Files
pytorch/test/test_modules.py
Shunting Zhang bd24991f46 reset dynamo cache before each test (#126586)
In https://github.com/pytorch/pytorch/issues/125967, we found test results depend on test order. The root cause is due to earlier tests populate dynamo cache and affect the later tests.

This PR clear dynamo cache before each unit test so we get more deterministic result for unit test

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126586
Approved by: https://github.com/jansel
2024-05-25 04:48:09 +00:00

1000 lines
50 KiB
Python

# Owner(s): ["module: nn"]
from itertools import chain, product
from inspect import signature, isgenerator
from copy import deepcopy
import tempfile
from operator import methodcaller
import torch
from torch._subclasses.meta_utils import assert_metadata_eq
from torch.testing._internal.common_cuda import with_tf32_off
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, onlyCPU, onlyCUDA, toleranceOverride, tol, skipMeta)
from torch.testing._internal.common_modules import module_db, modules, ModuleErrorEnum, TrainEvalMode
from torch.testing._internal.common_utils import (
TestCase, run_tests, freeze_rng_state, mock_wrapper, get_tensors_from, gradcheck,
gradgradcheck, parametrize, wrapSwapTensorsTest, TEST_WITH_TORCHINDUCTOR)
from unittest.mock import patch, call
import unittest
class TestModule(TestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
precision = 1e-5
rel_tol = 1e-5
def _assert_module_parameters_and_buffer_are(self, module, device, dtype):
# Check device placement and dtype for created parameters and buffers.
# Only verify floating point dtypes since that's what the kwarg or methods
# such as `float()` applies to.
if not isinstance(device, torch.device):
device = torch.device(device)
def _check_module(items, name, device=device, dtype=dtype):
for item_name, item in items:
self.assertEqual(
item.device, device,
f'{name} {item_name} is on device {item.device} instead of the expected device {device}')
if item.dtype.is_floating_point:
self.assertEqual(
item.dtype, dtype,
f'{name} {item_name} is of dtype {item.dtype} instead of the expected dtype {dtype}')
_check_module(module.named_parameters(), "Parameter")
_check_module(module.named_buffers(), "Buffer")
@modules(module_db)
def test_forward(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
dtype_to_method_caller = {
torch.float32: methodcaller("float"),
torch.float64: methodcaller("double"),
}
for module_input in module_inputs:
if module_input.forward_input is None:
continue
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
outputs = m(*args, **kwargs)
# === Compare outputs to a reference if one is specified. ===
# TODO: Handle precision
reference_fn = module_input.reference_fn
if reference_fn is not None:
ref_outputs = reference_fn(m, *args, **kwargs)
self.assertEqual(outputs, ref_outputs)
# === Use the method call and verify the parameters and buffers ===
if dtype in dtype_to_method_caller:
dtype_to_method_caller[dtype](m)
m(*args, **kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
# Tests passing factory kwargs (e.g. device / dtype) during module instantiation.
# They should be applied to any created parameters and buffers.
@modules(module_db)
def test_factory_kwargs(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
# Check if this module creates parameters or registers buffers.
# The mock magic here passes through to the real Parameter / register_buffer
# logic and is only used to check call inputs.
module_creates_params_or_buffers = False
parameter_new = mock_wrapper(torch.nn.Parameter.__new__)
with patch.object(torch.nn.Parameter, '__new__', parameter_new):
register_buffer = mock_wrapper(torch.nn.Module.register_buffer)
with patch.object(torch.nn.Module, 'register_buffer', register_buffer):
m = module_cls(*args, **kwargs)
m.train(training)
# Check if a parameter or buffer was created with a tensor not passed to the constructor.
constructor_tensors = get_tensors_from(args, kwargs)
for mock in [parameter_new.mock, register_buffer.mock]:
for call_args, call_kwargs in mock.call_args_list:
call_tensors = get_tensors_from(call_args, call_kwargs)
if len(call_tensors) > 0 and not constructor_tensors.intersection(call_tensors):
module_creates_params_or_buffers = True
break
if not module_creates_params_or_buffers:
continue
# Instantiate module with the factory kwargs.
kwargs.update({
'device': device,
'dtype': dtype,
})
if issubclass(module_info.module_cls, torch.nn.modules.lazy.LazyModuleMixin):
# Ensure device and dtype are passed to all UninitializedParameters and UninitializedBuffers.
uninit_param_new = mock_wrapper(torch.nn.UninitializedParameter.__new__)
with patch.object(torch.nn.UninitializedParameter, '__new__', uninit_param_new):
uninit_buffer_new = mock_wrapper(torch.nn.UninitializedBuffer.__new__)
with patch.object(torch.nn.UninitializedBuffer, '__new__', uninit_buffer_new):
m = module_cls(*args, **kwargs)
m.train(training)
uninit_param_new.mock.assert_has_calls(
[call(device=device, dtype=dtype) for _ in uninit_param_new.mock.mock_calls])
uninit_buffer_new.mock.assert_has_calls(
[call(device=device, dtype=dtype) for _ in uninit_buffer_new.mock.mock_calls])
else:
