mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 14:15:01 +08:00
* add opencl + fpga context adds an opencl context inside caffe2/fb which can be used for fpga access * [Caffe2] Force tensor inference checks to be triggered during testing We've started to rely on TensorInference functions more for different analysis. This diff ensures that the TensorInference function's result matches what is expected from the definition of the operator. * Enable building //caffe2:torch with @mode/opt In @mode/opt, python runs out of a PAR, which breaks a lot of assumptions in the code about where templates/ folders live relative to __file__. Rather than introduce hacks with parutil, I simply turn template_path into a parameter for all the relevant functions and thread it through from the top level. * [Caffe2] Fix cost models for DotProduct and Div. Update Tensor Inference for dot product As title. DotProduct states that output is a 1-D tensor (https://caffe2.ai/docs/operators-catalogue.html#dotproduct) though code suggests it is either 0- or 1-D depending on inputs. TensorInference defined to support implementation. * [SG-MoE] Add an option to make the experts NOT as components * [nomnigraph] Rename and fixup convertToNeuralNetOperator API This will make things a bit cleaner * no longer symlink THNN.h and THCUNN.h * forced decoder network (onnx export) Closes https://github.com/pytorch/translate/pull/95 Add networks in ensemble_export.py to create a forced decoding network from PyTorch NMT checkpoints. This network takes an arbitrary numberized (source, target) pair and returns the model score for the translation, including penalties. Vocabulary reduction networks are also supported, but note that target indices which are not in the possible_translation_tokens generated for the source input will be trea * Revert schema change to fix production models Revert schema change to fix production models * MockLogDeviceReader - rebase on FIX # Goal 1), Build a make_mock_log_device_reader using make_mock_reader 2), Replace the real log_device_reader here: https://fburl.com/raihwf1p # Log by D8151734 Real log_device_reader: ``` I0529 20:29:05.373108 954994 tensor.h:839] Tensor print_net/log of type std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >. Dims: (): read_net/ParseOpenTrainingRow:0 I0529 20:29:05.373244 954994 tensor.h:839] Tensor read_net/ParseOpenTrainin * [C2/D2][1/n]: Nonnegative-Constrained Optimization -- log barrier implement log barrier as a regularization method * Add teacher weight screening. Add teacher weight sceening according to teacher labels. If teacher label is zero, we do not use the distill loss in the objective function. * Add NormalizerContext See task for more detail. This implementation is a copy of what exists for RegularizerContext except for how the parameters are defined in the model_definition thrift file. I'll try an alternative implementation which overrides the default arguments of functions instead like for argscopes in tensorflow. https://github.com/pytorch/pytorch/compare/master...MaximeBoucher:update-from-facebook-0939578c068c?expand=1 * Adding cosine similarity option in dot processor Add pairwise cosine similarity option in dot product. Add an option to concate dot product and cosine similarity. Add test cases. * [nomnigraph][redo] Concat elim for sparseNN Same as D7962948, which was reverted because Operator Schema was not defined * [pytorch] Revert pytorch/pytorch#7918 'Release GIL when copying to shared memory', breaks ASAN Revert this pytorch diff that breaks ASAN when running Filament in dev mode; in opt mode it gives "bad file descriptor" errors. Looks like a race when copying tensors to shared memory in multiple mp.Queue's (which spawn separate threads). https://github.com/pytorch/pytorch/pull/7918/files * [nomnigraph][mobile] Enable nomnigraph by default, use -Oz on nomnigraph related code to reduce code size enables nomnigraph and reduces codesize * [Warmup] Allow both offline incremental training and online training Change plan name on saving side and reading side to support both training type This diff depends on D8128530 and D8168651. * Revert D7802642: [Warmup] Allow both offline incremental training and online training This reverts commit afc213cf9b36cecf75333a788391c4d09f4afccc @bypass-lint An infra SEV is better than not reverting this diff. If you copy this password, see you in SEV Review! @cause_a_sev_many_files * Add legacy grad logic to fix div op on old graphs. Add legacy grad logic to fix div op on old graphs. * Correctly propagate operator failures Propagate errors from operators that throw exceptions and return false * Revert D8374829: [caffe2][nomnigraph][redo] Concat elim for sparseNN This reverts commit 6dda028c463e54bb5c32188bbbe9202107e188a5 @bypass-lint An infra SEV is better than not reverting this diff. If you copy this password, see you in SEV Review! @cause_a_sev_many_files * [Caffe2] Added extra_info to core.DeviceOption(), enforced extra_info to be inherited in scope.DeviceScope extra_info is a newly defined field in DeviceOption proto. This diff added extra_info to the core.DeviceOption(). And, In scope.DeviceScope(), this diff enforce the new scope to inherit the extra_info from old scope. * [opt] hgdirsync wasn't enabled, merge diverged code Here's the damage, P59732616 basically xplat was left behind but had the change from assert to CAFFE_ENFORCE * OMP parallelism over RoIs for RoIAlign op Simpler to parallelize over RoIs. Shouldn't affect other uses as it relies on the number of OMP threads set during startup. PR: https://github.com/pytorch/pytorch/pull/8562 * Use int64_t for shape in FillOps to avoid overflow of int32 * Implement Rotated RoIAlign op Based on Rotated RPNs as explained in https://arxiv.org/abs/1703.01086. The idea is simple - orientation/angle is added as an RPN anchor parameter and then the angle is further regressed similar to bbox coords. There are some additional changes related to NMS and IoU, but besides that it's a direct extension to Faster-RCNN. Further details in https://fb.quip.com/sZHlA1iMfWPZ. RoIs are represented in [center_x, center_y, width, height, angle] format. `angle` repre * Rotated RoIAlign op CUDA forward implementation CUDA forward impl for D8415490 * RoIAlignRotated op CUDA backward pass implementation TSIA * All remaining fixes to eliminate process_github.sh Most of this diff has already been reviewed separately, except for the parts relating to _thnn/utils.py and _utils._internal.py remove skipIf(True, 'Fbcode') line from process_github.sh replace sed of cpp file with #ifdef to control cudnnDestroy use undo sync-time deletion of .gitattributes, remove process_github.sh switch to using _utils._internal rather than try-import-except This diff also fixes the open-source bug where rebuilds have * Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training" Original commit changeset: 7707d2efe60e The original diff is backout becuase the online trainer package is backed out. This code would only work with new online trainer package * [easy] improve error log in adagrad op as title * re-allow use of thnn_h_path This fixes cffi usage in OSS * [4/4] [tum] paralyzing layerNorm for GPU full sync as title * add compile=False to pytorch tests, remove hack with pyc * Add shape and type inference for RowWiseArgMax operator See title * Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training" This reverts commit 78167eeef0af16b60f72c82f9dcdda9b41b4dcbd @bypass-lint An infra SEV is better than not reverting this diff. If you copy this password, see you in SEV Review! @cause_a_sev_many_files * [fix-flaky-test] mock_hive_reader_test