Files
pytorch/torch/testing/_internal/common_utils.py
Brian Hirsh bcc6e3ab5e add python API to print all operators that have kernels registered to a particular DispatchKey (#63575)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/63575

Test Plan: Imported from OSS

Reviewed By: ezyang, Chillee

Differential Revision: D30426919

Pulled By: bdhirsh

fbshipit-source-id: b0e487e48dfe02f7b9d678403f0a2b5bfe146f4e
2021-09-22 09:15:55 -07:00

2855 lines
116 KiB
Python

r"""Importing this file must **not** initialize CUDA context. test_distributed
relies on this assumption to properly run. This means that when this is imported
no CUDA calls shall be made, including torch.cuda.device_count(), etc.
torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported.
"""
import sys
import os
import platform
import re
import gc
import types
import math
from functools import partial
import inspect
import io
import copy
import operator
import argparse
import unittest
import warnings
import random
import contextlib
import shutil
import threading
from pathlib import Path
import socket
import subprocess
import time
from collections import OrderedDict
from collections.abc import Sequence
from contextlib import contextmanager, closing
from functools import wraps
from itertools import product
from copy import deepcopy
from numbers import Number
import tempfile
import json
import __main__ # type: ignore[import]
import errno
from typing import cast, Any, Dict, Iterable, Iterator, Optional, Union
from unittest.mock import MagicMock
import numpy as np
import expecttest
from .._core import \
(_compare_tensors_internal, _compare_scalars_internal, _compare_return_type)
import torch
import torch.cuda
from torch.testing import make_tensor
from torch._utils_internal import get_writable_path
from torch._six import string_classes
from torch import Tensor
import torch.backends.cudnn
import torch.backends.mkl
from enum import Enum
torch.backends.disable_global_flags()
FILE_SCHEMA = "file://"
if sys.platform == 'win32':
FILE_SCHEMA = "file:///"
# Environment variable `IN_CI` is set in `.jenkins/common.sh`.
IS_IN_CI = os.getenv('IN_CI') == '1'
IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle'
IS_FBCODE = os.getenv('PYTORCH_TEST_FBCODE') == '1'
IS_REMOTE_GPU = os.getenv('PYTORCH_TEST_REMOTE_GPU') == '1'
DISABLED_TESTS_FILE = '.pytorch-disabled-tests.json'
SLOW_TESTS_FILE = '.pytorch-slow-tests.json'
slow_tests_dict: Optional[Dict[str, Any]] = None
disabled_tests_dict: Optional[Dict[str, Any]] = None
class _TestParametrizer(object):
"""
Decorator class for parametrizing a test function, yielding a set of new tests spawned
from the original generic test, each specialized for a specific set of test inputs. For
example, parametrizing a test across the set of ops will result in a test function per op.
The decision of how to parametrize / what to parametrize over is intended to be implemented
by each derived class.
In the details, the decorator adds a 'parametrize_fn' property to the test function that is called
during device-specific test instantiation performed in instantiate_device_type_tests(). Because of this,
there is no need to parametrize over device type, as that is already handled separately.
If the decorator is applied to a test function that already has a 'parametrize_fn' property, a new
composite 'parametrize_fn' will be created that generates tests with the product of the parameters
generated by the old and new parametrize_fns. This allows for convenient composability of decorators.
Args:
handles_dtypes (bool): If True, indicates that it is the responsibility of the decorator to handle
dtypes internally. This allows for more flexibility when needed (e.g. for op-specific dtype handling).
Default: True
"""
def __init__(self, handles_dtypes=True):
self.handles_dtypes = handles_dtypes
def _parametrize_test(self, test, generic_cls, device_cls):
"""
Parametrizes the given test function across whatever dimension is specified by the derived class.
Tests can be parametrized over any arbitrary dimension or combination of dimensions, such as all
ops, all modules, or all ops + their associated dtypes.
Args:
test (fn): Test function to parametrize over
generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
device_cls (class): Device-specialized test class object (e.g. TestFooCPU); set to None
if the tests are not part of a device-specific set
Returns:
Generator object returning 3-tuples of:
test (fn): Parametrized test function; must support a device arg and args for any params
test_name (str): Parametrized suffix for the test (e.g. opname_int64); will be appended to
the base name of the test
param_kwargs (dict): Param kwargs to pass to the test (e.g. {'op': 'add', 'dtype': torch.int64})
"""
raise NotImplementedError
def __call__(self, fn):
if hasattr(fn, 'parametrize_fn'):
# Do composition with the product of args.
old_parametrize_fn = fn.parametrize_fn
new_parametrize_fn = self._parametrize_test
def composite_fn(test, generic_cls, device_cls,
old_parametrize_fn=old_parametrize_fn,
new_parametrize_fn=new_parametrize_fn):
old_tests = [(test, test_name, param_kwargs) for (test, test_name, param_kwargs) in
old_parametrize_fn(test, generic_cls, device_cls)]
for (old_test, old_test_name, old_param_kwargs) in old_tests:
for (new_test, new_test_name, new_param_kwargs) in \
new_parametrize_fn(old_test, generic_cls, device_cls):
full_param_kwargs = {**old_param_kwargs, **new_param_kwargs}
yield (new_test, '{}_{}'.format(new_test_name, old_test_name), full_param_kwargs)
fn.parametrize_fn = composite_fn
old_handles_dtypes = fn.handles_dtypes if hasattr(fn, 'handles_dtypes') else False
if self.handles_dtypes and old_handles_dtypes:
raise RuntimeError('Cannot compose multiple parametrization decorators that handle dtypes; '
'their dtype handling conflicts')
fn.handles_dtypes = self.handles_dtypes or old_handles_dtypes
else:
fn.parametrize_fn = self._parametrize_test
fn.handles_dtypes = self.handles_dtypes
return fn
def instantiate_parametrized_tests(generic_cls):
"""
Instantiates tests that have been decorated with a parametrize_fn. This is generally performed by a
decorator subclass of _TestParametrizer. The generic test will be replaced on the test class by
parametrized tests with specialized names.
Args:
generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
"""
for attr_name in tuple(dir(generic_cls)):
class_attr = getattr(generic_cls, attr_name)
if not hasattr(class_attr, 'parametrize_fn'):
continue
if hasattr(class_attr, 'handles_dtypes') and class_attr.handles_dtypes:
raise RuntimeError('instantiate_parametrized_tests() should not be used with decorators '
'that handle dtypes internally (e.g. @ops, @modules, etc.). Use '
'instantiate_device_type_tests() with these instead.')
# Remove the generic test from the test class.
delattr(generic_cls, attr_name)
# Add parametrized tests to the test class.
def instantiate_test_helper(cls, name, test, param_kwargs):
@wraps(test)
def instantiated_test(self, param_kwargs=param_kwargs):
test(self, **param_kwargs)
assert not hasattr(generic_cls, name), "Redefinition of test {0}".format(name)
setattr(generic_cls, name, instantiated_test)
for (test, test_suffix, param_kwargs) in class_attr.parametrize_fn(
class_attr, generic_cls=generic_cls, device_cls=None):
full_name = '{}_{}'.format(test.__name__, test_suffix)
instantiate_test_helper(cls=generic_cls, name=full_name, test=test, param_kwargs=param_kwargs)
class subtest(object):
"""
Explicit subtest case for use with test parametrization.
Allows for explicit naming of individual subtest cases as well as applying
decorators to the parametrized test.
Args:
arg_values (iterable): Iterable of arg values (e.g. range(10)) or
tuples of arg values (e.g. [(1, 2), (3, 4)]).
name (str): Optional name to use for the test.
decorators (iterable): Iterable of decorators to apply to the generated test.
"""
__slots__ = ['arg_values', 'name', 'decorators']
def __init__(self, arg_values, name=None, decorators=None):
self.arg_values = arg_values
self.name = name
self.decorators = decorators if decorators else []
class parametrize(_TestParametrizer):
"""
Decorator for applying generic test parametrizations.
The interface for this decorator is modeled after `@pytest.mark.parametrize`.
Basic usage between this decorator and pytest's is identical. The first argument
should be a string containing comma-separated names of parameters for the test, and
the second argument should be an iterable returning values or tuples of values for
the case of multiple parameters.
Beyond this basic usage, the decorator provides some additional functionality that
pytest does not.
1. Parametrized tests end up as generated test functions on unittest test classes.
Since this differs from how pytest works, this decorator takes on the additional
responsibility of naming these test functions. The default test names consists of
the test's base name followed by each parameter name + value (e.g. "test_bar_x_1_y_foo"),
but custom names can be defined using `name_fn` or the `subtest` structure (see below).
2. The decorator specially handles parameter values of type `subtest`, which allows for
more fine-grained control over both test naming and test execution. In particular, it can
be used to tag subtests with explicit test names or apply arbitrary decorators (see examples
below).
Examples::
@parametrize("x", range(5))
def test_foo(self, x):
...
@parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')])
def test_bar(self, x, y):
...
@parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')],
name_fn=lambda x, y: '{}_{}'.format(x, y))
def test_bar_custom_names(self, x, y):
...
@parametrize("x, y", [subtest((1, 2), name='double'),
subtest((1, 3), name='triple', decorators=[unittest.expectedFailure]),
subtest((1, 4), name='quadruple')])
def test_baz(self, x, y):
...
Args:
arg_str (str): String of arg names separate by commas (e.g. "x,y").
arg_values (iterable): Iterable of arg values (e.g. range(10)) or
tuples of arg values (e.g. [(1, 2), (3, 4)]).
name_fn (callable): Optional function that takes in parameters and returns subtest name.
"""
def __init__(self, arg_str, arg_values, name_fn=None):
super().__init__(handles_dtypes=False)
self.arg_names = arg_str.split(',')
self.arg_values = arg_values
self.name_fn = name_fn
def _formatted_str_repr(self, name, value):
""" Returns a string representation for the given arg that is suitable for use in test function names. """
if isinstance(value, torch.dtype):
return dtype_name(value)
elif isinstance(value, torch.device):
return str(value)
# Can't use isinstance as it would cause a circular import
elif value.__class__.__name__ == 'OpInfo' or value.__class__.__name__ == 'ModuleInfo':
return value.formatted_name
else:
# Include name and value separated by underscore.
return '{}_{}'.format(name, str(value).replace('.', '_'))
def _default_subtest_name(self, values):
return '_'.join([self._formatted_str_repr(a, v) for a, v in zip(self.arg_names, values)])
def _get_subtest_name(self, values, explicit_name=None):
if explicit_name:
subtest_name = explicit_name
elif self.name_fn:
subtest_name = self.name_fn(*values)
else:
subtest_name = self._default_subtest_name(values)
return subtest_name
def _parametrize_test(self, test, generic_cls, device_cls):
if len(self.arg_names) == 0:
# No additional parameters needed for the test.
test_name = device_cls.device_type if device_cls else ''
yield (test, test_name, {})
else:
# Each "values" item is expected to be either:
# * A tuple of values with one for each arg. For a single arg, a single item is expected.
# * A subtest instance with arg_values matching the previous.
for values in self.arg_values:
maybe_name = None
if isinstance(values, subtest):