# Check device placement and dtype for created parameters and buffers.
# Only verify floating point dtypes since that's what the kwarg applies to.
m = module_cls(*args, **kwargs)
m.train(training)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
@onlyCUDA
@modules(module_db)
def test_multiple_device_transfer(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs_device = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
module_inputs_cpu = module_info.module_inputs_func(module_info, device="cpu", dtype=dtype,
requires_grad=False, training=training)
for module_input_device, module_input_cpu in zip(module_inputs_device, module_inputs_cpu):
if module_input_device.forward_input is None:
continue
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input_device.constructor_input.args, module_input_device.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Do forward pass on GPU ===
input_device_args = module_input_device.forward_input.args
input_device_kwargs = module_input_device.forward_input.kwargs
m(*input_device_args, **input_device_kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
# === Move to CPU ===
input_cpu_args = module_input_cpu.forward_input.args
input_cpu_kwargs = module_input_cpu.forward_input.kwargs
m.cpu()
m(*input_cpu_args, **input_cpu_kwargs)
self._assert_module_parameters_and_buffer_are(m, "cpu", dtype)
# === Move back to GPU and forward pass ===
m.cuda()
m(*input_device_args, **input_device_kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
if torch.cuda.device_count() >= 2:
# === test cross-GPU transfer works
def _to_device1(objs):
if isinstance(objs, (tuple, list)):
return type(objs)(_to_device1(item) for item in objs)
elif isinstance(objs, dict):
return {name: _to_device1(item) for name, item in objs.items()}
elif isinstance(objs, torch.Tensor):
return objs.cuda(1)
else:
return objs
input_device_1_args = _to_device1(input_device_args)
input_device_1_kwargs = _to_device1(input_device_kwargs)
m.cuda(1)
with torch.cuda.device(1):
m(*input_device_1_args, **input_device_1_kwargs)
self._assert_module_parameters_and_buffer_are(m, torch.device("cuda:1"), dtype)
@modules(module_db)
def test_repr(self, device, dtype, module_info, training):
# Test module can be represented with repr and str without errors.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# Check that these methods do not raise errors
m.__repr__()
str(m)
@modules(module_db)
def test_save_load(self, device, dtype, module_info, training):
# Test that module can be pickled and unpickled.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
sd = m.state_dict()
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
output = m(*args, **kwargs)
# === Check saved/loaded module gives the same output. ===
with tempfile.TemporaryFile() as f:
torch.save(m, f)
f.seek(0)
m_copy = torch.load(f)
output_from_copy = m_copy(*args, **kwargs)
self.assertEqual(output, output_from_copy)
# === Check saved/loaded state_dict are the same (including weights_only load). ===
with tempfile.TemporaryFile() as f:
torch.save(sd, f)
f.seek(0)
sd_copy = torch.load(f)
self.assertEqual(sd_copy, sd)
del sd_copy
f.seek(0)
sd_copy_wo = torch.load(f, weights_only=True)
self.assertEqual(sd_copy_wo, sd)
@skipMeta
@modules([module_info for module_info in module_db
if 'inplace' in signature(module_info.module_cls).parameters])
def test_check_inplace(self, device, dtype, module_info, training):
# Check if the inplace variant of the module gives the same result as the out of place
# variant.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m_op = module_cls(*args, **kwargs, inplace=False)
m_op.to(device).to(dtype)
m_op.train(training)
m_inplace = module_cls(*args, **kwargs, inplace=True)
m_inplace.to(device).to(dtype)
m_inplace.train(training)
# === Inplace modules only supports inplace operations on the first argument ===
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
# === Do not allow the first input to be in input_kwargs ===
forward_sig = signature(m_op).parameters
self.assertGreaterEqual(len(forward_sig), 1)
first_param_name = next(iter(forward_sig.items()))
