Files
pytorch/torch/_weights_only_unpickler.py
Mikayla Gawarecki 8e7e5ba182 Add sparse tensors constructed via legacy constructor to _sparse_tensors_to_validate (#147759)
This is a redo of https://github.com/pytorch/pytorch/pull/147408 which added validation at the end of the legacy constructor calls.

The reason why I didn't land that was because in `legacy_load`, constructor would be called before storages of indices/values are set. So the tensor would not actually be validated.

Technically, torch.sparse.{Foo}Tensor should not even be called by our rebuild process since afaict this was the first PR that added support for sparse tensor serialization https://github.com/pytorch/pytorch/pull/27062 and it already uses `_rebuild_sparse_tensor` (which would add the rebuilt tensor to the list to validate), but torch.sparse.FooTensor is allowlisted

This PR adds tensors constructed as such to the list to validate at the end of torch.load.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147759
Approved by: https://github.com/albanD
2025-02-25 23:51:12 +00:00

574 lines
22 KiB
Python

# mypy: allow-untyped-defs
# Unpickler restricted to loading only state dicts
# Restrict constructing types to a list defined in _get_allowed_globals()
# Restrict BUILD operation to `Tensor`, `Parameter` and `OrderedDict` types only
# Restrict APPEND/APPENDS to `list`
# In `GLOBALS` operation do not do class lookup by name, but rather rely on dictionary
# defined by `_get_allowed_globals()` method, that contains:
# - torch types (Storage, dtypes, Tensor, `torch.Size`),
# - `torch._utils._rebuild` functions.
# - `torch.nn.Parameter`
# - `collections.Counter`
# - `collections.OrderedDict`
# Additionally, users can use an allowlist for adding classes they have deemed as safe using
# `_add_safe_globals()` (`torch.serialization.add_safe_globals`)
# `_clear_safe_globals()` (`torch.serialization.clear_safe_globals`)
# `_get_safe_globals()` (`torch.serialization.get_safe_globals`)
# Based of https://github.com/python/cpython/blob/main/Lib/pickle.py
# Expected to be useful for loading PyTorch model weights
# For example:
# data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read()
# buf = io.BytesIO(data)
# weights = torch.load(buf, weights_only = True)
import functools as _functools
import warnings
from _codecs import encode
from collections import Counter, OrderedDict
from pickle import (
APPEND,
APPENDS,
BINFLOAT,
BINGET,
BININT,
BININT1,
BININT2,
BINPERSID,
BINPUT,
BINUNICODE,
BUILD,
bytes_types,
decode_long,
EMPTY_DICT,
EMPTY_LIST,
EMPTY_SET,
EMPTY_TUPLE,
GLOBAL,
LONG1,
LONG_BINGET,
LONG_BINPUT,
MARK,
NEWFALSE,
NEWOBJ,
NEWTRUE,
NONE,
PROTO,
REDUCE,
SETITEM,
SETITEMS,
SHORT_BINSTRING,
STOP,
TUPLE,
TUPLE1,
TUPLE2,
TUPLE3,
UnpicklingError,
)
from struct import unpack
from sys import maxsize
from typing import Any, Callable, Union
import torch
from torch._utils import _sparse_tensors_to_validate, IMPORT_MAPPING, NAME_MAPPING
# modules in this list are never allowed, even if the user attempts to allowlist
# functions/classes from them
_blocklisted_modules = [
"sys",
"os",
"posix",
"nt",
]
_marked_safe_globals_set: set[Union[Callable, tuple[Callable, str]]] = set()
def _add_safe_globals(safe_globals: list[Union[Callable, tuple[Callable, str]]]):
global _marked_safe_globals_set
_marked_safe_globals_set = _marked_safe_globals_set.union(set(safe_globals))
def _get_safe_globals() -> list[Union[Callable, tuple[Callable, str]]]:
global _marked_safe_globals_set
return list(_marked_safe_globals_set)
def _clear_safe_globals():
global _marked_safe_globals_set
_marked_safe_globals_set = set()