sub = values
values = sub.arg_values
maybe_name = sub.name
# Apply decorators.
@wraps(test)
def test_wrapper(*args, **kwargs):
return test(*args, **kwargs)
for decorator in sub.decorators:
test_wrapper = decorator(test_wrapper)
gen_test = test_wrapper
else:
gen_test = test
values = list(values) if len(self.arg_names) > 1 else [values]
if len(values) != len(self.arg_names):
raise RuntimeError('Expected # values == # arg names, but got: {} '
'values and {} names for test "{}"'.format(
len(values), len(self.arg_names), test.__name__))
param_kwargs = {
name: value for name, value in zip(self.arg_names, values)
}
subtest_name = self._get_subtest_name(values, explicit_name=maybe_name)
test_name = '{}{}'.format(subtest_name, '_' + device_cls.device_type if device_cls else '')
if '.' in test_name:
raise RuntimeError('Test name cannot contain periods, but got: {}'.format(test_name))
yield (gen_test, test_name, param_kwargs)
class ProfilingMode(Enum):
LEGACY = 1
SIMPLE = 2
PROFILING = 3
def cppProfilingFlagsToProfilingMode():
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._jit_set_profiling_mode(old_prof_mode_state)
if old_prof_exec_state:
if old_prof_mode_state:
return ProfilingMode.PROFILING
else:
return ProfilingMode.SIMPLE
else:
return ProfilingMode.LEGACY
@contextmanager
def enable_profiling_mode_for_profiling_tests():
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
try:
yield
finally:
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._jit_set_profiling_mode(old_prof_mode_state)
@contextmanager
def enable_profiling_mode():
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._jit_set_profiling_mode(True)
try:
yield
finally:
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._jit_set_profiling_mode(old_prof_mode_state)
@contextmanager
def num_profiled_runs(num_runs):
old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs)
try:
yield
finally:
torch._C._jit_set_num_profiled_runs(old_num_runs)
func_call = torch._C.ScriptFunction.__call__
meth_call = torch._C.ScriptMethod.__call__
def prof_callable(callable, *args, **kwargs):
if 'profile_and_replay' in kwargs:
del kwargs['profile_and_replay']
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
with enable_profiling_mode_for_profiling_tests():
callable(*args, **kwargs)
return callable(*args, **kwargs)
return callable(*args, **kwargs)
def prof_func_call(*args, **kwargs):
return prof_callable(func_call, *args, **kwargs)
def prof_meth_call(*args, **kwargs):
return prof_callable(meth_call, *args, **kwargs)
# TODO fix when https://github.com/python/mypy/issues/2427 is address
torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[assignment]
torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[assignment]
def _get_test_report_path():
# allow users to override the test file location. We need this
# because the distributed tests run the same test file multiple
# times with different configurations.
override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE')
test_source = override if override is not None else 'python-unittest'
return os.path.join('test-reports', test_source)
parser = argparse.ArgumentParser()
parser.add_argument('--subprocess', action='store_true',
help='whether to run each test in a subprocess')
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--accept', action='store_true')
parser.add_argument('--jit_executor', type=str)
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--test_bailouts', action='store_true')
parser.add_argument('--save-xml', nargs='?', type=str,
const=_get_test_report_path(),
default=_get_test_report_path() if IS_IN_CI else None)
parser.add_argument('--discover-tests', action='store_true')
parser.add_argument('--log-suffix', type=str, default="")
parser.add_argument('--run-parallel', type=int, default=1)
parser.add_argument('--import-slow-tests', type=str, nargs='?', const=SLOW_TESTS_FILE)
parser.add_argument('--import-disabled-tests', type=str, nargs='?', const=DISABLED_TESTS_FILE)
# Only run when -h or --help flag is active to display both unittest and parser help messages.
def run_unittest_help(argv):
unittest.main(argv=argv)
if '-h' in sys.argv or '--help' in sys.argv:
help_thread = threading.Thread(target=run_unittest_help, args=(sys.argv,))
help_thread.start()
help_thread.join()
args, remaining = parser.parse_known_args()
if args.jit_executor == 'legacy':
GRAPH_EXECUTOR = ProfilingMode.LEGACY
elif args.jit_executor == 'profiling':
GRAPH_EXECUTOR = ProfilingMode.PROFILING
elif args.jit_executor == 'simple':
GRAPH_EXECUTOR = ProfilingMode.SIMPLE
else:
# infer flags based on the default settings
GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode()
IMPORT_SLOW_TESTS = args.import_slow_tests
IMPORT_DISABLED_TESTS = args.import_disabled_tests
LOG_SUFFIX = args.log_suffix
RUN_PARALLEL = args.run_parallel
TEST_BAILOUTS = args.test_bailouts
TEST_DISCOVER = args.discover_tests
TEST_IN_SUBPROCESS = args.subprocess
TEST_SAVE_XML = args.save_xml
REPEAT_COUNT = args.repeat
SEED = args.seed
if not expecttest.ACCEPT:
expecttest.ACCEPT = args.accept
UNITTEST_ARGS = [sys.argv[0]] + remaining
torch.manual_seed(SEED)
# CI Prefix path used only on CI environment
CI_TEST_PREFIX = str(Path(os.getcwd()))
def wait_for_process(p):
try:
return p.wait()
except KeyboardInterrupt:
# Give `p` a chance to handle KeyboardInterrupt. Without this,
# `pytest` can't print errors it collected so far upon KeyboardInterrupt.
exit_status = p.wait(timeout=5)
if exit_status is not None:
return exit_status
else:
p.kill()
raise
except: # noqa: B001,E722, copied from python core library
p.kill()
raise
finally:
# Always call p.wait() to ensure exit
p.wait()
def shell(command, cwd=None, env=None):
sys.stdout.flush()
sys.stderr.flush()
# The following cool snippet is copied from Py3 core library subprocess.call
# only the with
# 1. `except KeyboardInterrupt` block added for SIGINT handling.
# 2. In Py2, subprocess.Popen doesn't return a context manager, so we do
# `p.wait()` in a `final` block for the code to be portable.
#
# https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323
assert not isinstance(command, torch._six.string_classes), "Command to shell should be a list or tuple of tokens"
p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env)
return wait_for_process(p)
# Used to run the same test with different tensor types
def repeat_test_for_types(dtypes):
def repeat_helper(f):
@wraps(f)
def call_helper(self, *args):
for dtype in dtypes:
with TestCase.subTest(self, dtype=dtype):
f(self, *args, dtype=dtype)
return call_helper
return repeat_helper
def discover_test_cases_recursively(suite_or_case):
if isinstance(suite_or_case, unittest.TestCase):
return [suite_or_case]
rc = []
for element in suite_or_case:
rc.extend(discover_test_cases_recursively(element))
return rc
def get_test_names(test_cases):
return ['.'.join(case.id().split('.')[-2:]) for case in test_cases]
def _print_test_names():
suite = unittest.TestLoader().loadTestsFromModule(__main__)
test_cases = discover_test_cases_recursively(suite)
for name in get_test_names(test_cases):
print(name)
def chunk_list(lst, nchunks):
return [lst[i::nchunks] for i in range(nchunks)]
# sanitize filename e.g., distributed/pipeline/sync/skip/test_api.py -> distributed.pipeline.sync.skip.test_api
def sanitize_test_filename(filename):
# inspect.getfile returns absolute path in some CI jobs, converting it to relative path if needed
if filename.startswith(CI_TEST_PREFIX):
filename = filename[len(CI_TEST_PREFIX) + 1:]
strip_py = re.sub(r'.py$', '', filename)
return re.sub('/', r'.', strip_py)
def run_tests(argv=UNITTEST_ARGS):
# import test files.
if IMPORT_SLOW_TESTS:
if os.path.exists(IMPORT_SLOW_TESTS):
global slow_tests_dict
with open(IMPORT_SLOW_TESTS, 'r') as fp:
slow_tests_dict = json.load(fp)
else:
print(f'[WARNING] slow test file provided but not found: {IMPORT_SLOW_TESTS}')
if IMPORT_DISABLED_TESTS:
if os.path.exists(IMPORT_DISABLED_TESTS):
global disabled_tests_dict
with open(IMPORT_DISABLED_TESTS, 'r') as fp:
disabled_tests_dict = json.load(fp)
else:
print(f'[WARNING] disabled test file provided but not found: {IMPORT_DISABLED_TESTS}')
# Determine the test launch mechanism
if TEST_DISCOVER:
_print_test_names()
elif TEST_IN_SUBPROCESS:
suite = unittest.TestLoader().loadTestsFromModule(__main__)
test_cases = discover_test_cases_recursively(suite)
failed_tests = []
for case in test_cases:
test_case_full_name = case.id().split('.', 1)[1]
exitcode = shell([sys.executable] + argv + [test_case_full_name])
if exitcode != 0:
failed_tests.append(test_case_full_name)
assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format(
len(failed_tests), '\n\t'.join(failed_tests))
elif RUN_PARALLEL > 1:
suite = unittest.TestLoader().loadTestsFromModule(__main__)
test_cases = discover_test_cases_recursively(suite)
test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL)
processes = []
for i in range(RUN_PARALLEL):
command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i]
processes.append(subprocess.Popen(command, universal_newlines=True))
failed = False
for p in processes:
failed |= wait_for_process(p) != 0
assert not failed, "Some test shards have failed"
elif TEST_SAVE_XML is not None:
# import here so that non-CI doesn't need xmlrunner installed
import xmlrunner # type: ignore[import]
test_filename = sanitize_test_filename(inspect.getfile(sys._getframe(1)))
test_report_path = TEST_SAVE_XML + LOG_SUFFIX
test_report_path = os.path.join(test_report_path, test_filename)
os.makedirs(test_report_path, exist_ok=True)
verbose = '--verbose' in argv or '-v' in argv
if verbose:
print('Test results will be stored in {}'.format(test_report_path))
unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(output=test_report_path, verbosity=2 if verbose else 1))
elif REPEAT_COUNT > 1:
for _ in range(REPEAT_COUNT):
if not unittest.main(exit=False, argv=argv).result.wasSuccessful():
sys.exit(-1)
else:
unittest.main(argv=argv)
IS_LINUX = sys.platform == "linux"
IS_WINDOWS = sys.platform == "win32"
IS_MACOS = sys.platform == "darwin"
IS_PPC = platform.machine() == "ppc64le"
def is_avx512_vnni_supported():
if sys.platform != 'linux':
return False
with open("/proc/cpuinfo", encoding="ascii") as f:
lines = f.read()
return "avx512vnni" in lines
IS_AVX512_VNNI_SUPPORTED = is_avx512_vnni_supported()
if IS_WINDOWS:
@contextmanager
def TemporaryFileName(*args, **kwargs):
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
# close the file after creation and try to remove it manually
if 'delete' in kwargs:
if kwargs['delete'] is not False:
raise UserWarning("only TemporaryFileName with delete=False is supported on Windows.")
else:
kwargs['delete'] = False
f = tempfile.NamedTemporaryFile(*args, **kwargs)
try:
f.close()
yield f.name
finally:
os.unlink(f.name)
else:
@contextmanager # noqa: T484
def TemporaryFileName(*args, **kwargs):
with tempfile.NamedTemporaryFile(*args, **kwargs) as f:
yield f.name
if IS_WINDOWS:
@contextmanager
def TemporaryDirectoryName(suffix=None):
# On Windows the directory created by TemporaryDirectory is likely to be removed prematurely,
# so we first create the directory using mkdtemp and then remove it manually
try:
dir_name = tempfile.mkdtemp(suffix=suffix)
yield dir_name
finally:
shutil.rmtree(dir_name)
else:
@contextmanager # noqa: T484
def TemporaryDirectoryName(suffix=None):
with tempfile.TemporaryDirectory(suffix=suffix) as d:
yield d
IS_FILESYSTEM_UTF8_ENCODING = sys.getfilesystemencoding() == 'utf-8'
def _check_module_exists(name):
r"""Returns if a top-level module with :attr:`name` exists *without**
importing it. This is generally safer than try-catch block around a
`import X`. It avoids third party libraries breaking assumptions of some of
our tests, e.g., setting multiprocessing start method when imported
(see librosa/#747, torchvision/#544).