flaky, because GlobalCounter collects local counts intervally # Problem `MockHiveReader` uses `GlobalCounter` to limit `max_examples`. GlobalCounter on server node collect local counts from worker nodes every 1 sec. This 1 sec delay makes it impossible to limit exactly to the `max_examples`, it will definitely exceed `max_examples`. # Plan Given, ``` Expected num_examples = max_examples + num_examples/sec (Read Speed) x 1 sec (GlobalCounter Sync Int * [Caffe2] Fix FCGradient cost inference. Prevent overflow in cost inference FCGradient missed a factor 2 in the `num_outputs == 3` case. Overflow was occurring with flop calculation for FC. Changed types to `uint64_t` to prevent future problems. * Fix binary ops with empty inputs Fix binary ops with empty inputs * Support the filling of input blob with provided data as title for Biz Integrity case * Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"" Original commit changeset: 30c55dd38816 Original diff is reverted due to introducing bad integration test. Fixed the integration test. * [c2][easy] improve pack ops error loggings as desc. * Add ShapeTypeInference for LpNorm operator As desc * Shard test_nn to reduce runtime for each test target Closes https://github.com/pytorch/pytorch/pull/8793 The current test_nn would time out and be disabled in GreenWarden, and we need to have an option to split it up in order to pass the stress test. Right now GreenWarden roughly allows running 100 test cases in test_nn before timing out, and here we have an option to divide test_nn into 30 shards (with ~40 tests in each shard) to allow for some test suite growth in the future. * Change default caffe2_streams_per_gpu to 1 * Remove IN_SANDCASTLE from common.py and test_nn.py We prefer to disable the failing tests through Sandcastle UI instead. * Add a new class for an updated prof_dag.proto This diff contains: - An updated prof_dag.proto that contains blob profiles. - A class to deserialize this information (serialization is in a follow up diff) - Update to separate profiling information from NeuralNet (and use it as part of the class above). - Unit tests * Lambdarank for SparseNN This diff adds a lambda_rank_layer for SparseNN. changes include 1) Adds support for multi sessions in c2 op 2) Adds support for two different loss functions in c2 op 3) Unit tests for op * Revert D8586950: Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"" This reverts commit 012220ed63eccc35659a57b31d16a3625da6317b @bypass-lint An infra SEV is better than not reverting this diff. If you copy this password, see you in SEV Review! @cause_a_sev_many_files * [easy] A few fixups to multithread predictor benchmark (1) support perf on T6 server (2) remove dead code * fix a bug about the map size as title * Fix reduce sum on in-place case. Fix reduce sum on in-place case. * [Warmup] Reland reverted diff Allow both offline incremental training and online training Closes https://github.com/pytorch/pytorch/pull/8827 fix net transform integration test. Allow offline and online trainer to coexist D7802642. * Add StoreHandlerNotAvailableException Add an exception for a store that is not available or has been deleted. * Use exception handling for fault tolerance, missing KV store Remove status blobs to communication ops so that exceptions propagate on failure. * [C2/D2][2/n]: Nonnegative-Constrained Optimization -- bounded grad proj for simple bounded constrained optimization, incl non-negative box constraints. * [GanH]: Adaptive Weighting with More Estimations With implemented postivity optimization, we now learn adaptive weights with different parameterizations. This improves parameter estimation and training stability. * Revert some changes for landing * Remove AutoNoGIL in StorageSharing * Temporarily disable net_tests * Revert "[Caffe2] Force tensor inference checks to be triggered during testing" This reverts commit 67ef05c22b2f71b4a489695384932f968384a2a4. * Revert "Fix reduce sum on in-place case." This reverts commit 6cb8a8e1b3db7b6d20941b0053e3f3836068eb64. * Revert "Revert "Fix reduce sum on in-place case."" This reverts commit 130a257c0893dc09f4bd6e6a45d112261807fd2c.
1991 lines
72 KiB
Python
1991 lines
72 KiB
Python
## @package data_parallel_model
|
|
# Module caffe2.python.data_parallel_model
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from collections import OrderedDict
|
|
from future.utils import viewitems, viewkeys, viewvalues
|
|
import logging
|
|
import copy
|
|
|
|
from caffe2.python import \
|
|
model_helper, dyndep, scope, workspace, core, memonger, utils
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
import numpy as np
|
|
import warnings
|
|
|
|
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/nccl:nccl_ops")
|
|
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops")
|
|
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops_gpu")
|
|
|
|
log = logging.getLogger("data_parallel_model")
|
|
log.setLevel(logging.INFO)
|
|
|
|
_DEFAULT_TIMEOUT_SEC = 30
|
|
_DEFAULT_BARRIER_NET_TIMEOUT_SEC = 300
|
|
|
|
|
|
def Parallelize_GPU(*args, **kwargs):
|
|
kwargs['cpu_device'] = False
|
|
Parallelize(*args, **kwargs)
|
|
|
|
|
|
def Parallelize_CPU(*args, **kwargs):
|
|
kwargs['cpu_device'] = True
|
|
Parallelize(*args, **kwargs)
|
|
|
|
|
|
def Parallelize(
|
|
model_helper_obj,
|
|
input_builder_fun,
|
|
forward_pass_builder_fun,
|
|
param_update_builder_fun=None,
|
|
optimizer_builder_fun=None,
|
|
post_sync_builder_fun=None,
|
|
net_transformer_fun=None,
|
|
devices=None,
|
|
rendezvous=None,
|
|
net_type='dag',
|
|
broadcast_computed_params=True,
|
|
optimize_gradient_memory=False,
|
|
dynamic_memory_management=False,
|
|
blobs_to_keep=None,
|
|
use_nccl=False,
|
|
max_concurrent_distributed_ops=16,
|
|
cpu_device=False,
|
|
num_threads_per_device=4,
|
|
shared_model=False,
|
|
combine_spatial_bn=False,
|
|
barrier_net_timeout_sec=_DEFAULT_BARRIER_NET_TIMEOUT_SEC,
|
|
):
|
|
'''
|
|
Function to create a model that can run on many GPUs or CPUs.
|
|
model_helper_obj: an object of ModelHelper
|
|
input_builder_fun:
|
|
Function that adds the input operators
|
|
Note: Remember to instantiate reader outside of this
|
|
function so all devices share same reader object.
|
|
Signature: input_builder_fun(model)
|
|
forward_pass_builder_fun:
|
|
Function to add the operators to the model.
|
|
Must return list of loss-blob references that
|
|
are used to build the gradient. Loss scale parameter
|
|
is passed, as you should scale the loss of your model
|
|
by 1.0 / the total number of devices.
|
|
Signature: forward_pass_builder_fun(model, loss_scale)
|
|
param_update_builder_fun:
|
|
Function that adds operators that are run after
|
|
gradient update, such as updating the weights and
|
|
weight decaying. This is called for each GPU separately.
|
|
Signature: param_update_builder_fun(model)
|
|
optimizer_builder_fun:
|
|
Alternative to param_update_builder_fun, allows one
|
|
to add an optimizer for the whole model. Called only
|
|
once, without name or devicescope.
|
|
net_transformer_fun:
|
|
Optional function to transform the network after the
|
|
network is built. It will be called once (NOT once per
|
|
GPU.)
|
|
Signature:
|
|
net_transformer_fun(
|
|
model, num_devices, device_prefix, device_type)
|
|
post_sync_builder_fun:
|
|
Function applied after initial parameter sync has been
|
|
completed, such as keeping multi-precision parameters
|
|
in sync.
|
|
Signature: post_sync_builder_fun(model)
|
|
devices: List of GPU ids, such as [0, 1, 2, 3],
|
|
rendezvous: used for rendezvous in distributed computation, if None
|
|
then only one node is used. To create rendezvous,
|
|
use <TBD>.