def _remove_safe_globals(
globals_to_remove: list[Union[Callable, tuple[Callable, str]]],
):
global _marked_safe_globals_set
_marked_safe_globals_set = _marked_safe_globals_set - set(globals_to_remove)
class _safe_globals:
def __init__(self, safe_globals: list[Union[Callable, tuple[Callable, str]]]):
self.safe_globals = safe_globals
def __enter__(self):
_add_safe_globals(self.safe_globals)
def __exit__(self, type, value, tb):
_remove_safe_globals(self.safe_globals)
# Separate from _get_allowed_globals because of the lru_cache on _get_allowed_globals
# For example if user had a script like
# torch.load(file_a)
# torch.serialization._add_safe_globals([torch.foo])
# torch.load(file_b)
# the dynamic additions to safe_globals would not be picked up by
# _get_allowed_globals due to the lru_cache
def _get_user_allowed_globals():
rc: dict[str, Any] = {}
for f in _marked_safe_globals_set:
if isinstance(f, tuple):
if len(f) != 2:
raise ValueError(
f"Expected tuple of length 2 (global, str of callable full path), but got tuple of length: {len(f)}"
)
if type(f[1]) is not str:
raise TypeError(
f"Expected second item in tuple to be str of callable full path, but got: {type(f[1])}"
)
f, name = f
rc[name] = f
else:
module, name = f.__module__, f.__qualname__
rc[f"{module}.{name}"] = f
return rc
def _tensor_rebuild_functions():
return {
torch._utils._rebuild_parameter,
torch._utils._rebuild_parameter_with_state,
torch._utils._rebuild_qtensor,
torch._utils._rebuild_tensor,
torch._utils._rebuild_tensor_v2,
torch._utils._rebuild_tensor_v3,
torch._utils._rebuild_sparse_tensor,
torch._utils._rebuild_meta_tensor_no_storage,
torch._utils._rebuild_nested_tensor,
torch._utils._rebuild_wrapper_subclass,
# Allowlisting this, but not allowlisting the numpy functions by default
# Reasoning is that we don't have control over the numpy functions, but
# this utility is provided by pytorch
torch._utils._rebuild_device_tensor_from_numpy,
# In 2.6, we should no longer have a dependency on numpy and the above
# _rebuild_device_tensor_from_numpy function.
torch._utils._rebuild_device_tensor_from_cpu_tensor,
}
# Unpickling machinery
@_functools.lru_cache(maxsize=1)
def _get_allowed_globals():
rc: dict[str, Any] = {
"collections.OrderedDict": OrderedDict,
"collections.Counter": Counter,
"torch.nn.parameter.Parameter": torch.nn.Parameter,
"torch.serialization._get_layout": torch.serialization._get_layout,
"torch.Size": torch.Size,
"torch.Tensor": torch.Tensor,
"torch.device": torch.device,
"_codecs.encode": encode, # for bytes
"builtins.bytearray": bytearray, # for bytearray
"builtins.set": set, # for set
"builtins.complex": complex, # for complex
}
# dtype
for t in torch.storage._dtype_to_storage_type_map().keys():
rc[str(t)] = t
for t in torch.storage._new_dtypes():
rc[str(t)] = t
for t in [getattr(torch, f"uint{x}") for x in range(1, 8)]:
rc[str(t)] = t
for t in [getattr(torch, f"int{x}") for x in range(1, 8)]:
rc[str(t)] = t
# Tensor classes
for tt in torch._tensor_classes:
rc[f"{tt.__module__}.{tt.__name__}"] = tt
# Storage classes
for ts in torch._storage_classes:
if ts not in (torch.storage.TypedStorage, torch.storage.UntypedStorage):
# Wrap legacy storage types in a dummy class
rc[f"{ts.__module__}.{ts.__name__}"] = torch.serialization.StorageType(
ts.__name__
)
else:
rc[f"{ts.__module__}.{ts.__name__}"] = ts
# Quantization specific
for qt in [
torch.per_tensor_affine,
torch.per_tensor_symmetric,
torch.per_channel_affine,
torch.per_channel_symmetric,
torch.per_channel_affine_float_qparams,
]:
rc[str(qt)] = qt
# Rebuild functions
for f in _tensor_rebuild_functions():