"""
import importlib.util
spec = importlib.util.find_spec(name)
return spec is not None
TEST_NUMPY = _check_module_exists('numpy')
TEST_SCIPY = _check_module_exists('scipy')
TEST_MKL = torch.backends.mkl.is_available()
TEST_NUMBA = _check_module_exists('numba')
TEST_DILL = _check_module_exists('dill')
TEST_LIBROSA = _check_module_exists('librosa')
# Python 2.7 doesn't have spawn
NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1'
TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1'
TEST_WITH_DEV_DBG_ASAN = os.getenv('PYTORCH_TEST_WITH_DEV_DBG_ASAN', '0') == '1'
TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1'
TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1'
TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1'
# TODO: Remove PYTORCH_MIOPEN_SUGGEST_NHWC once ROCm officially supports NHWC in MIOpen
# See #64427
TEST_WITH_MIOPEN_SUGGEST_NHWC = os.getenv('PYTORCH_MIOPEN_SUGGEST_NHWC', '0') == '1'
# Enables tests that are slow to run (disabled by default)
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
# Disables non-slow tests (these tests enabled by default)
# This is usually used in conjunction with TEST_WITH_SLOW to
# run *only* slow tests. (I could have done an enum, but
# it felt a little awkward.
TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1'
# Disables noarch tests; all but one CI configuration disables these. We don't
# disable them for local runs because you still want to run them
# (unlike slow tests!)
TEST_SKIP_NOARCH = os.getenv('PYTORCH_TEST_SKIP_NOARCH', '0') == '1'
# Determine whether to enable cuda memory leak check.
# CUDA mem leak check is expensive and thus we don't want to execute it on every
# test case / configuration.
# See: https://github.com/pytorch/pytorch/pull/59402#issuecomment-858811135
TEST_SKIP_CUDA_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_SKIP_CUDA_MEM_LEAK_CHECK', '0') == '1'
# Disables tests for when on Github Actions
ON_GHA = os.getenv('GITHUB_ACTIONS', '0') == '1'
# True if CI is running TBB-enabled Pytorch
IS_TBB = "tbb" in os.getenv("BUILD_ENVIRONMENT", "")
# Dict of NumPy dtype -> torch dtype (when the correspondence exists)
numpy_to_torch_dtype_dict = {
np.bool_ : torch.bool,
np.uint8 : torch.uint8,
np.int8 : torch.int8,
np.int16 : torch.int16,
np.int32 : torch.int32,
np.int64 : torch.int64,
np.float16 : torch.float16,
np.float32 : torch.float32,
np.float64 : torch.float64,
np.complex64 : torch.complex64,
np.complex128 : torch.complex128
}
if IS_WINDOWS:
# Size of `np.intc` is platform defined.
# It is returned by functions like `bitwise_not`.
# On Windows `int` is 32-bit
# https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-160
numpy_to_torch_dtype_dict[np.intc] = torch.int
# Dict of torch dtype -> NumPy dtype
torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}
ALL_TENSORTYPES = [torch.float,
torch.double,
torch.half]
# bfloat16 bringup is currently only available on ROCm
# ALL_TENSORTYPES2 will eventually be unified with ALL_TENSORTYPES
# when bfloat16 bringup is complete on all platforms
if TEST_WITH_ROCM:
ALL_TENSORTYPES2 = [torch.float,
torch.double,
torch.half,
torch.bfloat16]
else:
ALL_TENSORTYPES2 = ALL_TENSORTYPES
def skipIfRocm(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_ROCM:
raise unittest.SkipTest("test doesn't currently work on the ROCm stack")
else:
fn(*args, **kwargs)
return wrapper
# Skips a test on CUDA if ROCm is unavailable or its version is lower than requested.
def skipIfRocmVersionLessThan(version=None):
def dec_fn(fn):
@wraps(fn)
def wrap_fn(self, *args, **kwargs):
if not TEST_WITH_ROCM:
reason = "ROCm not available"
raise unittest.SkipTest(reason)
rocm_version = str(torch.version.hip)
rocm_version = rocm_version.split("-")[0] # ignore git sha
rocm_version_tuple = tuple(int(x) for x in rocm_version.split("."))
if rocm_version_tuple is None or version is None or rocm_version_tuple < tuple(version):
reason = "ROCm {0} is available but {1} required".format(rocm_version_tuple, version)
raise unittest.SkipTest(reason)
return fn(self, *args, **kwargs)
return wrap_fn
return dec_fn
def skipIfNotMiopenSuggestNHWC(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_WITH_MIOPEN_SUGGEST_NHWC:
raise unittest.SkipTest("test doesn't currently work without MIOpen NHWC activation")
else:
fn(*args, **kwargs)
return wrapper
# Context manager for setting deterministic flag and automatically
# resetting it to its original value
class DeterministicGuard:
def __init__(self, deterministic):
self.deterministic = deterministic
def __enter__(self):
self.deterministic_restore = torch.are_deterministic_algorithms_enabled()
torch.use_deterministic_algorithms(self.deterministic)
def __exit__(self, exception_type, exception_value, traceback):
torch.use_deterministic_algorithms(self.deterministic_restore)
# Context manager for setting cuda sync debug mode and reset it
# to original value
# we are not exposing it to the core because sync debug mode is
# global and thus not thread safe
class CudaSyncGuard:
def __init__(self, sync_debug_mode):
self.mode = sync_debug_mode
def __enter__(self):
self.debug_mode_restore = torch.cuda.get_sync_debug_mode()
torch.cuda.set_sync_debug_mode(self.mode)
def __exit__(self, exception_type, exception_value, traceback):
torch.cuda.set_sync_debug_mode(self.debug_mode_restore)
# This decorator can be used for API tests that call
# torch.use_deterministic_algorithms(). When the test is finished, it will
# restore the previous deterministic flag setting.
#
# If CUDA >= 10.2, this will set the environment variable
# CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that
# setting is not thrown during the test unless the test changes that variable
# on purpose. The previous CUBLAS_WORKSPACE_CONFIG setting will also be
# restored once the test is finished.
#
# Note that if a test requires CUDA to actually register the changed
# CUBLAS_WORKSPACE_CONFIG variable, a new subprocess must be created, because
# CUDA only checks the variable when the runtime initializes. Tests can be
# run inside a subprocess like so:
#
# import subprocess, sys, os
# script = '''
# # Test code should go here
# '''
# try:
# subprocess.check_output(
# [sys.executable, '-c', script],
# stderr=subprocess.STDOUT,
# cwd=os.path.dirname(os.path.realpath(__file__)),
# env=os.environ.copy())
# except subprocess.CalledProcessError as e:
# error_message = e.output.decode('utf-8')
# # Handle exceptions raised by the subprocess here
#
def wrapDeterministicFlagAPITest(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with DeterministicGuard(torch.are_deterministic_algorithms_enabled()):
class CuBLASConfigGuard:
cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG'
def __enter__(self):
self.is_cuda10_2_or_higher = (
(torch.version.cuda is not None)
and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2]))
if self.is_cuda10_2_or_higher:
self.cublas_config_restore = os.environ.get(self.cublas_var_name)
os.environ[self.cublas_var_name] = ':4096:8'
def __exit__(self, exception_type, exception_value, traceback):
if self.is_cuda10_2_or_higher:
cur_cublas_config = os.environ.get(self.cublas_var_name)
if self.cublas_config_restore is None:
if cur_cublas_config is not None:
del os.environ[self.cublas_var_name]
else:
os.environ[self.cublas_var_name] = self.cublas_config_restore
with CuBLASConfigGuard():
fn(*args, **kwargs)
return wrapper
def skipIfCompiledWithoutNumpy(fn):
# Even if the numpy module is present, if `USE_NUMPY=0` is used during the
# build, numpy tests will fail
numpy_support = TEST_NUMPY
if numpy_support:
try:
# The numpy module is present, verify that PyTorch is compiled with
# numpy support
torch.from_numpy(np.array([2, 2]))
except RuntimeError:
numpy_support = False
@wraps(fn)
def wrapper(*args, **kwargs):
if not numpy_support:
raise unittest.SkipTest("PyTorch was compiled without numpy support")
else:
fn(*args, **kwargs)
return wrapper
def _test_function(fn, device):
def run_test_function(self):
return fn(self, device)
return run_test_function
def skipIfNoLapack(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not torch._C.has_lapack:
raise unittest.SkipTest('PyTorch compiled without Lapack')
else:
fn(*args, **kwargs)
return wrapper
def skipIfNotRegistered(op_name, message):
"""Wraps the decorator to hide the import of the `core`.
Args:
op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`.
message: message to fail with.
Usage:
@skipIfNotRegistered('MyOp', 'MyOp is not linked!')
This will check if 'MyOp' is in the caffe2.python.core
"""
try:
from caffe2.python import core
skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS,
message)
except ImportError:
skipper = unittest.skip("Cannot import `caffe2.python.core`")
return skipper
def skipIfNoSciPy(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_SCIPY:
raise unittest.SkipTest("test require SciPy, but SciPy not found")
else:
fn(*args, **kwargs)
return wrapper
def skipIfOnGHA(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if ON_GHA:
raise unittest.SkipTest("Test disabled for GHA")
else:
fn(*args, **kwargs)
return wrapper
def skipIfTBB(message="This test makes TBB sad"):
def dec_fn(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if IS_TBB:
raise unittest.SkipTest(message)
else:
fn(*args, **kwargs)
return wrapper
return dec_fn
def slowTest(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_WITH_SLOW:
raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
else:
fn(*args, **kwargs)
wrapper.__dict__['slow_test'] = True
return wrapper
# noarch tests are tests that should be only run on one CI configuration,
# because they don't exercise any interesting platform specific code
# and so if run once, indicate the test should pass everywhere.
# See https://github.com/pytorch/pytorch/issues/53743
def noarchTest(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_SKIP_NOARCH:
raise unittest.SkipTest("test is noarch: we are skipping noarch tests due to TEST_SKIP_NOARCH")
else:
fn(*args, **kwargs)
return wrapper
def slowAwareTest(fn):
fn.__dict__['slow_test'] = True
return fn
def skipCUDAMemoryLeakCheckIf(condition):
def dec(fn):
if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True
fn._do_cuda_memory_leak_check = not condition
return fn
return dec
def skipCUDANonDefaultStreamIf(condition):
def dec(fn):
if getattr(fn, '_do_cuda_non_default_stream', True): # if current True
fn._do_cuda_non_default_stream = not condition
return fn
return dec
def suppress_warnings(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fn(*args, **kwargs)
return wrapper
def to_gpu(obj, type_map=None):
if type_map is None:
type_map = {}
if isinstance(obj, torch.Tensor):
assert obj.is_leaf
t = type_map.get(obj.dtype, obj.dtype)
with torch.no_grad():
res = obj.clone().to(dtype=t, device="cuda")
res.requires_grad = obj.requires_grad
return res
elif torch.is_storage(obj):
return obj.new().resize_(obj.size()).copy_(obj)
elif isinstance(obj, list):
return [to_gpu(o, type_map) for o in obj]
elif isinstance(obj, tuple):
return tuple(to_gpu(o, type_map) for o in obj)
else:
return deepcopy(obj)
def get_function_arglist(func):
return inspect.getfullargspec(func).args
def set_rng_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
if TEST_NUMPY:
np.random.seed(seed)
@contextlib.contextmanager
def freeze_rng_state():
rng_state = torch.get_rng_state()
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state()
yield
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
torch.set_rng_state(rng_state)
@contextlib.contextmanager
def set_default_dtype(dtype):
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
try:
yield
finally:
torch.set_default_dtype(saved_dtype)
def iter_indices(tensor):
if tensor.dim() == 0:
return range(0)
if tensor.dim() == 1:
return range(tensor.size(0))
return product(*(range(s) for s in tensor.size()))
def is_iterable(obj):
try:
iter(obj)
return True
except TypeError:
return False
def is_iterable_of_tensors(iterable, include_empty=False):
""" Returns True if iterable is an iterable of tensors and False o.w.
