mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
`torch.library.Library` updated to `torch.library._scoped_library` in files with many tests where it seems obvious to do, otherwise `noqa: TOR901` added - see https://github.com/pytorch/pytorch/pull/118318 for more context. Pull Request resolved: https://github.com/pytorch/pytorch/pull/119424 Approved by: https://github.com/zou3519
296 lines
8.4 KiB
Python
296 lines
8.4 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
import os
|
|
import unittest.mock as mock
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
|
|
import torch._dynamo.test_case
|
|
import torch._dynamo.testing
|
|
from torch._dynamo.exc import IncorrectUsage
|
|
|
|
|
|
def my_custom_function(x):
|
|
return x + 1
|
|
|
|
|
|
class DecoratorTests(torch._dynamo.test_case.TestCase):
|
|
def test_disallow_in_graph(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch._dynamo.optimize(cnts)
|
|
def fn(a):
|
|
x = torch.add(a, 1)
|
|
x = torch.add(x, 1)
|
|
x = torch.sub(x, 1)
|
|
x = torch.add(x, 1)
|
|
x = torch.add(x, 1)
|
|
return x
|
|
|
|
torch._dynamo.disallow_in_graph(torch.sub)
|
|
fn(torch.randn(10))
|
|
torch._dynamo.allow_in_graph(torch.sub)
|
|
|
|
# check for graph break on sub
|
|
self.assertEqual(cnts.frame_count, 2)
|
|
self.assertEqual(cnts.op_count, 4)
|
|
|
|
def test_disable_for_custom_op(self):
|
|
import torch.library
|
|
from torch.library import Library
|
|
|
|
foo = Library("foo", "DEF") # noqa: TOR901
|
|
foo.define("custom(Tensor self) -> Tensor")
|
|
|
|
# Dynamic shape data dependent operator. For static shape compilation, Dynamo
|
|
# should graph break on it. But, the meta kernel is not implemented properly.
|
|
@torch.library.impl(foo, "custom", "CPU")
|
|
def foo_cpu(x):
|
|
return x.nonzero()
|
|
|
|
# Disallow does not work because of extra python frames with torch.library python API
|
|
torch.ops.foo.custom = torch._dynamo.disable(torch.ops.foo.custom)
|
|
|
|
def fn(x):
|
|
a = torch.nn.functional.relu(x)
|
|
b = torch.ops.foo.custom(a)
|
|
c = torch.cos(b)
|
|
return c
|
|
|
|
x = torch.randint(2, (100,))
|
|
ref = fn(x)
|
|
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch._dynamo.optimize(cnts)(fn)
|
|
res = opt_fn(x)
|
|
self.assertEqual(cnts.frame_count, 2)
|
|
self.assertEqual(ref, res)
|
|
|
|
def test_allow_in_graph(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch._dynamo.optimize(cnts)
|
|
def fn(a):
|
|
x = torch.add(a, 1)
|
|
x = torch.add(x, 1)
|
|
x = my_custom_function(x)
|
|
x = torch.add(x, 1)
|
|
x = torch.add(x, 1)
|
|
return x
|
|
|
|
torch._dynamo.allow_in_graph(my_custom_function)
|
|
fn(torch.randn(10))
|
|
torch._dynamo.disallow_in_graph(my_custom_function)
|
|
|
|
# check for no graph break
|
|
self.assertEqual(cnts.frame_count, 1)
|
|
self.assertEqual(cnts.op_count, 5)
|
|
|
|
def test_incorrect_usage_disallow_in_graph(self):
|
|
with self.assertRaises(IncorrectUsage):
|
|
|
|
@torch._dynamo.disallow_in_graph
|
|
def fn1(x):
|
|
return x.cos()
|
|
|
|
def test_graph_break(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch._dynamo.optimize(cnts)
|
|
def fn(x):
|
|
x = torch.cos(x)
|
|
x = torch.cos(x)
|
|
torch._dynamo.graph_break()
|
|
x = torch.cos(x)
|
|
x = torch.cos(x)
|
|
torch._dynamo.graph_break()
|
|
x = torch.cos(x)
|
|
x = torch.cos(x)
|
|
return x
|
|
|
|
fn(torch.randn(4, 5))
|
|
self.assertEqual(cnts.frame_count, 3)
|
|
self.assertEqual(cnts.op_count, 6)
|
|
|
|
def test_skip(self):
|
|
def fn2(x):
|
|
return x.sin()
|
|
|
|
@torch._dynamo.disable(recursive=False)
|
|
def fn1(x):
|
|
x = x.sigmoid()
|
|
return fn2(x.cos())
|
|
|
|
def fn(x):
|
|
return fn1(x.tan())
|
|
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch._dynamo.optimize(cnts)(fn)
|
|
opt_fn(torch.randn(4))
|
|
self.assertEqual(cnts.frame_count, 2)
|
|
|
|
@patch.object(torch._dynamo.config, "suppress_errors", True)
|
|
def test_nested_disable_decorator(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch._dynamo.disable()
