|
|
# Simplest case: 1 sentence, no batching
|
|
x_d1 = sen1.unsqueeze(0)
|
|
x_d2 = sen2.unsqueeze(0)
|
|
x_nt = torch.nested.as_nested_tensor([sen1, sen2], layout=torch.jagged)
|
|
|
|
q_d1 = query(x_d1).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
|
|
k_d1 = key(x_d1).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
|
|
v_d1 = value(x_d1).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
|
|
q_d2 = query(x_d2).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
|
|
k_d2 = key(x_d2).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
|
|
v_d2 = value(x_d2).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
|
|
|
|
q_nt = query(x_nt).view(*x_nt.size()[0:2], n_heads, head_dims).transpose(1, 2)
|
|
k_nt = key(x_nt).view(*x_nt.size()[0:2], n_heads, head_dims).transpose(1, 2)
|
|
v_nt = value(x_nt).view(*x_nt.size()[0:2], n_heads, head_dims).transpose(1, 2)
|
|
|
|
# High Precision Math Reference
|
|
q_d1_f32 = q_d1.to(torch.float32)
|
|
k_d1_f32 = k_d1.to(torch.float32)
|
|
v_d1_f32 = v_d1.to(torch.float32)
|
|
out_ref = torch.ops.aten._scaled_dot_product_attention_math(q_d1_f32, k_d1_f32, v_d1_f32)[0]
|
|
# Low Precision Math Reference
|
|
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(q_d1, k_d1, v_d1)[0]
|
|
output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref)
|
|
|
|
attn_d1 = torch.nn.functional.scaled_dot_product_attention(q_d1, k_d1, v_d1).transpose(1, 2)
|
|
attn_d2 = torch.nn.functional.scaled_dot_product_attention(q_d2, k_d2, v_d2).transpose(1, 2)
|
|
|
|
compiled_sdpa = torch.compile(torch.nn.functional.scaled_dot_product_attention)
|
|
attn_nt = compiled_sdpa(q_nt, k_nt, v_nt).transpose(1, 2)
|
|
|
|
attn_nts = attn_nt.unbind()
|
|
self.assertEqual(attn_d1, attn_nts[0].unsqueeze(0), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
self.assertEqual(attn_d2, attn_nts[1].unsqueeze(0), atol=output_ref_atol, rtol=output_ref_rtol)
|
|
|
|
@dtypes(torch.float32, torch.double, torch.half)
|
|
def test_sdpa_with_constant_sequence_length(self, device, dtype):
|
|
# shape (B, P*, S, D)
|
|
# B: batch size
|
|
# P*: ragged number of prompts
|
|
# S: (constant) sequence length
|
|
# D: embedding size
|
|
query = random_nt_from_dims(
|
|
[4, None, 8, 10], device=device, dtype=dtype, layout=torch.jagged)
|
|
key = random_nt_from_similar(query)
|
|
value = random_nt_from_similar(query)
|
|
output = F.scaled_dot_product_attention(query, key, value)
|
|
self.assertTrue(isinstance(output, NestedTensor))
|
|
|
|
# should be equivalent to just running the buffers through
|
|
output_dense = F.scaled_dot_product_attention(query._values, key._values, value._values)
|
|
self.assertEqual(output._values, output_dense)
|
|
|
|
|
|
instantiate_parametrized_tests(TestNestedTensor)
|
|
instantiate_device_type_tests(TestNestedTensorDeviceType, globals())
|
|
instantiate_device_type_tests(TestNestedTensorAutograd, globals())
|
|
instantiate_device_type_tests(TestNestedTensorSubclass, globals())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|