If the iterable is empty, the return value is :attr:`include_empty`
"""
# Tensor itself is iterable so we check this first
if isinstance(iterable, torch.Tensor):
return False
try:
if len(iterable) == 0:
return include_empty
for t in iter(iterable):
if not isinstance(t, torch.Tensor):
return False
except TypeError as te:
return False
return True
class CudaNonDefaultStream():
def __enter__(self):
# Before starting CUDA test save currently active streams on all
# CUDA devices and set new non default streams to all CUDA devices
# to ensure CUDA tests do not use default stream by mistake.
beforeDevice = torch.cuda.current_device()
self.beforeStreams = []
for d in range(torch.cuda.device_count()):
self.beforeStreams.append(torch.cuda.current_stream(d))
deviceStream = torch.cuda.Stream(device=d)
torch._C._cuda_setStream(deviceStream._cdata)
torch._C._cuda_setDevice(beforeDevice)
def __exit__(self, exec_type, exec_value, traceback):
# After completing CUDA test load previously active streams on all
# CUDA devices.
beforeDevice = torch.cuda.current_device()
for d in range(torch.cuda.device_count()):
torch._C._cuda_setStream(self.beforeStreams[d]._cdata)
torch._C._cuda_setDevice(beforeDevice)
class CudaMemoryLeakCheck():
def __init__(self, testcase, name=None):
self.name = testcase.id() if name is None else name
self.testcase = testcase
# initialize context & RNG to prevent false positive detections
# when the test is the first to initialize those
from torch.testing._internal.common_cuda import initialize_cuda_context_rng
initialize_cuda_context_rng()
@staticmethod
def get_cuda_memory_usage():
# we don't need CUDA synchronize because the statistics are not tracked at
# actual freeing, but at when marking the block as free.
num_devices = torch.cuda.device_count()
gc.collect()
return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices))
def __enter__(self):
self.befores = self.get_cuda_memory_usage()
def __exit__(self, exec_type, exec_value, traceback):
# Don't check for leaks if an exception was thrown
if exec_type is not None:
return
afters = self.get_cuda_memory_usage()
for i, (before, after) in enumerate(zip(self.befores, afters)):
self.testcase.assertEqual(
before, after, msg='{} leaked {} bytes CUDA memory on device {}'.format(
self.name, after - before, i))
@contextmanager
def skip_exception_type(exc_type):
try:
yield
except exc_type as e:
raise unittest.SkipTest(f"not implemented: {e}") from e
# "min_satisfying_examples" setting has been deprecated in hypythesis
# 3.56.0 and removed in hypothesis 4.x
try:
import hypothesis
def settings(*args, **kwargs):
if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0):
kwargs.pop('min_satisfying_examples')
return hypothesis.settings(*args, **kwargs)
hypothesis.settings.register_profile(
"pytorch_ci",
settings(
derandomize=True,
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=50,
verbosity=hypothesis.Verbosity.normal))
hypothesis.settings.register_profile(
"dev",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=10,
verbosity=hypothesis.Verbosity.normal))
hypothesis.settings.register_profile(
"debug",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=1000,
verbosity=hypothesis.Verbosity.verbose))
hypothesis.settings.load_profile(
"pytorch_ci" if IS_IN_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev')
)
except ImportError:
print('Fail to import hypothesis in common_utils, tests are not derandomized')
def check_if_enable(test: unittest.TestCase):
test_suite = str(test.__class__).split('\'')[1]
test_name = f'{test._testMethodName} ({test_suite})'
if slow_tests_dict is not None and test_name in slow_tests_dict:
getattr(test, test._testMethodName).__dict__['slow_test'] = True
if not TEST_WITH_SLOW:
raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
if not IS_SANDCASTLE and disabled_tests_dict is not None:
if test_name in disabled_tests_dict:
issue_url, platforms = disabled_tests_dict[test_name]
platform_to_conditional: Dict = {
"mac": IS_MACOS,
"macos": IS_MACOS,
"win": IS_WINDOWS,
"windows": IS_WINDOWS,
"linux": IS_LINUX,
"rocm": TEST_WITH_ROCM
}
if platforms == [] or any([platform_to_conditional[platform] for platform in platforms]):
raise unittest.SkipTest(
f"Test is disabled because an issue exists disabling it: {issue_url}" +
f" for {'all' if platforms == [] else ''}platform(s) {', '.join(platforms)}. " +
"If you're seeing this on your local machine and would like to enable this test, " +
"please make sure IN_CI is not set and you are not using the flag --import-disabled-tests.")
if TEST_SKIP_FAST:
if not getattr(test, test._testMethodName).__dict__.get('slow_test', False):
raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST")
# Acquires the comparison dtype, required since isclose
# requires both inputs have the same dtype, and isclose is not supported
# for some device x dtype combinations.
# NOTE: Remaps bfloat16 to float32 since neither the CPU or CUDA device types
# support needed bfloat16 comparison methods.
# NOTE: Remaps float16 to float32 on CPU since the CPU device type doesn't
# support needed float16 comparison methods.
# TODO: Update this once bfloat16 and float16 are better supported.
def get_comparison_dtype(a, b):
# TODO: update this when promote_types supports bfloat16 and/or
# isclose supports bfloat16.
a_dtype = torch.float32 if a.dtype is torch.bfloat16 else a.dtype
b_dtype = torch.float32 if b.dtype is torch.bfloat16 else b.dtype
compare_dtype = torch.promote_types(a_dtype, b_dtype)
# non-CUDA (CPU, for example) float16 -> float32
# TODO: update this when isclose is implemented for CPU float16
if (compare_dtype is torch.float16 and
(a.device != b.device or a.device.type != 'cuda' or
b.device.type != 'cuda')):
compare_dtype = torch.float32
return compare_dtype
# This implements a variant of assertRaises/assertRaisesRegex where we first test
# if the exception is NotImplementedError, and if so just skip the test instead
# of failing it.
#
# This is implemented by inheriting from the (private) implementation of
# assertRaises from unittest.case, and slightly tweaking it for this new
# behavior. The year is 2021: this private class hierarchy hasn't changed since
# 2010, seems low risk to inherit from.
class AssertRaisesContextIgnoreNotImplementedError(unittest.case._AssertRaisesContext):
def __exit__(self, exc_type, exc_value, tb):
if exc_type is not None and issubclass(exc_type, NotImplementedError):
self.test_case.skipTest(f"not_implemented: {exc_value}") # type: ignore[attr-defined]
return super().__exit__(exc_type, exc_value, tb)
@contextmanager
def set_warn_always_context(new_val: bool):
old_val = torch.is_warn_always_enabled()
torch.set_warn_always(new_val)
try:
yield
finally:
torch.set_warn_always(old_val)
class TestCase(expecttest.TestCase):
# NOTE: "precision" lets classes and generated tests set minimum
# atol values when comparing tensors. Used by @precisionOverride and @toleranceOverride, for
# example.
# NOTE: "rel_tol" lets classes and generated tests set minimum
# rtol values when comparing tensors. Used by @toleranceOverride, for example.
_precision: float = 0
_rel_tol: float = 0
# checker to early terminate test suite if unrecoverable failure occurs.
def _should_stop_test_suite(self):
if torch.cuda.is_initialized():
# CUDA device side error will cause subsequence test cases to fail.
# stop entire test suite if catches RuntimeError during torch.cuda.synchronize().
try:
torch.cuda.synchronize()
except RuntimeError as rte:
return True
return False
else:
return False
@property
def precision(self) -> float:
return self._precision
@precision.setter
def precision(self, prec: float) -> None:
self._precision = prec
@property
def rel_tol(self) -> float:
return self._rel_tol
@rel_tol.setter
def rel_tol(self, prec: float) -> None:
self._rel_tol = prec
_do_cuda_memory_leak_check = False
_do_cuda_non_default_stream = False
# When True, if a test case raises a NotImplementedError, instead of failing
# the test, skip it instead.
_ignore_not_implemented_error = False
def __init__(self, method_name='runTest'):
super().__init__(method_name)
test_method = getattr(self, method_name, None)
if test_method is not None:
# Wraps the tested method if we should do CUDA memory check.
if not TEST_SKIP_CUDA_MEM_LEAK_CHECK:
self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True)
# FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044
if self._do_cuda_memory_leak_check and not IS_WINDOWS:
self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors)
# Wraps the tested method if we should enforce non default CUDA stream.
self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True)
if self._do_cuda_non_default_stream and not IS_WINDOWS:
self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream)
if self._ignore_not_implemented_error:
self.wrap_with_policy(method_name, lambda: skip_exception_type(NotImplementedError))
def assertLeaksNoCudaTensors(self, name=None):
name = self.id() if name is None else name
return CudaMemoryLeakCheck(self, name)
def enforceNonDefaultStream(self):
return CudaNonDefaultStream()
def wrap_with_cuda_policy(self, method_name, policy):
test_method = getattr(self, method_name)
# the import below may initialize CUDA context, so we do it only if
# self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream
# is True.
# TODO: sure looks like we unconditionally initialize the context here
# -- ezyang
from torch.testing._internal.common_cuda import TEST_CUDA
fullname = self.id().lower() # class_name.method_name
if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname):
setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))
def wrap_with_policy(self, method_name, policy):
test_method = getattr(self, method_name)
setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))
# A policy is a zero-argument function that returns a context manager.
# We don't take the context manager directly as it may be necessary to
# construct it once per test method
def wrap_method_with_policy(self, method, policy):
# Assumes that `method` is the tested function in `self`.
# NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope
# alive, so this cannot be done in setUp and tearDown because
# tearDown is run unconditionally no matter whether the test
# passes or not. For the same reason, we can't wrap the `method`
# call in try-finally and always do the check.
@wraps(method)
def wrapper(self, *args, **kwargs):
with policy():
method(*args, **kwargs)
return types.MethodType(wrapper, self)
def wrap_with_cuda_memory_check(self, method):
return self.wrap_method_with_policy(method, self.assertLeaksNoCudaTensors)
def run(self, result=None):
super().run(result=result)
# Early terminate test if necessary.
if self._should_stop_test_suite():
result.stop()
def setUp(self):
check_if_enable(self)
set_rng_seed(SEED)
@staticmethod
def _make_crow_indices(n_rows, n_cols, nnz,
*, device, dtype, random=True):
"""Return crow_indices of a CSR tensor with size (n_rows, n_cols) and
the number of specified elements nnz.
If random is True, the column counts of rows are in random
order. Otherwise, the column counts of rows are defined by the
used sampling method.
Sampling method
---------------
The used sampling method was introduced in
https://pearu.github.io/csr_sampling.html, and here we give
only an overall description of the method.
Notice that crow_indices can be defined as cumsum(counts)
where counts is a sequence of non-negative integers satisfying
the following conditions:
len(counts) == n_rows + 1
counts.max() <= n_cols
while counts[i + 1] is interpreted as the number of specified
elements in the i-th row.
The used sampling method aims at increasing the diversity of
CSR samples, that is, a CSR sample should contain (i) rows
that are all filled, (ii) rows with no elements at all, and
(iii) rows that are partially filled. At the same time and for
the given total number of specified elements (nnz), there
should be minimal preference to rows with a given number of
elements. To achieve this, the sampling method is built-up on
using a sawteeth model for counts. In the simplest case, we
would have
counts = arange(n_rows + 1) % (n_cols + 1)
that has equal number of all possible column counts per row.