self.assertNotIn(first_param_name, input_kwargs)
# === Out of place operation does not write to original tensor ===
self.assertGreaterEqual(len(input_args), 1)
input_version = input_args[0]._version
with freeze_rng_state():
output_op = m_op(*input_args, **input_kwargs)
self.assertEqual(input_args[0]._version, input_version)
# === Check that the inplace operation gives the same result ===
input_arg_copy = deepcopy(input_args)
input_arg_clone = tuple(i.clone() for i in input_arg_copy)
input_clone_version = input_arg_clone[0]._version
with freeze_rng_state():
output_ip = m_inplace(*input_arg_clone, **input_kwargs)
self.assertGreater(input_arg_clone[0]._version, input_clone_version)
self.assertEqual(output_op, output_ip)
# === Check that the gradients are the same ===
grad = output_op.data.clone().normal_()
output_op.backward(grad)
output_ip.backward(grad)
self.assertEqual(input_args[0].grad, input_arg_copy[0].grad)
def _traverse_obj(self, obj, func):
if isinstance(obj, (tuple, list)):
return type(obj)(self._traverse_obj(o, func) for o in obj)
elif isgenerator(obj):
return tuple(self._traverse_obj(o, func) for o in obj)
elif isinstance(obj, dict):
return {name: self._traverse_obj(o, func) for name, o in obj.items()}
elif isinstance(obj, (torch.Tensor, torch.nn.Parameter)):
return func(obj)
else:
return obj
def _retain_grad(self, obj):
# gradients needs to be retained to check for grad. This is useful when
# non-leafs are present in the graph.
def inner_retain_grad(obj):
if obj.requires_grad:
obj.retain_grad()
self._traverse_obj(obj, inner_retain_grad)
def _get_grads(self, obj):
def inner_get_grad(obj):
if obj.requires_grad:
return obj.grad
return self._traverse_obj(obj, inner_get_grad)
def _zero_grad(self, obj):
def inner_zero_grad(obj):
if obj.grad is not None:
obj.grad = None
self._traverse_obj(obj, inner_zero_grad)
@modules(module_db)
def test_non_contiguous_tensors(self, device, dtype, module_info, training):
# Check modules work with non-contiguous tensors
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
def _make_non_contiguous(obj):
def inner_make_non_contiguous(obj):
# Scalar tensors can not be made non-contiguous
if not isinstance(obj, torch.Tensor) or obj.dim() == 0:
return obj
out = torch.repeat_interleave(obj, 2, dim=-1)
out = out[..., ::2].detach()
out.requires_grad = obj.requires_grad
return out
return self._traverse_obj(obj, inner_make_non_contiguous)
def _can_be_noncontiguous(obj):
if isinstance(obj, (tuple, list)):
return any(_can_be_noncontiguous(o) for o in obj)
elif isinstance(obj, dict):
return any(_can_be_noncontiguous(o) for o in obj.values())
# scalar tensors can not be non-contiguous
if not isinstance(obj, torch.Tensor) or obj.dim() == 0:
return False
return True
for module_input in module_inputs:
if module_input.forward_input is None:
continue
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
if not (_can_be_noncontiguous(input_args) or _can_be_noncontiguous(input_kwargs)):
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
self._retain_grad((input_args, input_kwargs))
# === Forward with default input
with freeze_rng_state():
default_output = m(*input_args, **input_kwargs)
if isinstance(default_output, torch.Tensor):
grad_output = default_output.clone().detach_().normal_()
default_output.backward(grad_output, retain_graph=True)
else:
grad_output = tuple(self._traverse_obj(o, lambda o: o.clone().detach_().normal_() if o.requires_grad else None)
for o in default_output)
flattened_default_output = torch.utils._pytree.tree_leaves(default_output)
flattened_grad_output = torch.utils._pytree.tree_leaves(grad_output)
for o, g_o in zip(flattened_default_output, flattened_grad_output):
if (o.requires_grad):
o.backward(g_o, retain_graph=True)
default_input_args_grad, default_input_kwargs_grad = deepcopy(self._get_grads((input_args, input_kwargs)))
default_param_grad = deepcopy([p.grad for p in m.parameters()])
# === Construct non-contiguous tensors ===
nc_input_args, nc_input_kwargs = _make_non_contiguous((input_args, input_kwargs))
nc_grad_output = _make_non_contiguous(grad_output)
