mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/9379 Add cudnn activation ops Reviewed By: houseroad Differential Revision: D8818013 fbshipit-source-id: d3881c634a46578b9331da07f9fdf7e1f31d7e8a
215 lines
6.8 KiB
Python
215 lines
6.8 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.mkl_test_util as mu
|
|
|
|
import unittest
|
|
|
|
|
|
class TestActivations(hu.HypothesisTestCase):
|
|
@given(X=hu.tensor(), in_place=st.booleans(),
|
|
engine=st.sampled_from(["", "CUDNN"]), **mu.gcs)
|
|
def test_relu(self, X, in_place, engine, gc, dc):
|
|
if gc == mu.mkl_do:
|
|
in_place = False
|
|
|
|
op = core.CreateOperator(
|
|
"Relu",
|
|
["X"],
|
|
["X"] if in_place else ["Y"],
|
|
engine=engine,
|
|
)
|
|
|
|
def relu_ref(X):
|
|
return [np.maximum(X, 0.0)]
|
|
|
|
# go away from the origin point to avoid kink problems
|
|
X += 0.02 * np.sign(X)
|
|
X[X == 0.0] += 0.02
|
|
|
|
self.assertReferenceChecks(gc, op, [X], relu_ref)
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
self.assertGradientChecks(gc, op, [X], 0, [0])
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support,
|
|
"Relu for float16 can only run on GPU now.")
|
|
@given(X=hu.tensor(dtype=np.float16), in_place=st.booleans(),
|
|
engine=st.sampled_from(["", "CUDNN"]), **hu.gcs_gpu_only)
|
|
def test_relu_fp16(self, X, in_place, engine, gc, dc):
|
|
op = core.CreateOperator(
|
|
"Relu",
|
|
["X"],
|
|
["X"] if in_place else ["Y"],
|
|
engine=engine,
|
|
)
|
|
|
|
def relu_ref(X):
|
|
return [np.maximum(X, 0.0)]
|
|
|
|
def relu_grad_ref(g_out, outputs, fwd_inputs):
|
|
dY = g_out
|
|
[Y] = outputs
|
|
dX = dY
|
|
dX[Y == 0] = 0
|
|
return [dX]
|
|
|
|
# go away from the origin point to avoid kink problems
|
|
X += 0.02 * np.sign(X)
|
|
X[X == 0.0] += 0.02
|
|
|
|
self.assertReferenceChecks(
|
|
hu.gpu_do,
|
|
op,
|
|
[X],
|
|
relu_ref,
|
|
output_to_grad="X" if in_place else "Y",
|
|
grad_reference=relu_grad_ref)
|
|
|
|
@given(X=hu.tensor(elements=st.floats(-3.0, 3.0)),
|
|
n=st.floats(min_value=0.5, max_value=2.0),
|
|
in_place=st.booleans(), **hu.gcs)
|
|
def test_relu_n(self, X, n, in_place, gc, dc):
|
|
op = core.CreateOperator(
|
|
"ReluN",
|
|
["X"],
|
|
["X"] if in_place else ["Y"],
|
|
n=n,
|
|
)
|
|
|
|
def relu_n_ref(X):
|
|
return [np.minimum(np.maximum(X, 0.0), n)]
|
|
|
|
# go away from 0 and n to avoid kink problems
|
|
X += 0.04 * np.sign(X)
|
|
X[X == 0.0] += 0.04
|
|
X -= n
|
|
X += 0.02 * np.sign(X)
|
|
X[X == 0.0] -= 0.02
|
|
X += n
|
|
|
|
self.assertReferenceChecks(gc, op, [X], relu_n_ref)
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=0.005)
|
|
|
|
@given(X=hu.tensor(),
|
|
alpha=st.floats(min_value=0.1, max_value=2.0),
|
|
in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]),
|
|
**hu.gcs)
|
|
def test_elu(self, X, alpha, in_place, engine, gc, dc):
|
|
op = core.CreateOperator(
|
|
"Elu",
|
|
["X"],
|
|
["X"] if in_place else ["Y"],
|
|
alpha=alpha,
|
|
engine=engine,
|
|
)
|
|
|
|
def elu_ref(X):
|
|
Y = X
|
|
