Files
pytorch/caffe2/python/operator_test/hyperbolic_ops_test.py
Xiaomeng Yang bb9ff58c6d Add cudnn activation ops (#9379)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9379

Add cudnn activation ops

Reviewed By: houseroad

Differential Revision: D8818013

fbshipit-source-id: d3881c634a46578b9331da07f9fdf7e1f31d7e8a
2018-07-12 23:18:56 -07:00

45 lines
1.4 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
class TestHyperbolicOps(hu.HypothesisTestCase):
def _test_hyperbolic_op(self, op_name, np_ref, X, in_place, engine, gc, dc):
op = core.CreateOperator(
op_name,
["X"],
["X"] if in_place else ["Y"],
engine=engine,)
def ref(X):
return [np_ref(X)]
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=[X],
reference=ref,
)
self.assertDeviceChecks(dc, op, [X], [0])
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(X=hu.tensor(dtype=np.float32), **hu.gcs)
def test_sinh(self, X, gc, dc):
self._test_hyperbolic_op("Sinh", np.sinh, X, False, "", gc, dc)
@given(X=hu.tensor(dtype=np.float32), **hu.gcs)
def test_cosh(self, X, gc, dc):
self._test_hyperbolic_op("Cosh", np.cosh, X, False, "", gc, dc)
@given(X=hu.tensor(dtype=np.float32), in_place=st.booleans(),
engine=st.sampled_from(["", "CUDNN"]), **hu.gcs)
def test_tanh(self, X, in_place, engine, gc, dc):
self._test_hyperbolic_op("Tanh", np.tanh, X, in_place, engine, gc, dc)