# === Compare results with non-contiguous and contiguous tensors ===
inputs = [(input_args, input_kwargs), (nc_input_args, nc_input_kwargs)]
grads = [grad_output, nc_grad_output]
for (in_args, in_kwargs), g_out in product(inputs, grads):
g_out_copy = deepcopy(g_out)
self._zero_grad((in_args, in_kwargs))
self._zero_grad(m.parameters())
with freeze_rng_state():
out = m(*in_args, **in_kwargs)
if isinstance(out, torch.Tensor):
out.backward(g_out_copy, retain_graph=True)
else:
flattened_out = torch.utils._pytree.tree_leaves(out)
flattened_g_out_copy = torch.utils._pytree.tree_leaves(g_out_copy)
for o, g_o in zip(flattened_out, flattened_g_out_copy):
if o.requires_grad:
o.backward(g_o, retain_graph=True)
input_args_grad, input_kwargs_grad = self._get_grads((in_args, in_kwargs))
self.assertEqual(out, default_output)
self.assertEqual(input_args_grad, default_input_args_grad, atol=1e-4, rtol=0)
self.assertEqual(input_kwargs_grad, default_input_kwargs_grad, atol=1e-4, rtol=0)
param_grad = [p.grad for p in m.parameters()]
self.assertEqual(param_grad, default_param_grad)
def _test_gradients_helper(self, device, dtype, module_info, training, check):
# Check gradients
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
# === Set nondet tol for gradcheck to user-defined value if on CUDA and cudNN is enabled
gradcheck_nondet_tol = 0.0
if (torch.device(device).type == 'cuda' and torch.backends.cudnn.enabled):
gradcheck_nondet_tol = module_info.gradcheck_nondet_tol
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
params = tuple(m.parameters())
# === Lazy modules need to see an input to initialize params before gradcheck is run. ===
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
if issubclass(module_info.module_cls, torch.nn.modules.lazy.LazyModuleMixin):
with torch.no_grad():
m(*input_args, **input_kwargs)
# === Perform gradient check on the input_args ===
other_kwargs = {}
kwarg_tensors = []
for name, obj in input_kwargs.items():
if isinstance(obj, torch.Tensor):
kwarg_tensors.append((name, obj))
else:
other_kwargs[name] = obj
def fn_to_gradcheck(*flat_input_and_params):
input_and_params = torch.utils._pytree.tree_unflatten(flat_input_and_params, flat_spec)
new_input_args = input_and_params[:len(input_args)]
kwarg_args = input_and_params[-len(kwarg_tensors):]
new_kwargs = {name: obj for (name, _), obj in zip(kwarg_tensors, kwarg_args)}
with freeze_rng_state():
output = m(*new_input_args, **new_kwargs, **other_kwargs)
output_flattened = torch.utils._pytree.tree_leaves(output)
return output_flattened
# check total derivative
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
self.assertTrue(check(fn_to_gradcheck, flat_input, nondet_tol=gradcheck_nondet_tol))
# check partial derivatives
old_params_requires_grad = [p.requires_grad for p in params]
for p in params:
p.requires_grad = False
old_kwargs_requires_grad = [obj.requires_grad for (_, obj) in kwarg_tensors]
for (_, obj) in kwarg_tensors:
obj.requires_grad = False
for p, old in zip(params, old_params_requires_grad):
p.requires_grad = old
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
self.assertTrue(check(fn_to_gradcheck, flat_input, nondet_tol=gradcheck_nondet_tol))
p.requires_grad = False
for (_, obj), old in zip(kwarg_tensors, old_kwargs_requires_grad):
obj.requires_grad = old
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
self.assertTrue(check(fn_to_gradcheck, flat_input, nondet_tol=gradcheck_nondet_tol))
obj.requires_grad = False
@modules(module_db, allowed_dtypes=[torch.double])
def test_grad(self, device, dtype, module_info, training):
self._test_gradients_helper(device, dtype, module_info, training, gradcheck)
@modules([m for m in module_db if m.supports_gradgrad],
allowed_dtypes=[torch.double])
def test_gradgrad(self, device, dtype, module_info, training):
self._test_gradients_helper(device, dtype, module_info, training, gradgradcheck)
@onlyCUDA
@with_tf32_off # Turn off TF32 to compute at full precision https://github.com/pytorch/pytorch/issues/86798
@toleranceOverride({torch.float32: tol(5e-2, 0),
torch.float64: tol(4e-4, 0)})
@modules(module_db)
def test_cpu_gpu_parity(self, device, dtype, module_info, training):
