mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: This works around #11535 by avoiding `arange(n, out=x)` and `eye(n, out=x)` in `torch.distributions`. I've confirmed that the `.enumerate_support()` methods are now jittable. Pull Request resolved: https://github.com/pytorch/pytorch/pull/11542 Differential Revision: D9777805 Pulled By: apaszke fbshipit-source-id: fa38f2f1acfc0a289f725fd8c92478573cfdbefb
127 lines
5.1 KiB
Python
127 lines
5.1 KiB
Python
from numbers import Number
|
|
import torch
|
|
from torch.distributions import constraints
|
|
from torch.distributions.distribution import Distribution
|
|
from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs
|
|
|
|
|
|
class Binomial(Distribution):
|
|
r"""
|
|
Creates a Binomial distribution parameterized by :attr:`total_count` and
|
|
either :attr:`probs` or :attr:`logits` (but not both). :attr:`total_count` must be
|
|
broadcastable with :attr:`probs`/:attr:`logits`.
|
|
|
|
Example::
|
|
|
|
>>> m = Binomial(100, torch.tensor([0 , .2, .8, 1]))
|
|
>>> x = m.sample()
|
|
tensor([ 0., 22., 71., 100.])
|
|
|
|
>>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8]))
|
|
>>> x = m.sample()
|
|
tensor([[ 4., 5.],
|
|
[ 7., 6.]])
|
|
|
|
Args:
|
|
total_count (int or Tensor): number of Bernoulli trials
|
|
probs (Tensor): Event probabilities
|
|
logits (Tensor): Event log-odds
|
|
"""
|
|
arg_constraints = {'total_count': constraints.nonnegative_integer,
|
|
'probs': constraints.unit_interval,
|
|
'logits': constraints.real}
|
|
has_enumerate_support = True
|
|
|
|
def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
|
|
if (probs is None) == (logits is None):
|
|
raise ValueError("Either `probs` or `logits` must be specified, but not both.")
|
|
if probs is not None:
|
|
self.total_count, self.probs, = broadcast_all(total_count, probs)
|
|
self.total_count = self.total_count.type_as(self.logits)
|
|
is_scalar = isinstance(self.probs, Number)
|
|
else:
|
|
self.total_count, self.logits, = broadcast_all(total_count, logits)
|
|
self.total_count = self.total_count.type_as(self.logits)
|
|
is_scalar = isinstance(self.logits, Number)
|
|
|
|
self._param = self.probs if probs is not None else self.logits
|
|
if is_scalar:
|
|
batch_shape = torch.Size()
|
|
else:
|
|
batch_shape = self._param.size()
|
|
super(Binomial, self).__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(Binomial, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.total_count = self.total_count.expand(batch_shape)
|
|
if 'probs' in self.__dict__:
|
|
new.probs = self.probs.expand(batch_shape)
|
|
new._param = new.probs
|
|
else:
|
|
new.logits = self.logits.expand(batch_shape)
|
|
new._param = new.logits
|
|
super(Binomial, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def _new(self, *args, **kwargs):
|
|
return self._param.new(*args, **kwargs)
|
|
|
|
@constraints.dependent_property
|
|
def support(self):
|
|
return constraints.integer_interval(0, self.total_count)
|
|
|
|
@property
|
|
def mean(self):
|
|
return self.total_count * self.probs
|
|
|
|
@property
|
|
def variance(self):
|
|
return self.total_count * self.probs * (1 - self.probs)
|
|
|
|
@lazy_property
|
|
def logits(self):
|
|
return probs_to_logits(self.probs, is_binary=True)
|
|
|
|
@lazy_property
|
|
def probs(self):
|
|
return logits_to_probs(self.logits, is_binary=True)
|
|
|
|
@property
|
|
def param_shape(self):
|
|
return self._param.size()
|
|
|
|
def sample(self, sample_shape=torch.Size()):
|
|
with torch.no_grad():
|
|
max_count = max(int(self.total_count.max()), 1)
|
|
shape = self._extended_shape(sample_shape) + (max_count,)
|
|
bernoullis = torch.bernoulli(self.probs.unsqueeze(-1).expand(shape))
|
|
if self.total_count.min() != max_count:
|
|
arange = torch.arange(max_count, dtype=self._param.dtype, device=self._param.device)
|
|
mask = arange >= self.total_count.unsqueeze(-1)
|
|
bernoullis.masked_fill_(mask, 0.)
|
|
return bernoullis.sum(dim=-1)
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
log_factorial_n = torch.lgamma(self.total_count + 1)
|
|
log_factorial_k = torch.lgamma(value + 1)
|
|
log_factorial_nmk = torch.lgamma(self.total_count - value + 1)
|
|
max_val = (-self.logits).clamp(min=0.0)
|
|
# Note that: torch.log1p(-self.probs)) = max_val - torch.log1p((self.logits + 2 * max_val).exp()))
|
|
return (log_factorial_n - log_factorial_k - log_factorial_nmk +
|
|
value * self.logits + self.total_count * max_val -
|
|
self.total_count * torch.log1p((self.logits + 2 * max_val).exp()))
|
|
|
|
def enumerate_support(self, expand=True):
|
|
total_count = int(self.total_count.max())
|
|
if not self.total_count.min() == total_count:
|
|
raise NotImplementedError("Inhomogeneous total count not supported by `enumerate_support`.")
|
|
values = torch.arange(1 + total_count, dtype=self._param.dtype, device=self._param.device)
|
|
values = values.view((-1,) + (1,) * len(self._batch_shape))
|
|
if expand:
|
|
values = values.expand((-1,) + self._batch_shape)
|
|
return values
|