|
|
net_type: Network type
|
|
optimize_gradient_memory: whether to apply 'memonger' to share blobs
|
|
shared_model (only for CPU) use same parameters on each device
|
|
in gradient computation to reduce memory footprint.
|
|
dynamic_memory_management: Whether to apply dynamic memory optimization
|
|
by freeing unused blobs. The underlying (de)allocation
|
|
uses cached allocator. For GPU training PLEASE MAKE SURE
|
|
caffe2_cuda_memory_pool is set.
|
|
blobs_to_keep : A list of blob names to keep and don't free during
|
|
dynamic memory optimization (for example loss blob).
|
|
cpu_device Use CPU instead of GPU.
|
|
combine_spatial_bn:
|
|
When set to True, applies batch normalization across
|
|
all devices within the node. If False, batch
|
|
normalization will be done separately for each device.
|
|
This option is currently only supported on the CPU.
|
|
barrier_net_timeout_sec:
|
|
The timeout in seconds of the barrier net, which is run
|
|
to synchronize shards before a training epoch starts.
|
|
Defaults to 300 seconds.
|
|
'''
|
|
assert scope.CurrentDeviceScope() is None \
|
|
or scope.CurrentDeviceScope().device_type == caffe2_pb2.CPU, \
|
|
"Parallelize must be called without device-scope, \
|
|
device scope was: {}".format(scope.CurrentDeviceScope())
|
|
|
|
if devices is None:
|
|
devices = list(range(0, workspace.NumCudaDevices())),
|
|
|
|
if not cpu_device:
|
|
for gpu in devices:
|
|
if gpu >= workspace.NumCudaDevices():
|
|
log.warning("** Only {} GPUs available, GPUs {} requested".format(
|
|
workspace.NumCudaDevices(), devices))
|
|
break
|
|
model_helper_obj._device_type = caffe2_pb2.CUDA
|
|
model_helper_obj._device_prefix = "gpu"
|
|
model_helper_obj._shared_model = False
|
|
device_name = "GPU"
|
|
assert shared_model is False, "Shared model only supported on CPU"
|
|
else:
|
|
model_helper_obj._device_type = caffe2_pb2.CPU
|
|
model_helper_obj._device_prefix = "cpu"
|
|
device_name = "CPU"
|
|
model_helper_obj._shared_model = shared_model
|
|
if shared_model and rendezvous is not None:
|
|
assert "Shared model only supported on single-node currently"
|
|
|
|
log.info("Parallelizing model for devices: {}".format(devices))
|
|
extra_workers = 8 if rendezvous is not None else 0 # best-guess
|
|
num_workers = len(devices) * num_threads_per_device + extra_workers
|
|
max_concurrent_distributed_ops =\
|
|
min(max_concurrent_distributed_ops, num_workers - 1)
|
|
model_helper_obj.net.Proto().num_workers = num_workers
|
|
model_helper_obj.net.Proto().type = net_type
|
|
|
|
# Store some information in the model -- a bit ugly
|
|
model_helper_obj._devices = devices
|
|
model_helper_obj._rendezvous = rendezvous
|
|
model_helper_obj._sync_barrier_net = None
|
|
|
|
model_helper_obj._broadcast_context = None
|
|
model_helper_obj._grad_names = []
|
|
|
|
assert isinstance(model_helper_obj, model_helper.ModelHelper)
|
|
|
|
# Keep track of params that were in the model before: they are not
|
|
# data parallel, so we need to handle them separately
|
|
non_datapar_params = copy.copy(model_helper_obj.params)
|
|
|
|
# Add input and model
|
|
log.info("Create input and model training operators")
|
|
|
|
losses_by_gpu = {}
|
|
num_shards = 1 if rendezvous is None else rendezvous['num_shards']
|
|
loss_scale = 1.0 / (len(devices) * num_shards)
|
|
|
|
has_parameter_updates = param_update_builder_fun is not None or \
|
|
optimizer_builder_fun is not None
|
|
assert not (
|
|
param_update_builder_fun is not None and
|
|
optimizer_builder_fun is not None
|
|
), 'Can only specify one of param_update_builder_fun, optimizer_builder_fun'
|
|
|
|
# Check that a model that is used for validation/testing has
|
|
# init_params False, otherwise running the param init net will overwrite
|
|
# synchronized values by the training net
|
|
if not has_parameter_updates and model_helper_obj.init_params:
|
|
log.warning('')
|
|
log.warning("############# WARNING #############")
|
|
log.warning("Model {}/{} is used for testing/validation but".format(
|
|
model_helper_obj.name, model_helper_obj))
|
|
log.warning("has init_params=True!")
|
|
log.warning("This can conflict with model training.")
|
|
log.warning("Please ensure model = ModelHelper(init_params=False)")
|
|
log.warning('####################################')
|
|
log.warning('')
|
|
# TODO: make into assert
|
|
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(model_helper_obj._device_type, device)
|
|
with core.DeviceScope(device_opt):
|
|
with core.NameScope("{}_{}".format(model_helper_obj._device_prefix,
|
|
device)):
|
|
log.info("Model for {} : {}".format(device_name, device))
|
|
input_builder_fun(model_helper_obj)
|
|
losses = forward_pass_builder_fun(model_helper_obj, loss_scale)
|
|
# Losses are not needed for test net
|
|
if has_parameter_updates:
|
|
assert isinstance(losses, list), \
|
|
'Model builder function must return list of loss blobs'
|
|
for loss in losses:
|
|
assert isinstance(loss, core.BlobReference), \
|
|
'Model builder func must return list of loss blobs'
|
|
|
|
losses_by_gpu[device] = losses
|
|
_ValidateParams(model_helper_obj.params)
|
|
|
|
# Create parameter map
|
|
model_helper_obj._device_grouped_blobs =\
|
|
_GroupByDevice(model_helper_obj, devices,
|
|
model_helper_obj.params, non_datapar_params)
|
|
|
|
# computed params
|
|
computed_params_grouped =\
|
|
_GroupByDevice(model_helper_obj, devices,
|
|
model_helper_obj.GetComputedParams(''), [])
|
|
model_helper_obj._device_grouped_blobs.update(computed_params_grouped)
|
|
|
|
model_helper_obj._param_names =\
|
|
list(viewkeys(model_helper_obj._device_grouped_blobs))
|
|
model_helper_obj._computed_param_names =\
|
|
list(viewkeys(computed_params_grouped))
|
|
|
|
if has_parameter_updates:
|
|
log.info("Adding gradient operators")
|
|
_AddGradientOperators(devices, model_helper_obj, losses_by_gpu)
|
|
|
|
if net_transformer_fun:
|
|
net_transformer_fun(
|
|
model_helper_obj,
|
|
len(devices),
|
|
model_helper_obj._device_prefix,
|
|
model_helper_obj._device_type)
|
|
|
|
if not has_parameter_updates:
|
|
log.info("Parameter update function not defined --> only forward")
|
|
_InferBlobDevice(model_helper_obj)
|
|
return
|
|
|
|
if combine_spatial_bn:
|
|
assert(cpu_device), \
|
|
'combine_spatial_bn is currently only supported on the CPU'
|
|
assert(has_parameter_updates), \
|
|
'combine_spatial_bn should only be used for train model'
|
|
_InterleaveOps(model_helper_obj)
|
|
_InterDeviceBatchNormalization(model_helper_obj)
|
|
|
|
_ValidateParams(model_helper_obj.params)
|
|
|
|
# Group gradients by device and register to blob lookup
|
|
param_to_grad = model_helper_obj.param_to_grad
|
|
grads_ordered = [param_to_grad[p] for p in
|
|
model_helper_obj.params if p in param_to_grad]
|
|
non_datapar_grads = [param_to_grad[p] for p in non_datapar_params]
|
|
|
|
gradients_grouped = _GroupByDevice(
|
|
model_helper_obj,
|
|
devices,
|
|
grads_ordered,
|
|
non_datapar_grads
|
|
)
|
|
model_helper_obj._device_grouped_blobs.update(gradients_grouped)
|
|
model_helper_obj._grad_names = list(viewkeys(gradients_grouped))
|
|
model_helper_obj._losses_by_gpu = losses_by_gpu
|
|
|
|
_InferBlobDevice(model_helper_obj)
|
|
|
|
log.info("Add gradient all-reduces for SyncSGD")
|
|
if broadcast_computed_params:
|
|
_BroadcastComputedParams(devices, model_helper_obj, rendezvous, use_nccl)
|
|
|
|
if len(model_helper_obj._grad_names) > 0:
|
|
# Gradients in reverse order
|
|
reverse_ordered_grads = _GetReverseOrderedGrads(model_helper_obj)
|
|
assert(len(reverse_ordered_grads) > 0)
|
|
_AllReduceBlobs(
|
|
reverse_ordered_grads,
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj.net,
|
|
rendezvous,
|
|
use_nccl,
|
|
max_concurrent_distributed_ops,
|
|
)
|
|
else:
|
|
log.info("NOTE: Param builder function did not create any parameters.")