# TODO: RNN / GRU / LSTM don't support backwards on eval mode for cuDNN; skip this in a
# nicer way for eval mode only.
# See https://github.com/pytorch/pytorch/issues/79161
rnn_modules = {torch.nn.RNN, torch.nn.GRU, torch.nn.LSTM}
if (module_info.module_cls in rnn_modules
and not training
and 'cuda' in device
and torch.backends.cudnn.enabled):
return
# Test cpu and gpu results are the same
module_cls = module_info.module_cls
if module_cls in [
torch.nn.modules.loss.CTCLoss,
] and TEST_WITH_TORCHINDUCTOR:
raise unittest.SkipTest(
"PR https://github.com/pytorch/pytorch/pull/126586 clears dynamo"
" cache before each test and expose these test failures. Skip"
" for now"
)
module_inputs_cpu = module_info.module_inputs_func(module_info, device="cpu", dtype=dtype,
requires_grad=True, training=training)
def _to_device(obj):
if isinstance(obj, torch.Tensor):
res = obj.detach().to(device=device)
res.requires_grad = obj.requires_grad
return res
elif isinstance(obj, tuple):
return tuple(_to_device(o) for o in obj)
elif isinstance(obj, dict):
return {key: _to_device(o) for key, o in obj.items()}
else:
return deepcopy(obj)
for module_input in module_inputs_cpu:
# === Move input from cpu to device ===
cpu_forward_args = module_input.forward_input.args
cpu_forward_kwargs = module_input.forward_input.kwargs
gpu_forward_args, gpu_forward_kwargs = _to_device((cpu_forward_args, cpu_forward_kwargs))
self._retain_grad((cpu_forward_args, cpu_forward_kwargs, gpu_forward_args, gpu_forward_kwargs))
# === Construct module on cpu and gpu ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
cpu_module = module_cls(*args, **kwargs).to(dtype).to("cpu")
cpu_module.train(training)
gpu_module = module_cls(*args, **kwargs).to(dtype).to(device)
gpu_module.train(training)
# === Lazy modules need to see an input to initialize params ===
if issubclass(module_cls, torch.nn.modules.lazy.LazyModuleMixin):
with torch.no_grad():
cpu_module(*cpu_forward_args, **cpu_forward_kwargs)
gpu_module(*gpu_forward_args, **gpu_forward_kwargs)
for cpu_p, gpu_p in zip(cpu_module.parameters(), gpu_module.parameters()):
gpu_p.data.copy_(cpu_p)
# === Compare forward output between cpu and gpu ===
cpu_outputs = cpu_module(*cpu_forward_args, **cpu_forward_kwargs)
gpu_outputs = gpu_module(*gpu_forward_args, **gpu_forward_kwargs)
self.assertEqual(cpu_outputs, gpu_outputs)
# === Run backwards on CPU and GPU and compare results ===
def check_backward(cpu_output, gpu_output):
cpu_grad_output = cpu_output.clone().normal_()
gpu_grad_output = cpu_grad_output.type_as(gpu_output)
cpu_output.backward(cpu_grad_output, retain_graph=True)
gpu_output.backward(gpu_grad_output, retain_graph=True)
cpu_grad_input = self._get_grads(cpu_forward_args)
gpu_grad_input = self._get_grads(gpu_forward_args)
self.assertEqual(cpu_grad_input, gpu_grad_input)
for cpu_p, gpu_p in zip(cpu_module.parameters(), gpu_module.parameters()):
self.assertEqual(cpu_p.grad, gpu_p.grad)
cpu_grad_kwarg_input = self._get_grads(cpu_forward_kwargs)
gpu_grad_kwarg_input = self._get_grads(gpu_forward_kwargs)
self.assertEqual(cpu_grad_kwarg_input, gpu_grad_kwarg_input)
for _ in range(5):
if isinstance(cpu_outputs, torch.Tensor):
check_backward(cpu_outputs, gpu_outputs)
else:
flatten_cpu_outputs = torch.utils._pytree.tree_leaves(cpu_outputs)
flatten_gpu_outputs = torch.utils._pytree.tree_leaves(gpu_outputs)
for cpu_output, gpu_output in zip(flatten_cpu_outputs, flatten_gpu_outputs):
if cpu_output.requires_grad:
check_backward(cpu_output, gpu_output)
@with_tf32_off
@modules(module_db)
def test_memory_format(self, device, dtype, module_info, training):
is_sm86or80 = device.startswith("cuda") and (torch.cuda.get_device_capability(0) == (8, 6)
or torch.cuda.get_device_capability(0) == (8, 0))
# TODO tighten it to a specific module
atol, rtol = (3e-3, 7e-3) if is_sm86or80 else (None, None)
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
module_memformat_affects_out = module_info.module_memformat_affects_out
def _get_mem_formats(channels_last=False, channels_last_3d=False):
if channels_last:
return ([torch.contiguous_format, torch.channels_last],
[torch.preserve_format, torch.contiguous_format, torch.channels_last])
elif channels_last_3d:
return ([torch.contiguous_format, torch.channels_last_3d],
[torch.preserve_format, torch.contiguous_format, torch.channels_last_3d])
else:
return ([torch.contiguous_format],
[torch.preserve_format, torch.contiguous_format])
# Check that at least one Tensor input has dim == n
def _check_dims(obj, n):
if isinstance(obj, torch.Tensor):