This formula can be used only for specific input values of
n_rows, n_cols, and nnz. To generalize this model to any
combinations of inputs, the counts model above is extended
with an incomplete sawtooth, and the right and lower
rectangular parts that will guarantee that
counts.sum() == nnz
for any combination of n_rows, n_cols, and nnz. Basically,
we'll find a maximal window in (n_rows + 1, n_cols + 1)-grid
that is able to hold a sequence of sawteeth and so-called
final correction, while the external part of the window is
filled with counts to meet the nnz contraint exactly.
"""
assert 0 <= nnz <= n_rows * n_cols
def sawteeth(n, m):
# return the total number of counts in the sequence of
# sawteeth where n and m define a window in (n_rows+1,
# n_cols+1) rectangle where the sequence of sawteeth
# perfectly fit.
M = (n_cols - m) * (n_cols - m + 1) // 2
K = (n_rows - n) % (n_cols - m + 1)
return M * ((n_rows - n) // (n_cols - m + 1)) + K * (K - 1) // 2
# Different from the original method description, here counts
# has leading 0 required by crow_indices:
counts = torch.zeros(n_rows + 1, dtype=dtype, device=torch.device('cpu'))
n = m = 0
N = sawteeth(n, m)
if N and nnz >= max(N, n_cols):
# determine the width of the sawteeth window. We use bisection to solve
# N(n, 0) == 0 or nnz - n * n_cols < max(N(n, 0), n_cols)
# for n
n_left = n
n_right = n_rows - 1
N_right = sawteeth(n_right, m)
while n_right - n_left > 1:
n_middle = (n_left + n_right) // 2
N_middle = sawteeth(n_middle, m)
if N_middle == 0 or nnz - n_middle * n_cols < max(N_middle, n_cols):
n_right, N_right = n_middle, N_middle
else:
n_left = n_middle
n, N = n_right, N_right
# fill the right rectangle with counts:
assert n
counts[-n:].fill_(n_cols)
if N and nnz - n * n_cols >= max(N, n_rows - n):
# determine the height of the sawteeth window. We use bisection to solve
# N(n, m) == 0 or nnz - n * n_cols - m * (n_rows - n) < max(N(n, m), n_rows - n)
# for m.
m_left = m
m_right = n_cols - 1
N_right = sawteeth(n, m_right)
while m_right - m_left > 1:
m_middle = (m_left + m_right) // 2
N_middle = sawteeth(n, m_middle)
if N_middle == 0 or nnz - n * n_cols - m_middle * (n_rows - n) < max(N_middle, n_rows - n):
m_right, N_right = m_middle, N_middle
else:
m_left = m_middle
m, N = m_right, N_right
# fill the bottom rectangle with counts:
assert m
counts[1:n_rows - n + 1].fill_(m)
if N:
# fill the sawteeth window with counts
q, r = divmod(nnz - n * n_cols - m * (n_rows - n),
(n_cols - m) * (n_cols - m + 1) // 2)
p = 1 + q * (n_cols - m + 1)
if sys.version_info >= (3, 8):
k = math.isqrt(2 * r)
else:
# math.isqrt(x) is available starting from Python 3.8.
# Here we use int(math.sqrt(x)) as an approximation
# that appers to give exaxt result for all x values
# less than 2**35, at least, the upper limit of x is
# TBD.
k = int(math.sqrt(2 * r))
if k * (k + 1) > 2 * r:
k -= 1
corr = r - k * (k + 1) // 2
assert not ((p > 1) and (m > 0)) # full sawteeth are never on top of a bottom rectangle
# sequence of full sawteeth:
counts[1:p] = torch.arange(p - 1, dtype=dtype, device=counts.device) % (n_cols - m + 1)
# incomplete sawtooth:
counts[p:p + k + 1] += torch.arange(k + 1, dtype=dtype, device=counts.device)
else:
# given input does not support sawteeth
p = 1
corr = nnz - n * n_cols - m * (n_rows - n)
# correction that will guarantee counts.sum() == nnz:
counts[p] += corr
if random:
# randomize crow_indices by shuffling the sawteeth
# sequence:
perm = torch.randperm(n_rows, device=counts.device)
counts[1:] = counts[1:][perm]
# compute crow_indices:
crow_indices = counts
crow_indices.cumsum_(dim=0)
return crow_indices.to(device=device)
def genSparseCSRTensor(self, size, nnz, *, device, dtype, index_dtype):
sparse_dim = 2
assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'
assert len(size) == sparse_dim
def random_sparse_csr(n_rows, n_cols, nnz):
crow_indices = self._make_crow_indices(n_rows, n_cols, nnz, device=device, dtype=index_dtype)
col_indices = torch.zeros(nnz, dtype=index_dtype, device=device)
for i in range(n_rows):
count = crow_indices[i + 1] - crow_indices[i]
col_indices[crow_indices[i]:crow_indices[i + 1]], _ = torch.sort(
torch.randperm(n_cols, dtype=index_dtype, device=device)[:count])
values = make_tensor([nnz], device=device, dtype=dtype, low=-1, high=1)
return values, crow_indices, col_indices
values, crow_indices, col_indices = random_sparse_csr(size[0], size[1], nnz)
return torch.sparse_csr_tensor(crow_indices,
col_indices,
values, size=size, dtype=dtype, device=device)
def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device, dtype):
# Assert not given impossible combination, where the sparse dims have
# empty numel, but nnz > 0 makes the indices containing values.
assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'
v_size = [nnz] + list(size[sparse_dim:])
v = make_tensor(v_size, device=device, dtype=dtype, low=-1, high=1)
i = torch.rand(sparse_dim, nnz, device=device)
i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
i = i.to(torch.long)
if is_uncoalesced:
v = torch.cat([v, torch.randn_like(v)], 0)
i = torch.cat([i, i], 1)
x = torch.sparse_coo_tensor(i, v, torch.Size(size), dtype=dtype, device=device)
if not is_uncoalesced:
x = x.coalesce()
else:
# FIXME: `x` is a sparse view of `v`. Currently rebase_history for
# sparse views is not implemented, so this workaround is
# needed for inplace operations done on `x`, e.g., copy_().
# Remove after implementing something equivalent to CopySlice
# for sparse views.
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards
x = x.detach().clone()
return x, x._indices().clone(), x._values().clone()
def safeToDense(self, t):
return t.coalesce().to_dense()
# Compares torch function with reference function for given sample input (object of SampleInput)
# Note: only values are compared, type comparison is not done here
def compare_with_reference(self, torch_fn, ref_fn, sample_input, **kwargs):
n_inp, n_args, n_kwargs = sample_input.numpy()
t_inp, t_args, t_kwargs = sample_input.input, sample_input.args, sample_input.kwargs
actual = torch_fn(t_inp, *t_args, **t_kwargs)
expected = ref_fn(n_inp, *n_args, **n_kwargs)
self.assertEqual(actual, expected, exact_device=False)
# Compares the given Torch and NumPy functions on the given tensor-like object.
# NOTE: both torch_fn and np_fn should be functions that take a single
# tensor (array). If the torch and/or NumPy function require additional
# arguments then wrap the function in a lambda or pass a partial function.
# TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol)
def compare_with_numpy(self, torch_fn, np_fn, tensor_like,
device=None, dtype=None, **kwargs):
assert TEST_NUMPY
if isinstance(tensor_like, torch.Tensor):
assert device is None
assert dtype is None
t_cpu = tensor_like.detach().cpu()
if t_cpu.dtype is torch.bfloat16:
t_cpu = t_cpu.float()
a = t_cpu.numpy()
t = tensor_like
else:
d = copy.copy(torch_to_numpy_dtype_dict)
d[torch.bfloat16] = np.float32
a = np.array(tensor_like, dtype=d[dtype])
t = torch.tensor(tensor_like, device=device, dtype=dtype)
np_result = np_fn(a)
torch_result = torch_fn(t).cpu()
# Converts arrays to tensors
if isinstance(np_result, np.ndarray):
try:
np_result = torch.from_numpy(np_result)
except Exception:
# NOTE: copying an array before conversion is necessary when,
# for example, the array has negative strides.
np_result = torch.from_numpy(np_result.copy())
if t.dtype is torch.bfloat16 and torch_result.dtype is torch.bfloat16 and np_result.dtype is torch.float:
torch_result = torch_result.to(torch.float)
self.assertEqual(np_result, torch_result, **kwargs)
# Some analysis of tolerance by logging tests from test_torch.py can be found
# in https://github.com/pytorch/pytorch/pull/32538.
# dtype name : (rtol, atol)
dtype_precisions = {
torch.float16 : (0.001, 1e-5),
torch.bfloat16 : (0.016, 1e-5),
torch.float32 : (1.3e-6, 1e-5),
torch.float64 : (1e-7, 1e-7),
torch.complex32 : (0.001, 1e-5),
torch.complex64 : (1.3e-6, 1e-5),
torch.complex128 : (1e-7, 1e-7),
}
# Returns the "default" rtol and atol for comparing scalars or
# tensors of the given dtypes.
def _getDefaultRtolAndAtol(self, dtype0, dtype1):
rtol = max(self.dtype_precisions.get(dtype0, (0, 0))[0],
self.dtype_precisions.get(dtype1, (0, 0))[0])
atol = max(self.dtype_precisions.get(dtype0, (0, 0))[1],
self.dtype_precisions.get(dtype1, (0, 0))[1])
return rtol, atol
# Checks if two dense tensors are equal(-ish), returning (True, None)
# when they are and (False, debug_msg) when they are not.
# If exact_dtype is true both tensors must have the same dtype.
# If exact_device is true both tensors must be on the same device.
# See the "Test Framework Tensor 'Equality'" note for more details.
# NOTE: tensors on different devices are moved to the CPU to be compared when
# exact_device is False.
# NOTE: this function checks the tensors' devices, sizes, and dtypes
# and acquires the appropriate device, dtype, rtol and atol to compare
# them with. It then calls _compare_tensors_internal.
def _compareTensors(self, a, b, *, rtol: Optional[float] = None, atol=None, equal_nan=True,
exact_dtype=True, exact_device=False) -> _compare_return_type:
assert (atol is None) == (rtol is None)
if not isinstance(a, torch.Tensor):
return (False, "argument a, {0}, to _compareTensors is not a tensor!".format(a))
if not isinstance(b, torch.Tensor):
return (False, "argument b, {0}, to _compareTensors is not a tensor!".format(b))
# Validates tensors are on the same device
if exact_device and a.device != b.device:
return (False, ("Attempted to compare equality of tensors on "
"different devices! Got devices {0} and "
"{1}.".format(a.device, b.device)))
# Compares tensors of different devices on the CPU
if a.device != b.device:
a = a.cpu()
b = b.cpu()
# Checks size matches
if a.size() != b.size():
return (False, ("Attempted to compare equality of tensors with "
"different sizes. Got sizes {0} and {1}.").format(a.size(), b.size()))
# Checks dtype (if exact_dtype)
if exact_dtype and a.dtype is not b.dtype:
return (False, ("Attempted to compare equality of tensors with "
"different dtypes. Got dtypes {0} and {1}.").format(a.dtype, b.dtype))
# Acquires rtol and atol
if rtol is None:
rtol, atol = self._getDefaultRtolAndAtol(a.dtype, b.dtype)
atol = max(atol, self.precision)
rtol = max(rtol, self.rel_tol)
# Converts to comparison dtype
dtype = get_comparison_dtype(a, b)
a = a.to(dtype)
b = b.to(dtype)