rc[f"torch._utils.{f.__name__}"] = f
# Handles Tensor Subclasses, Tensor's with attributes.
# NOTE: It calls into above rebuild functions for regular Tensor types.
rc["torch._tensor._rebuild_from_type_v2"] = torch._tensor._rebuild_from_type_v2
return rc
def _read_global_instruction(readline: Callable) -> tuple[str, str]:
module = readline()[:-1].decode("utf-8")
name = readline()[:-1].decode("utf-8")
# Patch since torch.save default protocol is 2
# users will be running this code in python > 3
if (module, name) in NAME_MAPPING:
module, name = NAME_MAPPING[(module, name)]
elif module in IMPORT_MAPPING:
module = IMPORT_MAPPING[module]
return module, name
def get_globals_in_pkl(file) -> set[str]:
globals_in_checkpoint = set()
read = file.read
readline = file.readline
op_to_bytes_to_read = {
NEWOBJ[0]: 0,
REDUCE[0]: 0,
BUILD[0]: 0,
APPEND[0]: 0,
APPENDS[0]: 0,
SETITEM[0]: 0,
SETITEMS[0]: 0,
MARK[0]: 0,
TUPLE[0]: 0,
TUPLE1[0]: 0,
TUPLE2[0]: 0,
TUPLE3[0]: 0,
NONE[0]: 0,
NEWFALSE[0]: 0,
NEWTRUE[0]: 0,
EMPTY_TUPLE[0]: 0,
EMPTY_LIST[0]: 0,
EMPTY_DICT[0]: 0,
EMPTY_SET[0]: 0,
BINPERSID[0]: 0,
BININT[0]: 4,
BININT1[0]: 1,
BININT2[0]: 2,
BINFLOAT[0]: 8,
BINGET[0]: 1,
LONG_BINGET[0]: 4,
BINPUT[0]: 1,
LONG_BINPUT[0]: 4,
}
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
if key[0] == GLOBAL[0]:
module, name = _read_global_instruction(readline)
globals_in_checkpoint.add(f"{module}.{name}")
elif key[0] in op_to_bytes_to_read:
bytes_to_read = op_to_bytes_to_read[key[0]]
if bytes_to_read:
read(bytes_to_read)
# ops where bytes to read depends on the data
elif key[0] == BINUNICODE[0]:
strlen = unpack("<I", read(4))[0]
if strlen > maxsize:
raise UnpicklingError("String is too long")
read(strlen)
elif key[0] in {SHORT_BINSTRING[0], LONG1[0]}:
strlen = read(1)[0]
read(strlen)
# first and last op
elif key[0] == PROTO[0]:
read(1)[0]
elif key[0] == STOP[0]:
return globals_in_checkpoint
else:
raise UnpicklingError(f"Unsupported operand {key[0]}")
class Unpickler:
def __init__(self, file, *, encoding: str = "bytes"):
self.encoding = encoding
self.readline = file.readline
self.read = file.read
self.memo: dict[int, Any] = {}
self.proto: int = -1
def load(self):
"""Read a pickled object representation from the open file.
Return the reconstituted object hierarchy specified in the file.
"""
self.metastack = []
self.stack: list[Any] = []
self.append = self.stack.append
read = self.read
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
# Risky operators
if key[0] == GLOBAL[0]:
module, name = _read_global_instruction(self.readline)
full_path = f"{module}.{name}"
if module in _blocklisted_modules:
raise UnpicklingError(
f"Trying to load unsupported GLOBAL {full_path} whose module {module} is blocked."