|
|
|
|
log.info("Post-iteration operators for updating params")
|
|
num_shards = 1 if rendezvous is None else rendezvous['num_shards']
|
|
|
|
all_params = set(model_helper_obj.GetParams(''))
|
|
if shared_model:
|
|
_PruneParametersForSharing(model_helper_obj)
|
|
|
|
if param_update_builder_fun is not None:
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(model_helper_obj._device_type, device)
|
|
with core.DeviceScope(device_opt):
|
|
with core.NameScope(
|
|
"{}_{}".format(model_helper_obj._device_prefix, device)
|
|
):
|
|
param_update_builder_fun(model_helper_obj)
|
|
else:
|
|
log.info("Calling optimizer builder function")
|
|
optimizer = optimizer_builder_fun(model_helper_obj)
|
|
model_helper_obj._optimizer = optimizer
|
|
|
|
(sync_blobs, sync_names) = _ComputeBlobsToSync(model_helper_obj)
|
|
sync_blobs_grouped = _GroupByDevice(
|
|
model_helper_obj,
|
|
devices,
|
|
sync_blobs,
|
|
[],
|
|
)
|
|
model_helper_obj._device_grouped_blobs.update(sync_blobs_grouped)
|
|
|
|
_InferBlobDevice(model_helper_obj)
|
|
_AnalyzeOperators(model_helper_obj)
|
|
|
|
# Configure dagnet to run with only one worker on the first iteration,
|
|
# to prevent concurrency problems with allocs and nccl.
|
|
arg = model_helper_obj.Proto().arg.add()
|
|
arg.name = "first_iter_only_one_worker"
|
|
arg.i = 1
|
|
|
|
# Add initial parameter syncs
|
|
log.info("Add initial parameter sync")
|
|
_SyncAllParams(
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj.param_init_net,
|
|
model_helper_obj.param_init_net,
|
|
rendezvous,
|
|
sync_names,
|
|
max_concurrent_distributed_ops=1
|
|
)
|
|
|
|
# Handle any operations that need to be done after parameter sync
|
|
# i.e. making sure multi-precision copies of parameters are up-to-date
|
|
if post_sync_builder_fun is not None:
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(model_helper_obj._device_type, device)
|
|
with core.DeviceScope(device_opt):
|
|
with core.NameScope(
|
|
"{}_{}".format(model_helper_obj._device_prefix, device)
|
|
):
|
|
post_sync_builder_fun(model_helper_obj)
|
|
|
|
assert not (optimize_gradient_memory and dynamic_memory_management), \
|
|
"""It is not advised to use gradient optimization ('memonger')
|
|
with dynamic memory management."""
|
|
|
|
if optimize_gradient_memory:
|
|
_OptimizeGradientMemorySimple(model_helper_obj, losses_by_gpu, devices)
|
|
|
|
if dynamic_memory_management:
|
|
_AddDynamicMemoryOptimization(model_helper_obj, blobs_to_keep, devices)
|
|
|
|
|
|
model_helper_obj._data_parallel_model_init_nets = [
|
|
model_helper_obj.param_init_net,
|
|
]
|
|
|
|
model_helper_obj._data_parallel_model_nets = [
|
|
model_helper_obj.net
|
|
]
|
|
_AddBarrierToModelNets(model_helper_obj, barrier_net_timeout_sec)
|
|
|
|
if shared_model:
|
|
_RemapParameterBlobsForSharedModel(model_helper_obj, all_params)
|
|
|
|
|
|
def Parallelize_GPU_BMUF(*args, **kwargs):
|
|
kwargs['cpu_device'] = False
|
|
Parallelize_BMUF(*args, **kwargs)
|
|
|
|
|
|
def Parallelize_CPU_BMUF(*args, **kwargs):
|
|
kwargs['cpu_device'] = True
|
|
Parallelize_BMUF(*args, **kwargs)
|
|
|
|
|
|
def Parallelize_BMUF(
|
|
model_helper_obj,
|
|
input_builder_fun,
|
|
forward_pass_builder_fun,
|
|
param_update_builder_fun,
|
|
block_learning_rate=1.0,
|
|
block_momentum=None,
|
|
devices=None,
|
|
rendezvous=None,
|
|
net_type='dag',
|
|
master_device=None,
|
|
use_nccl=False,
|
|
nesterov=False,
|
|
optimize_gradient_memory=False,
|
|
reset_momentum_sgd=False,
|
|
warmup_iterations=None,
|
|
max_concurrent_distributed_ops=4,
|
|
add_blobs_to_sync=None,
|
|
num_threads_per_device=4,
|
|
cpu_device=False,
|
|
barrier_net_timeout_sec=_DEFAULT_BARRIER_NET_TIMEOUT_SEC,
|
|
):
|
|
'''
|
|
Function to create model that run on many GPUs and creates a net for
|
|
parameter_updates that can be run independently for number of iterations
|
|
then followed by another net that runs once to compute the final parameter
|
|
updates according to block wise model update filtering rule described
|
|
in : Scalable Training of Deep Learning Machines by Incremental Block
|
|
Training with Intra-block Parallel Optimization and Blockwise Model-Update
|
|
Filtering (ICASSP 2016).