return _compare_tensors_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
# Checks if two scalars are equal(-ish), returning (True, None)
# when they are and (False, debug_msg) when they are not.
# NOTE: this function just acquires rtol and atol
# before calling _compare_scalars_internal.
def _compareScalars(self, a, b, *,
rtol: Optional[float] = None, atol: Optional[float] = None, equal_nan=True) -> _compare_return_type:
# Acquires rtol and atol
assert (atol is None) == (rtol is None)
if rtol is None:
if isinstance(a, complex) or isinstance(b, complex):
rtol, atol = self._getDefaultRtolAndAtol(torch.complex64, torch.complex64)
elif isinstance(a, float) or isinstance(b, float):
rtol, atol = self._getDefaultRtolAndAtol(torch.float32, torch.float32)
else:
rtol, atol = 0, 0
rtol = cast(float, rtol)
atol = cast(float, atol)
assert atol is not None
atol = max(atol, self.precision)
rtol = max(rtol, self.rel_tol)
return _compare_scalars_internal(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
# Construct assert messages basd on internal debug message and user provided message.
def _get_assert_msg(self, msg, debug_msg=None):
if msg is None:
return debug_msg
else:
return f"\n{msg}" if debug_msg is None else f"{debug_msg}\n{msg}"
def assertEqualIgnoreType(self, *args, **kwargs) -> None:
# If you are seeing this function used, that means test is written wrongly
# and deserves detailed investigation
return self.assertEqual(*args, exact_dtype=False, **kwargs)
def _is_dict(self, obj):
return isinstance(obj, (dict, torch._C.ScriptDict)) # type: ignore[attr-defined]
# Compares x and y
# TODO: default exact_device to True
def assertEqual(self, x, y, msg: Optional[str] = None, *,
atol: Optional[float] = None, rtol: Optional[float] = None,
equal_nan=True, exact_dtype=True, exact_device=False) -> None:
assert (atol is None) == (rtol is None), "If one of atol or rtol is specified, then the other must be too"
debug_msg: Optional[str] = None
# Tensor x Number and Number x Tensor comparisons
if isinstance(x, torch.Tensor) and isinstance(y, Number):
self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif isinstance(y, torch.Tensor) and isinstance(x, Number):
self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
# Tensor x np.bool
elif isinstance(x, torch.Tensor) and isinstance(y, np.bool_):
self.assertEqual(x.item(), y, atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif isinstance(y, torch.Tensor) and isinstance(x, np.bool_):
self.assertEqual(x, y.item(), atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
# Tensor x Tensor
elif isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
debug_msg = ("Attempted to compare with different is_sparse settings: "
f"Expected: {x.is_sparse}; Actual: {y.is_sparse}.")
super().assertEqual(x.is_sparse, y.is_sparse, msg=self._get_assert_msg(msg=msg, debug_msg=debug_msg))
debug_msg = ("Attempted to compare with different is_quantized settings: "
f"Expected: {x.is_quantized}; Actual: {y.is_quantized}.")
super().assertEqual(x.is_quantized, y.is_quantized, msg=self._get_assert_msg(msg=msg, debug_msg=debug_msg))
if x.is_sparse:
if x.size() != y.size():
debug_msg_sparse = ("Attempted to compare equality of tensors with different sizes: "
f"Expected: {x.size()}; Actual: {y.size()}.")
super().assertTrue(False, msg=self._get_assert_msg(msg=msg, debug_msg=debug_msg_sparse))
x = x.coalesce()
y = y.coalesce()
indices_result, debug_msg_indices = self._compareTensors(x._indices(), y._indices(),
rtol=rtol, atol=atol,
equal_nan=equal_nan, exact_dtype=exact_dtype,
exact_device=exact_device)
if not indices_result:
assert debug_msg_indices is not None
debug_msg = "Sparse tensor indices failed to compare as equal! " + debug_msg_indices
super().assertTrue(indices_result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
values_result, debug_msg_values = self._compareTensors(x._values(), y._values(),
rtol=rtol, atol=atol,
equal_nan=equal_nan, exact_dtype=exact_dtype,
exact_device=exact_device)
if not values_result:
assert debug_msg_values is not None
debug_msg = "Sparse tensor values failed to compare as equal! " + debug_msg_values
super().assertTrue(values_result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
elif x.is_quantized and y.is_quantized:
self.assertEqual(x.qscheme(), y.qscheme(), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
if x.qscheme() == torch.per_tensor_affine:
self.assertEqual(x.q_scale(), y.q_scale(), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
self.assertEqual(x.q_zero_point(), y.q_zero_point(),
atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif x.qscheme() == torch.per_channel_affine:
self.assertEqual(x.q_per_channel_scales(), y.q_per_channel_scales(), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
self.assertEqual(x.q_per_channel_zero_points(), y.q_per_channel_zero_points(),
atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
self.assertEqual(x.q_per_channel_axis(), y.q_per_channel_axis(),
atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
result, debug_msg_compare = self._compareTensors(x.int_repr().to(torch.int32),
y.int_repr().to(torch.int32),
atol=atol, rtol=rtol,
exact_dtype=exact_dtype,
exact_device=exact_device)
if not result:
assert debug_msg_compare is not None
debug_msg = "Quantized representations failed to compare as equal! " + debug_msg_compare
super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
else:
result, debug_msg_generic = self._compareTensors(x, y, rtol=rtol, atol=atol,
equal_nan=equal_nan, exact_dtype=exact_dtype,
exact_device=exact_device)
if not result:
assert debug_msg_generic is not None
debug_msg = "Tensors failed to compare as equal!" + debug_msg_generic
super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
elif isinstance(x, (np.ndarray, torch.Tensor)) or isinstance(y, (np.ndarray, torch.Tensor)):
def maybe_to_tensor(a: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
if not isinstance(a, np.ndarray):
return a
try:
return torch.from_numpy(a)
except TypeError:
# This happens if the dtype is non-numeric or not supported by torch
return a
def maybe_to_list(a: Any) -> Any:
if not isinstance(a, (np.ndarray, torch.Tensor)):
return a
return a.tolist()
x = maybe_to_tensor(x)
y = maybe_to_tensor(y)
if isinstance(x, torch.Tensor) and isinstance(y, torch.Tensor):
self.assertEqual(
x, y, atol=atol, rtol=rtol, msg=msg, exact_dtype=exact_dtype, exact_device=exact_device
)
else:
# In case we can't convert the array to a tensor, we fall back to comparing x and y as iterables
self.assertEqual(
maybe_to_list(x),
maybe_to_list(y),
atol=atol,
rtol=rtol,
msg=msg,
exact_dtype=exact_dtype,
exact_device=exact_device
)
elif isinstance(x, string_classes) and isinstance(y, string_classes):
debug_msg = ("Attempted to compare [string] types: "
f"Expected: {repr(x)}; Actual: {repr(y)}.")
super().assertEqual(x, y, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
elif type(x) == set and type(y) == set:
debug_msg = ("Attempted to compare [set] types: "
f"Expected: {x}; Actual: {y}.")
super().assertEqual(x, y, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
elif self._is_dict(x) and self._is_dict(y):
if isinstance(x, OrderedDict) and isinstance(y, OrderedDict):
self.assertEqual(x.items(), y.items(), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
else:
self.assertEqual(set(x.keys()), set(y.keys()), atol=atol, rtol=rtol,
msg=msg, exact_dtype=exact_dtype,
exact_device=exact_device)
key_list = list(x.keys())
self.assertEqual([x[k] for k in key_list],
[y[k] for k in key_list],
atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif isinstance(x, type) and isinstance(y, type):
# See TestTorch.test_assert_equal_generic_meta
debug_msg = ("Attempted to compare [type] types: "
f"Expected: {x}; Actual: {y}.")
super().assertEqual(x, y, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
elif is_iterable(x) and is_iterable(y):
debug_msg = ("Attempted to compare the lengths of [iterable] types: "
f"Expected: {len(x)}; Actual: {len(y)}.")
super().assertEqual(len(x), len(y), msg=self._get_assert_msg(msg, debug_msg=debug_msg))
for x_, y_ in zip(x, y):
self.assertEqual(x_, y_, atol=atol, rtol=rtol, msg=msg,
exact_dtype=exact_dtype, exact_device=exact_device)
elif isinstance(x, bool) and isinstance(y, bool):
super().assertTrue(x == y, msg=msg)
# Scalar x Scalar
elif isinstance(x, Number) and isinstance(y, Number):
result, debug_msg_scalars = self._compareScalars(x, y, rtol=rtol, atol=atol,
equal_nan=equal_nan)
if not result:
assert debug_msg_scalars is not None
debug_msg = "Scalars failed to compare as equal! " + debug_msg_scalars
super().assertTrue(result, msg=self._get_assert_msg(msg, debug_msg=debug_msg))
else:
super().assertEqual(x, y, msg=msg)
def assertNotEqual(self, x, y, msg: Optional[str] = None, *, # type: ignore[override]
atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None:
with self.assertRaises(AssertionError, msg=msg):
self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs)
def assertEqualTypeString(self, x, y) -> None:
# This API is used simulate deprecated x.type() == y.type()
self.assertEqual(x.device, y.device)
self.assertEqual(x.dtype, y.dtype)
self.assertEqual(x.is_sparse, y.is_sparse)
def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None:
for elem in iterable:
if id(obj) == id(elem):
return
raise AssertionError("object not found in iterable")
# Reimplemented to provide special behavior when
# _ignore_not_implemented_error is True
def assertRaises(self, expected_exception, *args, **kwargs):
if self._ignore_not_implemented_error:
context: Optional[AssertRaisesContextIgnoreNotImplementedError] = \
AssertRaisesContextIgnoreNotImplementedError(expected_exception, self) # type: ignore[call-arg]
try:
return context.handle('assertRaises', args, kwargs) # type: ignore[union-attr]
finally:
# see https://bugs.python.org/issue23890
context = None
else:
return super().assertRaises(expected_exception, *args, **kwargs)
# Reimplemented to provide special behavior when
# _ignore_not_implemented_error is True
def assertRaisesRegex(self, expected_exception, expected_regex, *args, **kwargs):
if self._ignore_not_implemented_error:
context = AssertRaisesContextIgnoreNotImplementedError( # type: ignore[call-arg]
expected_exception, self, expected_regex)
return context.handle('assertRaisesRegex', args, kwargs) # type: ignore[attr-defined]
else:
return super().assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
# TODO: Support context manager interface
# NB: The kwargs forwarding to callable robs the 'subname' parameter.
# If you need it, manually apply your callable in a lambda instead.
def assertExpectedRaises(self, exc_type, callable, *args, **kwargs):
subname = None
if 'subname' in kwargs:
subname = kwargs['subname']
del kwargs['subname']
try:
callable(*args, **kwargs)
except exc_type as e:
self.assertExpected(str(e), subname)
return
# Don't put this in the try block; the AssertionError will catch it
self.fail(msg="Did not raise when expected to")
def assertNotWarn(self, callable, msg=''):
r"""
Test if :attr:`callable` does not raise a warning.
"""
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
with set_warn_always_context(True):
callable()
self.assertTrue(len(ws) == 0, msg)
@contextmanager
def assertWarnsOnceRegex(self, category, regex=''):
"""Context manager for code that *must always* warn
This filters expected warnings from the test and fails if
the expected warning is not caught. It uses set_warn_always() to force
TORCH_WARN_ONCE to behave like TORCH_WARN
"""
pattern = re.compile(regex)
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
with set_warn_always_context(True):
yield
if len(ws) == 0:
self.fail('no warning caught')
self.assertTrue(any([type(w.message) is category for w in ws]))
self.assertTrue(
any([re.match(pattern, str(w.message)) for w in ws]),
f'{pattern}, {[w.message for w in ws if type(w.message) is category]}')
def assertExpected(self, s, subname=None):
r"""
Test that a string matches the recorded contents of a file
derived from the name of this test and subname. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using --accept.