)
if full_path in _get_allowed_globals():
self.append(_get_allowed_globals()[full_path])
elif full_path in _get_user_allowed_globals():
self.append(_get_user_allowed_globals()[full_path])
elif full_path in (
[
"torch.nested._internal.nested_tensor.NestedTensor",
"torch.nested._internal.nested_tensor._rebuild_njt",
"torch._dynamo.decorators._DimRange",
]
):
raise UnpicklingError(
"``torch.nested`` and ``torch._dynamo`` must be imported to load nested jagged tensors (NJTs)"
)
elif full_path in (
[
"torch.distributed.device_mesh.DeviceMesh",
"torch.distributed.tensor._dtensor_spec.DTensorSpec",
"torch.distributed.tensor._dtensor_spec.TensorMeta",
"torch.distributed.tensor.DTensor",
"torch.distributed.tensor.placement_types.Partial",
"torch.distributed.tensor.placement_types.Replicate",
"torch.distributed.tensor.placement_types.Shard",
]
):
raise UnpicklingError(
"``torch.distributed.tensor`` must be imported to load DTensors"
)
else:
builtins_name = "builtins"
if (
builtins_name in full_path
and builtins_name == full_path[: len(builtins_name)]
):
full_path = full_path[len(builtins_name) :]
full_path = (
full_path[1:]
if len(full_path) > 0 and full_path[0] == "."
else builtins_name + full_path
)
raise UnpicklingError(
f"Unsupported global: GLOBAL {full_path} was not an allowed global by default. "
f"Please use `torch.serialization.add_safe_globals([{full_path}])` or the "
f"`torch.serialization.safe_globals([{full_path}])` context manager to allowlist this global "
"if you trust this class/function."
)
elif key[0] == NEWOBJ[0]:
args = self.stack.pop()
cls = self.stack.pop()
if cls is torch.nn.Parameter:
self.append(torch.nn.Parameter(*args))
elif (
cls in _get_user_allowed_globals().values()
or cls in _get_allowed_globals().values()
):
result = cls.__new__(cls, *args)
if cls in torch._tensor_classes and "sparse" in cls.__module__:
_sparse_tensors_to_validate.append(result)
self.append(result)
else:
raise UnpicklingError(
"Can only create new object for nn.Parameter or classes allowlisted "
f"via `add_safe_globals` but got {cls}"
)
elif key[0] == REDUCE[0]:
args = self.stack.pop()
func = self.stack[-1]
if (
func not in _get_allowed_globals().values()
and func not in _get_user_allowed_globals().values()
):
raise UnpicklingError(
f"Trying to call reduce for unrecognized function {func}"
)
result = func(*args)
if func in torch._tensor_classes and "sparse" in func.__module__:
_sparse_tensors_to_validate.append(result)
self.stack[-1] = result
elif key[0] == BUILD[0]:
state = self.stack.pop()
inst = self.stack[-1]
if type(inst) is torch.Tensor:
# Legacy unpickling
inst.set_(*state)
elif type(inst) is torch.nn.Parameter:
inst.__setstate__(state)
elif type(inst) is OrderedDict:
inst.__dict__.update(state)
elif (
type(inst) in _get_user_allowed_globals().values()
or type(inst) in _get_allowed_globals().values()
):
if hasattr(inst, "__setstate__"):
inst.__setstate__(state)
else:
# mimics load_build in pickle
# https://github.com/python/cpython/blob/f0c6fccd08904787a39269367f09f263d496114c/Lib/pickle.py#L1854-L1867
slotstate = None
if isinstance(state, tuple) and len(state) == 2:
state, slotstate = state
if state:
inst.__dict__.update(state)
if slotstate:
for k, v in slotstate.items():
setattr(inst, k, v)
else:
raise UnpicklingError(
"Can only build Tensor, Parameter, OrderedDict or types allowlisted "
f"via `add_safe_globals`, but got {type(inst)}"
)
# Stack manipulation
elif key[0] == APPEND[0]:
item = self.stack.pop()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise UnpicklingError(
f"Can only append to lists, but got {type(list_obj)}"
)
list_obj.append(item)