|
|
'''
|
|
assert scope.CurrentDeviceScope() is None \
|
|
or scope.CurrentDeviceScope().device_type == caffe2_pb2.CPU, \
|
|
"Parallelize must be called without device-scope, \
|
|
device scope was: {}".format(scope.CurrentDeviceScope())
|
|
|
|
assert isinstance(model_helper_obj, model_helper.ModelHelper)
|
|
|
|
if devices is None:
|
|
devices = list(range(0, workspace.NumCudaDevices()))
|
|
if master_device is None:
|
|
master_device = devices[0]
|
|
|
|
if not cpu_device:
|
|
for gpu in devices:
|
|
if gpu >= workspace.NumCudaDevices():
|
|
log.warning("** Only {} GPUs available, GPUs {} requested".format(
|
|
workspace.NumCudaDevices(), devices))
|
|
break
|
|
model_helper_obj._device_type = caffe2_pb2.CUDA
|
|
model_helper_obj._device_prefix = "gpu"
|
|
else:
|
|
model_helper_obj._device_type = caffe2_pb2.CPU
|
|
model_helper_obj._device_prefix = "cpu"
|
|
|
|
model_helper_obj._devices = devices
|
|
model_helper_obj._rendezvous = rendezvous
|
|
model_helper_obj._sync_barrier_net = None
|
|
model_helper_obj._broadcast_context = None
|
|
model_helper_obj._shared_model = False
|
|
master_dev_opt = core.DeviceOption(model_helper_obj._device_type, master_device)
|
|
|
|
# question: rendezvous structure
|
|
num_shards = rendezvous['num_shards'] if rendezvous else 1
|
|
# num_devices is #devices across all machines
|
|
num_devices = len(devices) * num_shards
|
|
# num_workers is #threads to execute the DAG per shard
|
|
num_workers = num_threads_per_device * len(devices)
|
|
if rendezvous:
|
|
num_workers += 8
|
|
|
|
loss_scale = 1.0 / num_devices
|
|
if block_momentum is None:
|
|
block_momentum = 1.0 - 1.0 / num_devices
|
|
|
|
max_concurrent_distributed_ops = min(
|
|
max_concurrent_distributed_ops,
|
|
num_workers - 1
|
|
)
|
|
|
|
model_helper_obj.net.Proto().num_workers = num_workers
|
|
model_helper_obj.net.Proto().type = net_type
|
|
|
|
# A net for initializing global model parameters. Its called once in the
|
|
# same step as net parameters initialization.
|
|
model_helper_obj._global_model_init_net = core.Net('global_model_init')
|
|
model_helper_obj._global_model_init_net.Proto().type = net_type
|
|
model_helper_obj._global_model_init_net.Proto().num_workers = \
|
|
num_workers
|
|
|
|
# A net for computing final parameter updates. Its will run once after
|
|
# running net (local models updates) for `num_local_iterations` times.
|
|
model_helper_obj._global_model_param_updates_net = core.Net('global_model')
|
|
model_helper_obj._global_model_param_updates_net.Proto().type = net_type
|
|
model_helper_obj._global_model_param_updates_net.Proto().num_workers = \
|
|
num_workers
|
|
|
|
def _v(param):
|
|
return "{}_v".format(param)
|
|
|
|
def _g(param):
|
|
return "{}_g".format(param)
|
|
|
|
def _v_prev(param):
|
|
return "{}_prev".format(param)
|
|
|
|
# Keep track of params that were in the model before: they are not
|
|
# data parallel, so we need to handle them separately
|
|
non_datapar_params = copy.copy(model_helper_obj.params)
|
|
model_helper_obj._losses_by_gpu = {}
|
|
|
|
def _InitializeModels(gpu_id):
|
|
input_builder_fun(model_helper_obj)
|
|
loss = forward_pass_builder_fun(model_helper_obj, loss_scale)
|
|
model_helper_obj._losses_by_gpu[gpu_id] = loss
|
|
_ForEachDevice(
|
|
devices,
|
|
_InitializeModels,
|
|
device_type=model_helper_obj._device_type,
|
|
device_prefix=model_helper_obj._device_prefix,
|
|
scoped=True
|
|
)
|
|
_ValidateParams(model_helper_obj.params)
|
|
|
|
model_helper_obj._device_grouped_blobs =\
|
|
_GroupByDevice(model_helper_obj, devices,
|
|
model_helper_obj.params, non_datapar_params)
|
|
|
|
model_helper_obj._param_names =\
|
|
list(viewkeys(model_helper_obj._device_grouped_blobs))
|
|
|
|
_AddGradientOperators(
|
|
devices, model_helper_obj, model_helper_obj._losses_by_gpu
|
|
)
|
|
_ValidateParams(model_helper_obj.params)
|
|
|
|
_InferBlobDevice(model_helper_obj)
|
|
|
|
def _InitializeParamUpdate(gpu_id):
|
|
param_update_builder_fun(model_helper_obj)
|
|
_ForEachDevice(
|
|
devices,
|
|
_InitializeParamUpdate,
|
|
device_type=model_helper_obj._device_type,
|
|
device_prefix=model_helper_obj._device_prefix,
|
|
scoped=True
|
|
)
|
|
|
|
model_parameter_names = list(
|
|
viewkeys(model_helper_obj._device_grouped_blobs)
|
|
)
|
|
if warmup_iterations is not None:
|
|
model_helper_obj._warmup_iterations = warmup_iterations
|
|
# A net for broadcasting gpu-0 (master shard) parameters after
|
|
# running net for `warmup_iterartions`.
|
|
model_helper_obj._warmup_broadcast = core.Net('warmup-broadcast')
|
|
model_helper_obj._warmup_broadcast.Proto().type = net_type
|
|
model_helper_obj._warmup_broadcast.Proto().num_workers = \
|
|
num_workers
|
|
|
|
_SyncAllParams(
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj.param_init_net,
|
|
model_helper_obj._warmup_broadcast,
|
|
rendezvous,
|
|
model_parameter_names,
|
|
max_concurrent_distributed_ops
|
|
)
|
|
for param_name in viewkeys(model_helper_obj._device_grouped_blobs):
|
|
param = model_helper_obj._device_grouped_blobs[param_name][master_device]
|
|
with core.DeviceScope(master_dev_opt):
|
|
model_helper_obj._warmup_broadcast.Copy(param, _g(param))
|
|
|
|
# (Step-0) Initialize momentum parameters on master device.
|
|
for param_name in viewkeys(model_helper_obj._device_grouped_blobs):
|
|
param = model_helper_obj._device_grouped_blobs[param_name][master_device]
|
|
with core.DeviceScope(master_dev_opt):
|
|
model_helper_obj._global_model_init_net.ConstantFill(
|
|
param, _v(param), value=0.0
|
|
)
|
|
model_helper_obj._global_model_init_net.Copy(param, _g(param))
|
|
if nesterov:
|
|
model_helper_obj._global_model_init_net.ConstantFill(
|
|
param, _v_prev(param), value=0.0
|
|
)