If you call this multiple times in a single function, you must
give a unique subname each time.
"""
if not isinstance(s, str):
raise TypeError("assertExpected is strings only")
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix):]
return text
# NB: we take __file__ from the module that defined the test
# class, so we place the expect directory where the test script
# lives, NOT where test/common_utils.py lives. This doesn't matter in
# PyTorch where all test scripts are in the same directory as
# test/common_utils.py, but it matters in onnx-pytorch
module_id = self.__class__.__module__
munged_id = remove_prefix(self.id(), module_id + ".")
test_file = os.path.realpath(sys.modules[module_id].__file__)
expected_file = os.path.join(os.path.dirname(test_file),
"expect",
munged_id)
subname_output = ""
if subname:
expected_file += "-" + subname
subname_output = " ({})".format(subname)
expected_file += ".expect"
expected = None
def accept_output(update_type):
print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s))
with open(expected_file, 'w') as f:
# Adjust for producer_version, leave s unmodified
s_tag = re.sub(r'(producer_version): "[0-9.]*"',
r'\1producer_version: "CURRENT_VERSION"', s)
f.write(s_tag)
try:
with open(expected_file) as f:
expected = f.read()
except IOError as e:
if e.errno != errno.ENOENT:
raise
elif expecttest.ACCEPT:
return accept_output("output")
else:
raise RuntimeError(
("I got this output for {}{}:\n\n{}\n\n"
"No expect file exists; to accept the current output, run:\n"
"python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) from None
# a hack for JIT tests
if IS_WINDOWS:
expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected)
s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s)
# Adjust for producer_version
expected = expected.replace(
'producer_version: "CURRENT_VERSION"',
'producer_version: "{}"'.format(torch.onnx.producer_version)
)
if expecttest.ACCEPT:
if expected != s:
return accept_output("updated output")
else:
if hasattr(self, "assertMultiLineEqual"):
# Python 2.7 only
# NB: Python considers lhs "old" and rhs "new".
self.assertMultiLineEqual(expected, s)
else:
self.assertEqual(s, expected)
def assertExpectedStripMangled(self, s, subname=None):
s = re.sub(r'__torch__[^ ]+', '', s)
self.assertExpected(s, subname)
def assertGreaterAlmostEqual(self, first, second, places=None, msg=None, delta=None):
"""Assert that ``first`` is greater than or almost equal to ``second``.
The equality of ``first`` and ``second`` is determined in a similar way to
the ``assertAlmostEqual`` function of the standard library.
"""
if delta is not None and places is not None:
raise TypeError("specify delta or places not both")
if first >= second:
return
diff = second - first
if delta is not None:
if diff <= delta:
return
standardMsg = f"{first} not greater than or equal to {second} within {delta} delta"
else:
if places is None:
places = 7
if round(diff, places) == 0:
return
standardMsg = f"{first} not greater than or equal to {second} within {places} places"
msg = self._formatMessage(msg, standardMsg)
raise self.failureException(msg)
# run code in subprocess and capture exceptions.
@staticmethod
def run_process_no_exception(code, env=None):
import subprocess
popen = subprocess.Popen(
[sys.executable, '-c', code],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env)
(stdout, stderr) = popen.communicate()
return (stdout, stderr)
# returns captured stderr
@staticmethod
def runWithPytorchAPIUsageStderr(code):
env = os.environ.copy()
env["PYTORCH_API_USAGE_STDERR"] = "1"
# remove IN_CI flag since this is a wrapped test process.
# IN_CI flag should be set in the parent process only.
if "IN_CI" in env.keys():
del env["IN_CI"]
(stdout, stderr) = TestCase.run_process_no_exception(code, env=env)
return stderr.decode('ascii')
def download_file(url, binary=True):
from urllib.parse import urlsplit
from urllib import request, error
filename = os.path.basename(urlsplit(url)[2])
data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data'))
path = os.path.join(data_dir, filename)
if os.path.exists(path):
return path
try:
data = request.urlopen(url, timeout=15).read()
with open(path, 'wb' if binary else 'w') as f:
f.write(data)
return path
except error.URLError as e:
msg = "could not download test file '{}'".format(url)
warnings.warn(msg, RuntimeWarning)
raise unittest.SkipTest(msg) from e
def find_free_port():
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('localhost', 0))
_, port = sock.getsockname()
return port
# Errors that we can get in c10d initialization for which we should retry tests for.
ADDRESS_IN_USE = "Address already in use"
CONNECT_TIMEOUT = "connect() timed out."
def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)):
"""Reruns a test if the test returns a RuntimeError and the exception
matches exactly with one of the strings in connect_errors."""
# This if block is executed when using this function as a decorator with arguments.
if func is None:
return partial(retry_on_connect_failures, connect_errors=connect_errors)
@wraps(func)
def wrapper(*args, **kwargs):
tries_remaining = 10
while True:
try:
return func(*args, **kwargs)
except RuntimeError as error:
if str(error) in connect_errors:
tries_remaining -= 1
if tries_remaining == 0:
raise
time.sleep(random.random())
continue
raise
return wrapper
# Decorator to retry upon certain Exceptions.
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
def deco_retry(f):
@wraps(f)
def f_retry(*args, **kwargs):
mtries, mdelay = tries, delay
while mtries > 1:
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
print(msg)
time.sleep(mdelay)
mtries -= 1
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e
return f_retry # true decorator
return deco_retry
# Methods for matrix generation
def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'):
assert rank <= l
A = torch.randn(l, l, dtype=dtype, device=device)
u, s, vh = torch.linalg.svd(A, full_matrices=False)
for i in range(l):
if i >= rank:
s[i] = 0
elif s[i] == 0:
s[i] = 1
return (u * s.to(dtype).unsqueeze(-2)) @ vh
def random_well_conditioned_matrix(*shape, dtype, device, mean=1.0, sigma=0.001):
"""
Returns a random rectangular matrix (batch of matrices)
with singular values sampled from a Gaussian with
mean `mean` and standard deviation `sigma`.
The smaller the `sigma`, the better conditioned
the output matrix is.
"""
primitive_dtype = {
torch.float: torch.float,
torch.double: torch.double,
torch.cfloat: torch.float,
torch.cdouble: torch.double
}
x = torch.rand(shape, dtype=dtype, device=device)
m = x.size(-2)
n = x.size(-1)
u, _, vh = torch.linalg.svd(x, full_matrices=False)
s = (torch.randn(*(shape[:-2] + (min(m, n),)), dtype=primitive_dtype[dtype], device=device) * sigma + mean) \
.sort(-1, descending=True).values.to(dtype)
return (u * s.unsqueeze(-2)) @ vh
# TODO: remove this (prefer make_symmetric_matrices below)
def random_symmetric_matrix(l, *batches, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
A = (A + A.transpose(-2, -1)).div_(2)
return A
# Creates a symmetric matrix or batch of symmetric matrices
# Shape must be a square matrix or batch of square matrices
def make_symmetric_matrices(*shape, device, dtype):
assert shape[-1] == shape[-2]
t = make_tensor(shape, device=device, dtype=dtype)
t = t + t.transpose(-2, -1).div_(2)
return t
def random_hermitian_matrix(l, *batches, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
A = (A + A.transpose(-2, -1).conj()).div_(2)
return A
def random_symmetric_psd_matrix(l, *batches, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
return torch.matmul(A, A.transpose(-2, -1))
def random_hermitian_psd_matrix(matrix_size, *batch_dims, dtype=torch.double, device='cpu'):
"""
Returns a batch of random Hermitian semi-positive-definite matrices.
The shape of the result is batch_dims + (matrix_size, matrix_size)
The following example creates a tensor of size 2 x 4 x 3 x 3
>>> matrices = random_hermitian_psd_matrix(3, 2, 4, dtype=dtype, device=device)
"""
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device)
return torch.matmul(A, A.conj().transpose(-2, -1))
# TODO: remove this (prefer make_symmetric_pd_matrices below)
def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
dtype=dtype, device=device)
return torch.matmul(A, A.transpose(-2, -1)) \
+ torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5
# Creates a symmetric positive-definite matrix or batch of
# such matrices
def make_symmetric_pd_matrices(*shape, device, dtype):
assert shape[-1] == shape[-2]
t = make_tensor(shape, device=device, dtype=dtype)
t = torch.matmul(t, t.transpose(-2, -1))
i = torch.eye(shape[-1], device=device, dtype=dtype) * 1e-5
return t + i
def random_hermitian_pd_matrix(matrix_size, *batch_dims, dtype, device):
"""
Returns a batch of random Hermitian positive-definite matrices.
The shape of the result is batch_dims + (matrix_size, matrix_size)
The following example creates a tensor of size 2 x 4 x 3 x 3
>>> matrices = random_hermitian_pd_matrix(3, 2, 4, dtype=dtype, device=device)
"""
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
dtype=dtype, device=device)
return torch.matmul(A, A.transpose(-2, -1).conj()) \
+ torch.eye(matrix_size, dtype=dtype, device=device)
# TODO: remove this (prefer make_fullrank_matrices_with_distinct_singular_values below)
def random_fullrank_matrix_distinct_singular_value(matrix_size, *batch_dims,
**kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
silent = kwargs.get("silent", False)
if silent and not torch._C.has_lapack:
return torch.ones(matrix_size, matrix_size, dtype=dtype, device=device)
A = torch.randn(batch_dims + (matrix_size, matrix_size), dtype=dtype, device=device)
u, _, vh = torch.linalg.svd(A, full_matrices=False)
real_dtype = A.real.dtype if A.dtype.is_complex else A.dtype
s = torch.arange(1., matrix_size + 1, dtype=real_dtype, device=device).mul_(1.0 / (matrix_size + 1))
return (u * s.to(A.dtype)) @ vh
# Creates a full rank matrix with distinct signular values or
# a batch of such matrices
# Shape must be a square matrix or batch of square matrices
def make_fullrank_matrices_with_distinct_singular_values(*shape, device, dtype):
assert shape[-1] == shape[-2]
t = make_tensor(shape, device=device, dtype=dtype)
u, _, vh = torch.linalg.svd(t, full_matrices=False)
# TODO: improve the handling of complex tensors here
real_dtype = t.real.dtype if t.dtype.is_complex else t.dtype
s = torch.arange(1., shape[-1] + 1, dtype=real_dtype, device=device).mul_(1.0 / (shape[-1] + 1))
return (u * s.to(dtype)) @ vh
def random_matrix(rows, columns, *batch_dims, **kwargs):
"""Return rectangular matrix or batches of rectangular matrices.
Parameters:
dtype - the data type
device - the device kind
singular - when True, the output will be singular
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
silent = kwargs.get("silent", False)
singular = kwargs.get("singular", False)
if silent and not torch._C.has_lapack:
return torch.ones(rows, columns, dtype=dtype, device=device)
A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device)
u, _, vh = torch.linalg.svd(A, full_matrices=False)
k = min(rows, columns)
s = torch.linspace(1 / (k + 1), 1, k, dtype=dtype, device=device)
if singular:
# make matrix singular
s[k - 1] = 0
if k > 2:
# increase the order of singularity so that the pivoting
# in LU factorization will be non-trivial
s[0] = 0
return (u * s.unsqueeze(-2)) @ vh
def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs):
"""Return rectangular matrix or batches of rectangular matrices with
given rank.
"""
B = random_matrix(rows, rank, *batch_dims, **kwargs)
C = random_matrix(rank, columns, *batch_dims, **kwargs)
return B.matmul(C)
def random_sparse_matrix(rows, columns, density=0.01, **kwargs):
"""Return rectangular random sparse matrix within given density.
The density of the result approaches to given density as the size
of the matrix is increased and a relatively small value of density
is specified but higher than min(rows, columns)/(rows * columns)
for non-singular matrices.