return obj.dim() == n
elif isinstance(obj, (tuple, list)):
return any(_check_dims(o, n) for o in obj)
else:
return False
# Called after _check_dims, when we know that >= 1 tensor can be converted to mem_format
def _to_mem_format(mem_format, obj):
def inner_to_mem_format(obj):
d = obj.dim()
if ((mem_format == torch.channels_last and d != 4)
or (mem_format == torch.channels_last_3d and d != 5)):
return obj.clone().detach().requires_grad_(obj.requires_grad)
return obj.clone().to(memory_format=mem_format).detach().requires_grad_(obj.requires_grad)
return self._traverse_obj(obj, inner_to_mem_format)
def _check_out_mem_format(output, input_mem_format, module_mem_format):
def inner_check_out_mem_format(output):
d = output.dim()
if (d == 4 and ((input_mem_format == torch.channels_last)
or (module_mem_format == torch.channels_last and module_memformat_affects_out))):
self.assertTrue(output.numel() == 0 or output.is_contiguous(memory_format=torch.channels_last))
elif (d == 5 and ((input_mem_format == torch.channels_last_3d)
or (module_mem_format == torch.channels_last_3d and module_memformat_affects_out))):
self.assertTrue(output.numel() == 0 or output.is_contiguous(memory_format=torch.channels_last_3d))
else:
self.assertTrue(output.is_contiguous())
return self._traverse_obj(output, inner_check_out_mem_format)
def _req_grad(t):
return isinstance(t, torch.Tensor) and t.requires_grad
for module_input in module_inputs:
if module_input.forward_input is None:
continue
supports_channels_last = _check_dims(module_input.forward_input.args, 4)
supports_channels_last_3d = _check_dims(module_input.forward_input.args, 5)
input_mem_formats, module_mem_formats = _get_mem_formats(supports_channels_last, supports_channels_last_3d)
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Get output in (contiguous, contiguous) configuration. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
desired_outputs = m(*args, **kwargs)
# === Do backward pass. ===
ref_diff_outputs = tuple(t for t in torch.utils._pytree.tree_leaves(desired_outputs) if _req_grad(t))
if training and len(ref_diff_outputs) > 0:
params = tuple(p for p in m.parameters())
ref_diff_inputs = tuple(
t
for t in torch.utils._pytree.tree_leaves((args, kwargs, params))
if _req_grad(t)
)
ref_grad_outputs = tuple(
torch.rand_like(t)
for t in ref_diff_outputs
)
ref_grad_inputs = torch.autograd.grad(
ref_diff_outputs,
ref_diff_inputs,
grad_outputs=ref_grad_outputs,
)
for input_mem_format in input_mem_formats:
# === Change memformat of input. ===
d_args = _to_mem_format(input_mem_format, module_input.forward_input.args)
d_kwargs = _to_mem_format(input_mem_format, module_input.forward_input.kwargs)
# See https://github.com/pytorch/pytorch/issues/107861
# When inductor tests are turned on, the setting of requires_grad will be lost
for t1, t2 in zip(
torch.utils._pytree.tree_leaves(d_args),
torch.utils._pytree.tree_leaves(module_input.forward_input.args),
):
t1.requires_grad_(t2.requires_grad)
for t1, t2 in zip(
torch.utils._pytree.tree_leaves(d_kwargs),
torch.utils._pytree.tree_leaves(module_input.forward_input.kwargs),
):
t1.requires_grad_(t2.requires_grad)
module_input.forward_input.args = d_args
module_input.forward_input.kwargs = d_kwargs
for module_mem_format in module_mem_formats:
# === Change memformat of module ===
m.to(memory_format=module_mem_format)
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
outputs = m(*args, **kwargs)
# === Compare outputs to (contiguous, contiguous) output. ===
if input_mem_format != torch.contiguous_format or module_mem_format != torch.contiguous_format:
self.assertEqual(outputs, desired_outputs, rtol=rtol, atol=atol)
# === Check mem format of output. ===
_check_out_mem_format(outputs, input_mem_format, module_mem_format)
# === Do backward pass. ===
diff_outputs = tuple(t for t in torch.utils._pytree.tree_leaves(outputs) if _req_grad(t))
if training and len(diff_outputs) > 0:
params = tuple(p for p in m.parameters())
diff_inputs = tuple(
t
for t in torch.utils._pytree.tree_leaves((args, kwargs, params))
if _req_grad(t)
)
grad_outputs = tuple(
torch.empty_like(t1).copy_(t2)
for (t1, t2) in zip(diff_outputs, ref_grad_outputs)
)
grad_inputs = torch.autograd.grad(
diff_outputs,
diff_inputs,
grad_outputs=grad_outputs,
)
if (
input_mem_format != torch.contiguous_format
or module_mem_format != torch.contiguous_format
):
self.assertEqual(
grad_inputs, ref_grad_inputs, rtol=rtol, atol=atol
)
# === Check mem format of grad_inputs. ===
_check_out_mem_format(grad_inputs, input_mem_format, module_mem_format)