|
|
|
|
# (Step-1) Update models for num_local_iterations.
|
|
|
|
# (Step-2) Compute post-local-updates average of the params.
|
|
# Sum model params across GPUs and store resutls in param_avg blob.
|
|
_AllReduceBlobs(
|
|
model_parameter_names,
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj._global_model_param_updates_net,
|
|
rendezvous,
|
|
use_nccl,
|
|
max_concurrent_distributed_ops
|
|
)
|
|
|
|
# (Step-3) Update momentum params :
|
|
# param_v = block_momentum * param_v
|
|
# + block_learning_Rate * (param_avg - param)
|
|
# if nesterov momentum:
|
|
# param = param + param_v
|
|
# - block_momentum * (param_v - param_v_prev)
|
|
# param_v_prev = param_v
|
|
# else:
|
|
# param = param + param_v
|
|
for param_name in model_parameter_names:
|
|
param = model_helper_obj._device_grouped_blobs[param_name][master_device]
|
|
with core.DeviceScope(master_dev_opt):
|
|
# TODO(ataei) : Stop building the graph here to get model average ?
|
|
model_helper_obj._global_model_param_updates_net.Scale(
|
|
param, param, scale=1.0 / num_devices
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Sub(
|
|
[param, _g(param)], param
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Scale(
|
|
param, param, scale=block_learning_rate
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Scale(
|
|
_v(param), _v(param), scale=block_momentum
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Add(
|
|
[_v(param), param], _v(param)
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Add(
|
|
[_g(param), _v(param)], _g(param)
|
|
)
|
|
if nesterov:
|
|
model_helper_obj._global_model_param_updates_net.Sub(
|
|
[_v(param), _v_prev(param)], _v_prev(param)
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Scale(
|
|
_v_prev(param), _v_prev(param), scale=block_momentum
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Sub(
|
|
[_g(param), _v_prev(param)], _g(param)
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Copy(
|
|
_v(param), _v_prev(param)
|
|
)
|
|
model_helper_obj._global_model_param_updates_net.Copy(
|
|
_g(param), param
|
|
)
|
|
|
|
|
|
_SyncAllParams(
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj.param_init_net,
|
|
model_helper_obj._global_model_param_updates_net,
|
|
rendezvous,
|
|
model_parameter_names,
|
|
max_concurrent_distributed_ops
|
|
)
|
|
|
|
# Add additional syncs
|
|
if add_blobs_to_sync is not None:
|
|
AddBlobSync(
|
|
model_helper_obj,
|
|
add_blobs_to_sync,
|
|
net=model_helper_obj._global_model_param_updates_net)
|
|
|
|
# Reset momentum-SGD parameters
|
|
if reset_momentum_sgd:
|
|
momentum_ops = [op for op in model_helper_obj.net.Proto().op
|
|
if op.type == 'MomentumSGDUpdate']
|
|
for op in momentum_ops:
|
|
momentum_blob = op.input[1]
|
|
with core.DeviceScope(op.device_option):
|
|
model_helper_obj._global_model_param_updates_net.ConstantFill(
|
|
[momentum_blob], momentum_blob, value=0.0
|
|
)
|
|
|
|
if optimize_gradient_memory:
|
|
_OptimizeGradientMemorySimple(
|
|
model_helper_obj, model_helper_obj._losses_by_gpu, devices
|
|
)
|
|
|
|
model_helper_obj._data_parallel_model_init_nets = [
|
|
model_helper_obj.param_init_net,
|
|
model_helper_obj._global_model_init_net
|
|
]
|
|
|
|
model_helper_obj._data_parallel_model_nets = [
|
|
model_helper_obj.net,
|
|
(model_helper_obj._global_model_param_updates_net, 1)
|
|
]
|
|
_AddBarrierToModelNets(model_helper_obj, barrier_net_timeout_sec)
|
|
|
|
|
|
def RunInitNet(model):
|
|
for init_net in model._data_parallel_model_init_nets:
|
|
workspace.RunNetOnce(init_net)
|
|
for net_iters in model._data_parallel_model_nets:
|
|
if isinstance(net_iters, tuple):
|
|
workspace.CreateNet(net_iters[0])
|
|
else:
|
|
workspace.CreateNet(net_iters)
|
|
|
|
|
|
def RunWarmup(model):
|
|
workspace.RunNet(model.net, model._warmup_iterations)
|
|
workspace.RunNetOnce(model._warmup_broadcast)
|
|
|
|
|
|
def RunNet(model, num_iterations):
|
|
for net_iter in model._data_parallel_model_nets:
|
|
if isinstance(net_iter, tuple):
|
|
workspace.RunNet(net_iter[0].Proto().name, net_iter[1])
|
|
else:
|
|
workspace.RunNet(net_iter, num_iterations)
|
|
|
|
|
|
def _AddBarrierToModelNets(model, barrier_net_timeout_sec):
|
|
if model._rendezvous is not None and model._rendezvous['engine'] == 'GLOO':
|
|
# Synchronize DPM at the start of each epoch. This allows shards that
|
|
# starts an epoch sooner to wait for slower shards. Without this,
|
|
# shards that are faster than others will begin training the next epoch
|
|
# while stragglers are blocked on IO, and may timeout after 30 seconds
|
|
# (_DEFAULT_TIMEOUT_SEC).
|
|
# We pass in model.param_init_net so that the barrier net can be run as
|
|
# part of the param_init_net.
|
|
model._barrier_net = _CreateBarrierNet(model, model.param_init_net,
|
|
"pre_training", barrier_net_timeout_sec)
|
|
model._data_parallel_model_nets.insert(0, model._barrier_net)
|
|
|
|
|
|
def _CreateBarrierNet(model, init_net, name_prefix, timeout_sec):
|
|
log.info("Creating barrier net")
|
|
assert model._rendezvous['engine'] == 'GLOO', "Engine does not support barrier"
|
|
comm_world = _CreateOrCloneCommonWorld(
|
|
init_net,
|
|
name_prefix + "_barrier_cw",
|
|
rendezvous=model._rendezvous,
|
|
timeout_sec=timeout_sec,
|
|
)
|
|
barrier_net = core.Net(name_prefix + "_barrier_net")
|
|
barrier_net.Barrier(
|
|
inputs=[comm_world],
|
|
outputs=[],
|
|
engine=model._rendezvous['engine'],
|
|
)
|
|
return barrier_net
|
|
|
|
|
|
# DEPRECATED: See warnings below.
|
|
def Synchronize(model, timeout_sec=_DEFAULT_BARRIER_NET_TIMEOUT_SEC):
|
|
warnings.warn("The Synchronize API has been deprecated. We now have a "
|
|
"barrier net which runs before training to ensure all hosts wait "
|
|
"before training starts. The default timeout for the barrier is "
|
|
"300s and it can be overridden using the barrier_net_timeout_sec "
|
|
"parameter when calling Parallelize.",
|
|
category=DeprecationWarning, stacklevel=2)
|
|
if model._rendezvous is None or model._rendezvous['num_shards'] <= 1:
|
|
# Single host case
|
|
return
|
|
|
|
if model._sync_barrier_net is None:
|
|
barrier_init_net = core.Net("sync_barrier_init_net")
|
|
model._sync_barrier_net = _CreateBarrierNet(
|
|
model, barrier_init_net, "sync", timeout_sec)
|
|
workspace.RunNetOnce(barrier_init_net)
|
|
workspace.CreateNet(model._sync_barrier_net)
|
|
model._sync_barrier_net_timeout = timeout_sec
|
|
assert model._sync_barrier_net_timeout == timeout_sec, \
|
|
"Must use fixed timeout, {} != {}".format(
|
|
model._sync_barrier_net_timeout, timeout_sec
|
|
)
|
|
log.info("Synchronize run barrier net.")