Y[X < 0] = alpha * (np.exp(X[X < 0]) - 1.0)
|
|
return [Y]
|
|
|
|
# go away from the origin point to avoid kink problems
|
|
X += 0.04 * np.sign(X)
|
|
X[X == 0.0] += 0.04
|
|
|
|
self.assertReferenceChecks(gc, op, [X], elu_ref)
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=1e-2)
|
|
|
|
@given(X=hu.tensor(min_dim=4, max_dim=4),
|
|
alpha=st.floats(min_value=0.1, max_value=2.0),
|
|
inplace=st.booleans(),
|
|
shared=st.booleans(),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
seed=st.sampled_from([20, 100]),
|
|
**hu.gcs)
|
|
def test_prelu(self, X, alpha, inplace, shared, order, seed, gc, dc):
|
|
np.random.seed(seed)
|
|
W = np.random.randn(
|
|
X.shape[1] if order == "NCHW" else X.shape[3]).astype(np.float32)
|
|
|
|
if shared:
|
|
W = np.random.randn(1).astype(np.float32)
|
|
|
|
# go away from the origin point to avoid kink problems
|
|
X += 0.04 * np.sign(X)
|
|
X[X == 0.0] += 0.04
|
|
|
|
def prelu_ref(X, W):
|
|
Y = X.copy()
|
|
W = W.reshape(1, -1, 1, 1) if order == "NCHW" \
|
|
else W.reshape(1, 1, 1, -1)
|
|
assert len(X.shape) == 4
|
|
neg_indices = X <= 0
|
|
assert len(neg_indices.shape) == 4
|
|
assert X.shape == neg_indices.shape
|
|
Y[neg_indices] = (Y * W)[neg_indices]
|
|
return (Y,)
|
|
|
|
op = core.CreateOperator(
|
|
"PRelu", ["X", "W"], ["Y" if not inplace else "X"],
|
|
alpha=alpha, order=order)
|
|
self.assertReferenceChecks(gc, op, [X, W], prelu_ref)
|
|
# Check over multiple devices
|
|
self.assertDeviceChecks(dc, op, [X, W], [0])
|
|
|
|
if not inplace:
|
|
# Gradient check wrt X
|
|
self.assertGradientChecks(gc, op, [X, W], 0, [0], stepsize=1e-2)
|
|
# Gradient check wrt W
|
|
self.assertGradientChecks(gc, op, [X, W], 1, [0], stepsize=1e-2)
|
|
|
|
@given(X=hu.tensor(),
|
|
alpha=st.floats(min_value=0.1, max_value=2.0),
|
|
inplace=st.booleans(),
|
|
**hu.gcs)
|
|
def test_leaky_relu(self, X, alpha, inplace, gc, dc):
|
|
# go away from the origin point to avoid kink problems
|
|
X += 0.04 * np.sign(X)
|
|
X[X == 0.0] += 0.04
|
|
|
|
def leaky_relu_ref(X):
|
|
Y = X.copy()
|
|
neg_indices = X <= 0
|
|
Y[neg_indices] = Y[neg_indices] * alpha
|
|
return (Y,)
|
|
|
|
op = core.CreateOperator(
|
|
"LeakyRelu",
|
|
["X"], ["Y" if not inplace else "X"],
|
|
alpha=alpha)
|
|
self.assertReferenceChecks(gc, op, [X], leaky_relu_ref)
|
|
# Check over multiple devices
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
|
|
@given(X=hu.tensor(),
|
|
inplace=st.booleans(),
|
|
**hu.gcs)
|
|
def test_leaky_relu_default(self, X, inplace, gc, dc):
|
|
# go away from the origin point to avoid kink problems
|
|
X += 0.04 * np.sign(X)
|
|
X[X == 0.0] += 0.04
|
|
|
|
def leaky_relu_ref(X):
|
|
Y = X.copy()
|
|
neg_indices = X <= 0
|
|
Y[neg_indices] = Y[neg_indices] * 0.01
|
|
return (Y,)
|
|
|
|
op = core.CreateOperator(
|
|
"LeakyRelu",
|
|
["X"], ["Y" if not inplace else "X"])
|
|
self.assertReferenceChecks(gc, op, [X], leaky_relu_ref)
|
|
# Check over multiple devices
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|