# Test whether train and eval modes differ for each module. Use to verify
# that the ModuleInfo entry flag is correct.
@modules(module_db, train_eval_mode=TrainEvalMode.train_only)
def test_if_train_and_eval_modes_differ(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
# Run forward inputs through to see if the training flag is accessed during forward.
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# Remove training attribute and see if forward still works.
delattr(m, 'training')
# === Do forward pass. ===
try:
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
m(*args, **kwargs)
except AttributeError as e:
if "'training'" in str(e):
self.assertTrue(module_info.train_and_eval_differ,
f"The ModuleInfo entry for {module_info.name} has "
"train_and_eval_differ=False, but the training mode was found to "
"affect the forward pass. Consider setting train_and_eval_differ=True "
"for this ModuleInfo entry.")
else:
raise e
@onlyCPU
@modules(module_db)
def test_device_ctx_init(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
with torch.device('meta'):
module_inputs_meta = module_info.module_inputs_func(module_info, device=None, dtype=dtype,
requires_grad=False, training=training)
for module_input, module_input_meta in zip(module_inputs, module_inputs_meta):
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
c_args_meta, c_kwargs_meta = module_input_meta.constructor_input.args, module_input_meta.constructor_input.kwargs
m_cpu = module_cls(*c_args, **c_kwargs)
with torch.device('meta'):
m = module_cls(*c_args_meta, **c_kwargs_meta)
for (p_meta, p_cpu) in chain(zip(m.parameters(), m_cpu.parameters()),
zip(m.buffers(), m_cpu.buffers())):
if torch.nn.parameter.is_lazy(p_meta):
continue
self.assertTrue(p_meta.is_meta)
assert_metadata_eq(self.assertEqual, p_meta, p_cpu)
@modules([module for module in module_db if module.module_error_inputs_func is not None])
def test_errors(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
error_inputs = module_info.module_error_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for error_input in error_inputs:
module_input = error_input.module_error_input
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
if error_input.error_on == ModuleErrorEnum.CONSTRUCTION_ERROR:
with self.assertRaisesRegex(error_input.error_type, error_input.error_regex):
m = module_cls(*c_args, **c_kwargs)
elif error_input.error_on == ModuleErrorEnum.FORWARD_ERROR:
m = module_cls(*c_args, **c_kwargs)
fw_args, fw_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
with self.assertRaisesRegex(error_input.error_type, error_input.error_regex):
m(*fw_args, **fw_kwargs)
else:
raise NotImplementedError(f"Unknown error type {error_input.error_on}")
@modules([module for module in module_db if not module.is_lazy])
@parametrize('swap', [True, False])
@parametrize('set_grad', [True, False])
@wrapSwapTensorsTest()
def test_to(self, device, dtype, module_info, training, swap, set_grad):
module_cls = module_info.module_cls
devices = ['cpu']
if torch.cuda.is_available():
devices += ['cuda']
dtypes = module_info.dtypes
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
torch.__future__.set_swap_module_params_on_conversion(swap)
for module_input in module_inputs:
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*c_args, **c_kwargs)
# Avoid using `module.to()` when constructing module since that is the method we are testing
def _to(m, set_grad=False):
for c in m.children():
_to(c, set_grad=set_grad)
for n, p in m.named_parameters(recurse=False):
new_p = torch.nn.Parameter(p.detach().clone().to(device, dtype))
setattr(m, n, new_p)
if set_grad:
new_p.grad = torch.randn_like(new_p)
for n, b in m.named_buffers(recurse=False):
new_b = b.detach().clone().to(device, dtype)