|
|
workspace.RunNet(model._sync_barrier_net)
|
|
|
|
|
|
def ConvertNetForDevice(net, device=None):
|
|
'''
|
|
Converts all blobs in the net to have namescope gpu_X, and correct
|
|
device scope. You can use this to enable AppendNet with a
|
|
forward_pass_builder_fun:
|
|
|
|
def builder_fun(model):
|
|
...
|
|
model.net.AppendNet(
|
|
data_parallel_model.ConvertNetForDevice(othermodel.net))
|
|
model.param_init_net.AppendNet(
|
|
data_parallel_model.ConvertNetForDevice(othermodel.param_init_net))
|
|
'''
|
|
mnet = copy.deepcopy(net)
|
|
|
|
if device is None:
|
|
device = scope.CurrentDeviceScope()
|
|
|
|
device_prefix = "gpu" if device.device_type == caffe2_pb2.CUDA else "cpu"
|
|
|
|
namescope = "{}_{}/".format(device_prefix, device.cuda_gpu_id)
|
|
for op in mnet.Proto().op:
|
|
if "RecurrentNetwork" in op.type:
|
|
raise("RecurrentNetwork conversion not yet supported")
|
|
for i, inputb in enumerate(op.input):
|
|
op.input[i] = namescope + inputb
|
|
for i, outputb in enumerate(op.output):
|
|
op.output[i] = namescope + outputb
|
|
for i, blob in enumerate(op.control_input):
|
|
op.control_input[i] = namescope + blob
|
|
op.device_option.CopyFrom(device)
|
|
for i, einp in enumerate(mnet.Proto().external_input):
|
|
mnet.Proto().external_input[i] = namescope + einp
|
|
for i, eoutp in enumerate(mnet.Proto().external_output):
|
|
mnet.Proto().external_output[i] = namescope + eoutp
|
|
return mnet
|
|
|
|
|
|
def _ForEachDevice(devices, f, device_type, device_prefix, scoped=False,
|
|
*args, **kwargs):
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(device_type, device)
|
|
with core.DeviceScope(device_opt):
|
|
if scoped:
|
|
with core.NameScope("{}_{}".format(device_prefix, device)):
|
|
f(device, *args, **kwargs)
|
|
else:
|
|
f(device, *args, **kwargs)
|
|
|
|
|
|
def _AddGradientOperators(devices, model, losses_by_gpu):
|
|
def create_grad(lossp):
|
|
return model.ConstantFill(lossp, str(lossp) + "_grad", value=1.0)
|
|
|
|
loss_grad = {}
|
|
# Explicitly need to create gradients on each GPU
|
|
for gpu_id in devices:
|
|
device = core.DeviceOption(model._device_type, gpu_id)
|
|
with core.DeviceScope(device):
|
|
for l in losses_by_gpu[gpu_id]:
|
|
lg = create_grad(l)
|
|
loss_grad[str(l)] = str(lg)
|
|
|
|
model.AddGradientOperators(loss_grad)
|
|
|
|
|
|
def ExtractPredictorNet(model, inputs, outputs, device):
|
|
'''
|
|
Returns (net, params) that can be exported to be used as a prediction
|
|
net.
|
|
'''
|
|
master_device = model._devices[0]
|
|
prefix = "{}_{}/".format(model._device_prefix, master_device)
|
|
prefix_inputs = [prefix + str(b) for b in inputs]
|
|
prefix_outputs = [prefix + str(b) for b in outputs]
|
|
(predictor_net, export_blobs) = model_helper.ExtractPredictorNet(
|
|
net_proto=model.net.Proto(),
|
|
input_blobs=prefix_inputs,
|
|
output_blobs=prefix_outputs,
|
|
device=device,
|
|
renames={
|
|
a: b
|
|
for (a, b) in zip(prefix_inputs + prefix_outputs, inputs + outputs)
|
|
},
|
|
)
|
|
|
|
return (predictor_net, export_blobs)
|
|
|
|
|
|
def GetCheckpointParams(model):
|
|
'''
|
|
Returns a set of blobs that are needed for a complete check point.
|
|
They are blobs for the first gpu and iteration blobs.
|
|
'''
|
|
(all_blobs, _) = _ComputeBlobsToSync(model)
|
|
first_gpu_blobs = {
|
|
b
|
|
for b in all_blobs
|
|
if str(b)
|
|
.startswith("{}_{}/".format(model._device_prefix, model._devices[0]))
|
|
}
|
|
|
|
# Add iteration blobs that do not have namescope separately, since
|
|
# it is important to checkpoint iteration counter
|
|
iteration_blobs = set()
|
|
for op in model.net.Proto().op:
|
|
if op.type == 'Iter' or op.type == 'AtomicIter':
|
|
if not op.output[0].startswith("{}_".format(model._device_prefix)):
|
|
iteration_blobs.add(op.output[0])
|
|
|
|
return first_gpu_blobs.union(iteration_blobs)
|
|
|
|
|
|
def FinalizeAfterCheckpoint(model, blobs=None):
|
|
'''
|
|
This function should be called after loading parameters from a
|
|
checkpoint / initial parameters file.
|
|
'''
|
|
|
|
if not hasattr(model, "_checkpoint_net"):
|
|
if blobs is None:
|
|
(_, uniq_blob_names) = _ComputeBlobsToSync(model)
|
|
else:
|
|
uniq_blob_names = [stripBlobName(p) for p in blobs]
|
|
|
|
# Synchronize to the blob lookup map, as the provided
|
|
# blobs might have non-parameters, such as momemtum blobs.
|
|
log.info("Creating checkpoint synchronization net")
|
|
devices = model.GetDevices()
|
|
for name in uniq_blob_names:
|
|
if name not in model._device_grouped_blobs:
|
|
grouped = {
|
|
d:
|
|
core.BlobReference("{}_{}{}{}".format(
|
|
model._device_prefix,
|
|
d,
|
|
scope._NAMESCOPE_SEPARATOR,
|
|
name)
|
|
) for d in devices}
|
|
model._device_grouped_blobs[name] = grouped
|
|
|
|
model._checkpoint_net = core.Net("checkpoint_sync_net")
|
|
model._checkpoint_net.RunAllOnGPU()
|
|
|
|
checkpoint_init_net = None
|
|
if (model._rendezvous is not None and model._rendezvous['num_shards'] > 1):
|
|
checkpoint_init_net = core.Net("checkpoint_init_net")
|
|
checkpoint_init_net.RunAllOnGPU()
|
|
|
|
_SyncAllParams(
|
|
devices,
|
|
model,
|
|
checkpoint_init_net,
|
|
model._checkpoint_net,
|
|
model._rendezvous,
|
|
uniq_blob_names,
|
|
max_concurrent_distributed_ops=1
|
|
)
|
|
if (checkpoint_init_net):
|
|
workspace.RunNetOnce(checkpoint_init_net)
|
|
|
|
workspace.CreateNet(model._checkpoint_net)
|
|
|
|
# Run the sync
|
|
log.info("Run checkpoint net")
|
|
workspace.RunNet(model._checkpoint_net.Proto().name)
|
|
|
|
|
|
def GetLearningRateBlobNames(model):
|
|
'''
|
|
Returns a list of learning rates blob names used in the optimizer.