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
singular = kwargs.get("singular", False)
k = min(rows, columns)
nonzero_elements = max(min(rows, columns), int(rows * columns * density))
row_indices = [i % rows for i in range(nonzero_elements)]
column_indices = [i % columns for i in range(nonzero_elements)]
random.shuffle(column_indices)
indices = [row_indices, column_indices]
values = torch.randn(nonzero_elements, dtype=dtype, device=device)
# ensure that the diagonal dominates
values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp()
indices_tensor = torch.tensor(indices)
A = torch.sparse_coo_tensor(indices_tensor, values, (rows, columns), device=device)
return A.coalesce()
def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs):
"""Return random sparse positive-definite matrix with given density.
The eigenvalues of the matrix are defined as::
arange(1, matrix_size+1)/matrix_size
Algorithm:
A = diag(arange(1, matrix_size+1)/matrix_size)
while <A density is smaller than required>:
<choose random i, j in range(matrix_size), theta in [0, 2*pi]>
R = <rotation matrix (i,j,theta)>
A = R^T A R
"""
import math
torch = kwargs.get('torch', globals()['torch'])
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
data = dict([((i, i), float(i + 1) / matrix_size)
for i in range(matrix_size)])
def multiply(data, N, i, j, cs, sn, left=True):
for k in range(N):
if left:
ik, jk = (k, i), (k, j)
else:
ik, jk = (i, k), (j, k)
aik, ajk = data.get(ik, 0), data.get(jk, 0)
aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk
if aik:
data[ik] = aik
else:
data.pop(ik, None)
if ajk:
data[jk] = ajk
else:
data.pop(jk, None)
target_nnz = density * matrix_size * matrix_size
while len(data) < target_nnz:
i = random.randint(0, matrix_size - 1)
j = random.randint(0, matrix_size - 1)
if i != j:
theta = random.uniform(0, 2 * math.pi)
cs = math.cos(theta)
sn = math.sin(theta)
multiply(data, matrix_size, i, j, cs, sn, left=True)
multiply(data, matrix_size, i, j, cs, sn, left=False)
icoords, jcoords, values = [], [], []
for (i, j), v in sorted(data.items()):
icoords.append(i)
jcoords.append(j)
values.append(v)
indices_tensor = torch.tensor([icoords, jcoords])
return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device)
def do_test_dtypes(self, dtypes, layout, device):
for dtype in dtypes:
if dtype != torch.float16:
out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device)
self.assertIs(dtype, out.dtype)
self.assertIs(layout, out.layout)
self.assertEqual(device, out.device)
def do_test_empty_full(self, dtypes, layout, device):
shape = torch.Size([2, 3])
def check_value(tensor, dtype, layout, device, value, requires_grad):
self.assertEqual(shape, tensor.shape)
self.assertIs(dtype, tensor.dtype)
self.assertIs(layout, tensor.layout)
self.assertEqual(tensor.requires_grad, requires_grad)
if tensor.is_cuda and device is not None:
self.assertEqual(device, tensor.device)
if value is not None:
fill = tensor.new(shape).fill_(value)
self.assertEqual(tensor, fill)
def get_int64_dtype(dtype):
module = '.'.join(str(dtype).split('.')[1:-1])
if not module:
return torch.int64
return operator.attrgetter(module)(torch).int64
default_dtype = torch.get_default_dtype()
check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False)
check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False)
for dtype in dtypes:
for rg in {dtype.is_floating_point, False}:
int64_dtype = get_int64_dtype(dtype)
v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg)
check_value(v, dtype, layout, device, None, rg)
out = v.new()
check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, None, rg)
check_value(v.new_empty(shape), dtype, layout, device, None, False)
check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
check_value(torch.empty_like(v), dtype, layout, device, None, False)
check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
if dtype is not torch.float16 and layout != torch.sparse_coo:
fv = 3
v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg)
check_value(v, dtype, layout, device, fv, rg)
check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False)
out = v.new()
check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, fv + 2, rg)
check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 3, False)
check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False)
check_value(torch.full_like(v, fv + 5,
dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 5, False)
# this helper method is to recursively
# clone the tensor-type input of operators tested by OpInfo
def clone_input_helper(input):
if isinstance(input, torch.Tensor):
return torch.clone(input)
if isinstance(input, Sequence):
return tuple(map(clone_input_helper, input))
return input
THESE_TAKE_WAY_TOO_LONG = {
'test_Conv3d_groups',
'test_conv_double_backward',
'test_conv_double_backward_groups',
'test_Conv3d_dilated',
'test_Conv3d_stride_padding',
'test_Conv3d_dilated_strided',
'test_Conv3d',
'test_Conv2d_dilated',
'test_ConvTranspose3d_dilated',
'test_ConvTranspose2d_dilated',
'test_snli',
'test_Conv2d',
'test_Conv2d_padding',
'test_ConvTranspose2d_no_bias',
'test_ConvTranspose2d',
'test_ConvTranspose3d',
'test_Conv2d_no_bias',
'test_matmul_4d_4d',
'test_multinomial_invalid_probs',
}
running_script_path = None
def set_running_script_path():
global running_script_path
try:
running_file = os.path.abspath(os.path.realpath(sys.argv[0]))
if running_file.endswith('.py'): # skip if the running file is not a script
running_script_path = running_file
except Exception:
pass
def check_test_defined_in_running_script(test_case):
if running_script_path is None:
return
test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__)))
assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \
"is not defined in the running script \"{}\", but in \"{}\". Did you " \
"accidentally import a unittest.TestCase from another file?".format(
test_case.id(), running_script_path, test_case_class_file)
def load_tests(loader, tests, pattern):
set_running_script_path()
test_suite = unittest.TestSuite()
for test_group in tests:
for test in test_group:
check_test_defined_in_running_script(test)
test_suite.addTest(test)
return test_suite
class BytesIOContext(io.BytesIO):
def __enter__(self):
return self
def __exit__(self, *args):
pass
# Tentative value for nondet_tol for gradcheck when backward implementation
# relies on nondeterministic operations, i.e., those listed here:
# https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
#
# For more information see https://github.com/pytorch/pytorch/issues/56202
GRADCHECK_NONDET_TOL = 1e-12
def gradcheck(fn, inputs, **kwargs):
# Wrapper around gradcheck that enables certain keys by default.
# Use this testing-internal gradcheck instead of autograd.gradcheck so that new features like vmap and
# forward-mode AD are tested by default. We create this wrapper because we'd like to keep new checks
# to be disabled to default for the public-facing api to avoid breaking user code.
#
# All PyTorch devs doing testing should use this wrapper instead of autograd.gradcheck.
default_values = {
"check_batched_grad": True,
"fast_mode": True,
}
if os.environ.get('PYTORCH_TEST_WITH_SLOW_GRADCHECK', "0FF") == "ON":
default_values["fast_mode"] = False
for key, value in default_values.items():
# default value override values explicitly set to None
k = kwargs.get(key, None)
kwargs[key] = k if k is not None else value
return torch.autograd.gradcheck(fn, inputs, **kwargs)
def gradgradcheck(fn, inputs, grad_outputs=None, **kwargs):
# Wrapper around gradgradcheck that enables certain keys by default
# See gradcheck above for an explanation of why we need something like this.
#
# All PyTorch devs doing testing should use this wrapper instead of autograd.gradgradcheck
default_values = {
"check_batched_grad": True,
"fast_mode": True,
}
if os.environ.get('PYTORCH_TEST_WITH_SLOW_GRADCHECK', "0FF") == "ON":
default_values["fast_mode"] = False
for key, value in default_values.items():
# default value override values explicitly set to None
k = kwargs.get(key, None)
kwargs[key] = k if k is not None else value
return torch.autograd.gradgradcheck(fn, inputs, grad_outputs, **kwargs)
def _assertGradAndGradgradChecks(test_case, apply_fn, inputs, **kwargs):
# call assert function rather than returning a bool since it's nicer
# if we get whether this failed on the gradcheck or the gradgradcheck.
test_case.assertTrue(gradcheck(apply_fn, inputs, **kwargs))
test_case.assertTrue(gradgradcheck(apply_fn, inputs, **kwargs))
@contextmanager
def set_cwd(path: str) -> Iterator[None]:
old_cwd = os.getcwd()
try:
os.chdir(path)
yield
finally:
os.chdir(old_cwd)
# Using @precisionOverride specific to your test is the recommended way
# of doing this. These are just some values that worked for test_nn.
dtype2prec_DONTUSE = {torch.float: 1e-5,
torch.double: 1e-5,
torch.half: 1e-2,
torch.bfloat16: 1e-1}
def _wrap_warn_once(regex):
def decorator(fn):
def inner(self, *args, **kwargs):
with self.assertWarnsOnceRegex(UserWarning, regex):
fn(self, *args, **kwargs)
return inner
return decorator
# This is a wrapper that wraps a test to run this test twice, one with
# coalesced=True, another with coalesced=False for coalesced/uncoalesced sparse tensors.
def coalescedonoff(f):
@wraps(f)
def wrapped(self, *args, **kwargs):
f(self, *args, **kwargs, coalesced=True)
f(self, *args, **kwargs, coalesced=False)
return wrapped
@contextlib.contextmanager
def disable_gc():
if gc.isenabled():
try:
gc.disable()
yield
finally:
gc.enable()
else:
yield
def find_library_location(lib_name: str) -> Path:
# return the shared library file in the installed folder if exist,
# else the file in the build folder
torch_root = Path(torch.__file__).resolve().parent
path = torch_root / 'lib' / lib_name
if os.path.exists(path):
return path
torch_root = Path(__file__).resolve().parent.parent.parent
return torch_root / 'build' / 'lib' / lib_name
def sandcastle_skip(reason):
"""
Similar to unittest.skip, however in the sandcastle environment it just
"passes" the test instead to avoid creating tasks complaining about tests
skipping continuously.
"""
def decorator(func):
if not IS_SANDCASTLE:
func.__unittest_skip__ = True
func.__unittest_skip_why__ = reason
return func
@wraps(func)
def wrapper(*args, **kwargs):
print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
return
return wrapper
return decorator
def mock_wrapper(method):
"""
Returns a function that calls the real implementation of a method
in addition to passing args to a mock object.
"""
mock = MagicMock()
@wraps(method)
def wrapper(self, *args, **kwargs):
mock(*args, **kwargs)
return method(self, *args, **kwargs)
wrapper.mock = mock # type: ignore[attr-defined]
return wrapper
def get_tensors_from(args, kwargs):
""" Returns a set of all Tensor objects in the given args and kwargs. """
return set([arg for arg in args if isinstance(arg, Tensor)] +
[v for v in kwargs.values() if isinstance(v, Tensor)])
def has_breakpad():
# We always build with breakpad in CI
if IS_IN_CI:
return True
# If not on a special build, check that the library was actually linked in
try:
torch._C._get_minidump_directory() # type: ignore[attr-defined]
return True
except RuntimeError as e:
if "Minidump handler is uninintialized" in str(e):
return True
return False
def sandcastle_skip_if(condition, reason):
"""
Similar to unittest.skipIf, however in the sandcastle environment it just
"passes" the test instead to avoid creating tasks complaining about tests
skipping continuously.
"""
def decorator(func):
if not IS_SANDCASTLE and condition:
func.__unittest_skip__ = True
func.__unittest_skip_why__ = reason
return func
@wraps(func)
def wrapper(*args, **kwargs):
if condition and IS_SANDCASTLE:
print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
return
else:
return func(*args, **kwargs)
return wrapper
return decorator
def dtype_name(dtype):
""" Returns the pretty name of the dtype (e.g. torch.int64 -> int64). """
return str(dtype).split('.')[1]