setattr(m, n, new_b)
_to(m, set_grad=set_grad)
prev_device, prev_dtype = device, dtype
for device_, dtype_ in product(devices, dtypes):
# if device/dtype do not change, grad.to(device, dtype) is a no-op so
# swapping will not change ._cdata
# parameters will be wrapped in an nn.Parameter before swapping
# which will cause the ._cdata to change
g_no_swap = device_ == prev_device and dtype_ == prev_dtype
prev_device, prev_dtype = device_, dtype_
p_ids_before = [id(p) for p in m.parameters()]
p_cdatas_before = [p._cdata for p in m.parameters()]
if set_grad:
g_ids_before = [id(p.grad) for p in m.parameters()]
g_cdatas_before = [p.grad._cdata for p in m.parameters()]
m.to(device=device_, dtype=dtype_)
self.assertTrue(all(isinstance(p, torch.nn.Parameter) for p in m.parameters()))
self.assertTrue(all(p.device.type == device_ for p in m.parameters()))
self.assertTrue(all(p.dtype == dtype_ for p in m.parameters()))
p_ids_after = [id(p) for p in m.parameters()]
p_cdatas_after = [p._cdata for p in m.parameters()]
if set_grad:
self.assertTrue(all(p.grad.device.type == device_ for p in m.parameters()))
self.assertTrue(all(p.grad.dtype == dtype_ for p in m.parameters()))
g_ids_after = [id(p.grad) for p in m.parameters()]
g_cdatas_after = [p.grad._cdata for p in m.parameters()]
if swap:
# id same, ._cdata differs --> swapped cdata of THPVariable
self.assertTrue(all(a == b for a, b in zip(p_ids_before, p_ids_after)))
self.assertTrue(all(a != b for a, b in zip(p_cdatas_before, p_cdatas_after)))
if set_grad:
self.assertTrue(
all(a == b if g_no_swap else a != b for a, b in zip(g_cdatas_before, g_cdatas_after)))
else:
# id and _cdata remain the same --> .data setting
self.assertTrue(all(a == b for a, b in zip(p_cdatas_before, p_cdatas_after)))
self.assertTrue(all(a == b for a, b in zip(p_ids_before, p_ids_after)))
if set_grad:
self.assertTrue(all(a == b for a, b in zip(g_cdatas_before, g_cdatas_after)))
self.assertTrue(all(a == b for a, b in zip(g_ids_before, g_ids_after)))
@modules([module for module in module_db if not module.is_lazy], allowed_dtypes=[torch.float32])
@parametrize('swap', [True, False])
@wrapSwapTensorsTest()
def test_to_empty(self, device, dtype, module_info, swap, training):
module_cls = module_info.module_cls
with torch.device("meta"):
module_inputs = module_info.module_inputs_func(module_info, device=None, dtype=dtype,
requires_grad=False, training=training)
torch.__future__.set_swap_module_params_on_conversion(swap)
device_ = torch.device(device)
for module_input in module_inputs:
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
with torch.device("meta"):
m = module_cls(*c_args, **c_kwargs)
p_ids_before = [id(p) for p in m.parameters()]
p_cdatas_before = [p._cdata for p in m.parameters()]
m.to_empty(device=device_)
self.assertTrue(all(isinstance(p, torch.nn.Parameter) for p in m.parameters()))
self.assertTrue(all(p.device == device_ for p in m.parameters()))
self.assertTrue(all(p.dtype == dtype for p in m.parameters()))
p_ids_after = [id(p) for p in m.parameters()]
p_cdatas_after = [p._cdata for p in m.parameters()]
if swap:
# id same, ._cdata differs --> swapped cdata of THPVariable
self.assertTrue(all(a == b for a, b in zip(p_ids_before, p_ids_after)))
self.assertTrue(all(a != b for a, b in zip(p_cdatas_before, p_cdatas_after)))
else:
# id and ._cdata differ
# meta and device have different shallow copy types, so this will create a new
# parameter and assign it to the module
self.assertTrue(all(a != b for a, b in zip(p_ids_before, p_ids_after)))
self.assertTrue(all(a != b for a, b in zip(p_cdatas_before, p_cdatas_after)))
instantiate_device_type_tests(TestModule, globals(), allow_mps=True)
if __name__ == '__main__':
run_tests()