|
|
def fn1(x):
|
|
return torch.sin(x) * 10
|
|
|
|
@torch._dynamo.optimize(cnts)
|
|
def fn2(x):
|
|
x = x + 1
|
|
x = x + 1
|
|
x = fn1(x) # graph break
|
|
x = x + 1
|
|
x = x + 1
|
|
return x
|
|
|
|
@torch._dynamo.optimize(cnts, nopython=True)
|
|
def fn3(x):
|
|
return fn2(x)
|
|
|
|
fn2(torch.randn(4, 5))
|
|
self.assertEqual(cnts.frame_count, 2)
|
|
self.assertEqual(cnts.op_count, 4)
|
|
|
|
try:
|
|
fn3(torch.randn(4, 5))
|
|
self.assertFalse(True)
|
|
except torch._dynamo.exc.Unsupported as e:
|
|
self.assertIn("call torch._dynamo.disable() wrapped function", str(e))
|
|
|
|
def test_disable_optimize(self):
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch._dynamo.optimize(cnt, disable=True)
|
|
def f1(x):
|
|
return x + 1
|
|
|
|
f1(torch.ones(6))
|
|
self.assertEqual(cnt.frame_count, 0)
|
|
|
|
@torch._dynamo.optimize(cnt, disable=True)
|
|
def f2(x):
|
|
return x + 1
|
|
|
|
f2(torch.ones(6))
|
|
self.assertEqual(cnt.frame_count, 0)
|
|
|
|
with patch.dict(os.environ, {"TORCHDYNAMO_DISABLE": "1"}):
|
|
|
|
@torch._dynamo.optimize(cnt)
|
|
def f3(x):
|
|
return x + 1
|
|
|
|
f3(torch.ones(6))
|
|
self.assertEqual(cnt.frame_count, 0)
|
|
|
|
def test_torch_guards_stack_frame_register_inlining_disable(self):
|
|
y = torch.nn.Parameter(torch.tensor([0.25, 0.25]))
|
|
x = torch.tensor([0.5, 0.5])
|
|
|
|
class encoder(torch.nn.Module):
|
|
def __init__(self, y):
|
|
super().__init__()
|
|
self.register_parameter("param", y)
|
|
|
|
@torch._dynamo.disable
|
|
def helper(self, x, y):
|
|
return x * y
|
|
|
|
def forward(self, a, *args):
|
|
x = a + a
|
|
return self.helper(x, self.param)
|
|
|
|
e = encoder(y)
|
|
|
|
seen_frames = []
|
|
import contextlib
|
|
|
|
@contextlib.contextmanager
|
|
def global_context_capture_fn(frame_summary):
|
|
if frame_summary is not None:
|
|
seen_frames.append(frame_summary)
|
|
yield
|
|
|
|
with mock.patch(
|
|
"torch._guards.TracingContext.current_frame",
|
|
side_effect=global_context_capture_fn,
|
|
):
|
|
torch._dynamo.optimize("eager")(e)(x)
|
|
|
|
self.assertEqual(len(seen_frames), 0)
|
|
|
|
def test_torch_guards_stack_frame_register_inlining_partially_disable(self):
|
|
y = torch.nn.Parameter(torch.tensor([0.25, 0.25]))
|
|
x = torch.tensor([0.5, 0.5])
|
|
|
|
class encoder(torch.nn.Module):
|
|
def __init__(self, y):
|
|
super().__init__()
|
|
self.register_parameter("param", y)
|
|
|
|
@torch._dynamo.disable
|
|
def helper_disabled(self, x, y):
|
|
return x.sin() * y.cos()
|
|
|
|
def helper(self, x, y):
|
|
return x * y
|
|
|
|
def forward(self, a, *args):
|
|
x = a + a
|
|
return self.helper(x, self.param) + self.helper_disabled(x, self.param)
|
|
|
|
e = encoder(y)
|
|
|
|
cnt = torch._dynamo.testing.CompileCounter()
|
|
torch.compile(e, backend=cnt)(x)
|
|
|
|
# first frame is before disable, second frame is after disable
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
self.assertEqual(cnt.op_count, 3)
|
|
|
|
def _test_mark_static_address(self, guarded):
|
|
compiles_with_buffers = 0
|
|
compiles = 0
|
|
|
|
def debug_compiler(gm, _):
|
|
nonlocal compiles_with_buffers
|
|
nonlocal compiles
|
|
compiles_with_buffers += len(gm._buffers) > 0
|
|
compiles += 1
|
|
return gm
|
|
|
|
@torch._dynamo.optimize(backend=debug_compiler)
|
|
def fn(x):
|
|
return x + 1
|
|
|
|
inp = torch.ones(2)
|
|
|
|
torch._dynamo.mark_static_address(inp, guard=guarded)
|
|
|
|
fn(inp)
|
|
self.assertEqual(compiles_with_buffers, 1)
|
|
|
|
inp2 = torch.ones(2)
|
|
|
|
# if guarded, should trigger another recompile
|
|
# since it was not marked static, compiles with buffers
|
|
# should not be incremented
|
|
fn(inp2)
|
|
self.assertEqual(compiles_with_buffers, 1)
|
|
self.assertEqual(compiles, 2 if guarded else 1)
|
|
|
|
def test_mark_static_address_guarded(self):
|
|
self._test_mark_static_address(guarded=True)
|
|
|
|
def test_mark_static_address_unguarded(self):
|
|
self._test_mark_static_address(guarded=False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|