elif key[0] == APPENDS[0]:
items = self.pop_mark()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise UnpicklingError(
f"Can only extend lists, but got {type(list_obj)}"
)
list_obj.extend(items)
elif key[0] == SETITEM[0]:
(v, k) = (self.stack.pop(), self.stack.pop())
self.stack[-1][k] = v
elif key[0] == SETITEMS[0]:
items = self.pop_mark()
for i in range(0, len(items), 2):
self.stack[-1][items[i]] = items[i + 1]
elif key[0] == MARK[0]:
self.metastack.append(self.stack)
self.stack = []
self.append = self.stack.append
elif key[0] == TUPLE[0]:
items = self.pop_mark()
self.append(tuple(items))
elif key[0] == TUPLE1[0]:
self.stack[-1] = (self.stack[-1],)
elif key[0] == TUPLE2[0]:
self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
elif key[0] == TUPLE3[0]:
self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
# Basic types construction
elif key[0] == NONE[0]:
self.append(None)
elif key[0] == NEWFALSE[0]:
self.append(False)
elif key[0] == NEWTRUE[0]:
self.append(True)
elif key[0] == EMPTY_TUPLE[0]:
self.append(())
elif key[0] == EMPTY_LIST[0]:
self.append([])
elif key[0] == EMPTY_DICT[0]:
self.append({})
elif key[0] == EMPTY_SET[0]:
self.append(set())
elif key[0] == BININT[0]:
self.append(unpack("<i", read(4))[0])
elif key[0] == BININT1[0]:
self.append(self.read(1)[0])
elif key[0] == BININT2[0]:
self.append(unpack("<H", read(2))[0])
elif key[0] == BINFLOAT[0]:
self.append(unpack(">d", self.read(8))[0])
elif key[0] == BINUNICODE[0]:
strlen = unpack("<I", read(4))[0]
if strlen > maxsize:
raise UnpicklingError("String is too long")
strval = str(read(strlen), "utf-8", "surrogatepass")
self.append(strval)
elif key[0] == SHORT_BINSTRING[0]:
strlen = read(1)[0]
strdata = read(strlen)
if self.encoding != "bytes":
strdata = strdata.decode(self.encoding, "strict")
self.append(strdata)
elif key[0] == BINPERSID[0]:
pid = self.stack.pop()
# Only allow persistent load of storage
if type(pid) is not tuple and not type(pid) is not int:
raise UnpicklingError(
f"persistent_load id must be tuple or int, but got {type(pid)}"
)
if (
type(pid) is tuple
and len(pid) > 0
and torch.serialization._maybe_decode_ascii(pid[0]) != "storage"
):
raise UnpicklingError(
f"Only persistent_load of storage is allowed, but got {pid[0]}"
)
self.append(self.persistent_load(pid))
elif key[0] in [BINGET[0], LONG_BINGET[0]]:
idx = (read(1) if key[0] == BINGET[0] else unpack("<I", read(4)))[0]
self.append(self.memo[idx])
elif key[0] in [BINPUT[0], LONG_BINPUT[0]]:
i = (read(1) if key[0] == BINPUT[0] else unpack("<I", read(4)))[0]
if i < 0:
raise ValueError("negative argument")
self.memo[i] = self.stack[-1]
elif key[0] == LONG1[0]:
n = read(1)[0]
data = read(n)
self.append(decode_long(data))
# First and last deserializer ops
elif key[0] == PROTO[0]:
self.proto = read(1)[0]
if self.proto != 2:
warnings.warn(
f"Detected pickle protocol {self.proto} in the checkpoint, which was "
"not the default pickle protocol used by `torch.load` (2). The weights_only "
"Unpickler might not support all instructions implemented by this protocol, "
"please file an issue for adding support if you encounter this."
)
elif key[0] == STOP[0]:
rc = self.stack.pop()
return rc
else:
raise UnpicklingError(f"Unsupported operand {key[0]}")
# Return a list of items pushed in the stack after last MARK instruction.
def pop_mark(self):
items = self.stack
self.stack = self.metastack.pop()
self.append = self.stack.append
return items
def persistent_load(self, pid):
raise UnpicklingError("unsupported persistent id encountered")
def load(file, *, encoding: str = "ASCII"):
return Unpickler(file, encoding=encoding).load()