|
|
'''
|
|
if model._optimizer is not None:
|
|
if model._device_type == caffe2_pb2.CPU:
|
|
return [model._optimizer.get_cpu_blob_name('lr')]
|
|
elif model._device_type == caffe2_pb2.CUDA:
|
|
return [model._optimizer.get_gpu_blob_name('lr', gpu, '')
|
|
for gpu in model._devices]
|
|
else:
|
|
raise Exception(
|
|
"Unsupported device type : {}".format(model._device_type)
|
|
)
|
|
else:
|
|
lr_blob_names = []
|
|
for op in model.net.Proto().op:
|
|
if op.type == "LearningRate":
|
|
lr_blob_names.append(op.output(0))
|
|
return lr_blob_names
|
|
|
|
|
|
def _Broadcast(devices, model, net, param, use_nccl=False):
|
|
# Copy params from gpu_0 to other
|
|
master_dev = devices[0]
|
|
|
|
if use_nccl:
|
|
if _IsGPUBlob(model, param):
|
|
master_device_opt = core.DeviceOption(model._device_type, master_dev)
|
|
with core.DeviceScope(master_device_opt):
|
|
# Note that the root is the root _rank_ and not the root
|
|
# _device_. Thus we always use root=0, regardless of the
|
|
# devices used.
|
|
net.NCCLBroadcast(
|
|
list(viewvalues(model._device_grouped_blobs[param])),
|
|
list(viewvalues(model._device_grouped_blobs[param])),
|
|
root=0,
|
|
)
|
|
return
|
|
|
|
for dev_idx in devices[1:]:
|
|
if _IsGPUBlob(model, param):
|
|
device_opt = core.DeviceOption(caffe2_pb2.CUDA, dev_idx)
|
|
else:
|
|
device_opt = core.DeviceOption(caffe2_pb2.CPU, 0)
|
|
with core.DeviceScope(device_opt):
|
|
net.Copy(
|
|
model._device_grouped_blobs[param][master_dev],
|
|
model._device_grouped_blobs[param][dev_idx]
|
|
)
|
|
|
|
|
|
def _AllReduce(devices, model, net, param, use_nccl=False, control_input=None):
|
|
blobs_group = list(viewvalues(model._device_grouped_blobs[param]))
|
|
if model._device_type == caffe2_pb2.CUDA and use_nccl:
|
|
# TODO: for _shared_model, do only NCCLReduce
|
|
model.NCCLAllreduce(
|
|
blobs_group, blobs_group, control_input=control_input
|
|
)
|
|
return
|
|
|
|
if model._device_type == caffe2_pb2.CUDA:
|
|
p2p_access_pattern = workspace.GetCudaPeerAccessPattern()
|
|
else:
|
|
p2p_access_pattern = None
|
|
|
|
def sumN(*dev_indices):
|
|
"""Create a Sum op for 2 or more blobs on different devices.
|
|
Saves the result on the first device.
|
|
|
|
Arguments:
|
|
dev_indices -- a list of device indices, which can be translated into
|
|
CUDA identifiers with model._devices
|
|
"""
|
|
devices = [model._devices[idx] for idx in dev_indices]
|
|
blobs = [blobs_group[idx] for idx in dev_indices]
|
|
for i, peer in enumerate(devices):
|
|
if i == 0:
|
|
continue # Skip the first device
|
|
if p2p_access_pattern is not None and not p2p_access_pattern[
|
|
devices[0], peer
|
|
]:
|
|
# Copy from peer to d0
|
|
blobs[i] = model.Copy(
|
|
blobs[i],
|
|
'gpu_{}/{}_gpu{}_copy'.format(devices[0], param, peer)
|
|
)
|
|
device_opt = core.DeviceOption(model._device_type, devices[0])
|
|
with core.DeviceScope(device_opt):
|
|
net.Sum(blobs, [blobs[0]], name='dpm')
|
|
|
|
if len(devices) == 16:
|
|
# Special tree reduction for 16 gpus, TODO generalize like in muji.py
|
|
for j in range(8):
|
|
sumN(j * 2, j * 2 + 1)
|
|
for j in range(4):
|
|
sumN(j * 4, j * 4 + 2)
|
|
for j in range(2):
|
|
sumN(j * 8, j * 8 + 4)
|
|
sumN(0, 8)
|
|
elif len(devices) == 8:
|
|
for j in range(4):
|
|
sumN(j * 2, j * 2 + 1)
|
|
for j in range(2):
|
|
sumN(j * 4, j * 4 + 2)
|
|
sumN(0, 4)
|
|
elif len(devices) == 4:
|
|
sumN(0, 1)
|
|
sumN(2, 3)
|
|
sumN(0, 2)
|
|
else:
|
|
sumN(*range(len(devices)))
|
|
# TODO: for _shared_model, no need to broadcast
|
|
_Broadcast(devices, model, net, param)
|
|
|
|
|
|
def _SyncAllParams(
|
|
devices,
|
|
model,
|
|
init_net,
|
|
net,
|
|
rendezvous,
|
|
unique_param_names,
|
|
max_concurrent_distributed_ops=4
|
|
):
|
|
if rendezvous is None or rendezvous['num_shards'] <= 1:
|
|
_SyncAllParamsSingleHost(devices, model, net, unique_param_names)
|
|
else:
|
|
_SyncAllParamsDistributed(
|
|
devices,
|
|
model,
|
|
init_net,
|
|
net,
|
|
rendezvous,
|
|
unique_param_names,
|
|
max_concurrent_distributed_ops
|
|
)
|
|
|
|
|
|
def AddBlobSync(model, blobs, net=None):
|
|
'''
|
|
Sync a blob across devices and hosts
|
|
'''
|
|
if len(blobs) == 0:
|
|
return
|
|
net = model.net if net is None else net
|
|
for b in blobs:
|
|
assert not b.startswith(model._device_prefix), \
|
|
"Provide unprefixed blob name: {}".format(b)
|
|
model._device_grouped_blobs[b] = {
|
|
d: core.BlobReference("{}_{}/{}".format(model._device_prefix, d, b))
|
|
for d in model._devices
|
|
}
|
|
|
|
_SyncAllParams(
|
|
model._devices,
|
|
model,
|
|
model.param_init_net,
|
|
net,
|
|
model._rendezvous,
|
|
set(blobs))
|
|
|
|
|
|
def AddDistributedBlobSync(model, blobs):
|
|
'''
|
|
Sync blobs across machines (but not across devices)
|
|
'''
|
|
if model._rendezvous is None:
|
|
return
|
|
synth_name = "_".join([str(b) for b in blobs])
|
|
comm_world = _CreateOrCloneCommonWorld(
|
|
model.param_init_net,
|
|
"blob_sync_cw_" + synth_name,
|
|
rendezvous=model._rendezvous,
|
|
)
|
|
|
|
model.net.Allreduce(
|
|
inputs=[comm_world] + blobs,
|
|
outputs=blobs,
|
|
engine=model._rendezvous['engine'],
|
|
)
|
|
|
|
|
|
def _SyncAllParamsDistributed(
|
|
devices,
|
|
model,
|
|
init_net,
|
|
net,
|
|
rendezvous,
|
|
unique_param_names,
|
|
max_concurrent_distributed_ops
|
|
):
|
|
assert rendezvous['num_shards'] > 1
|
|
|
|
gpu_device_opt = core.DeviceOption(model._device_type, devices[0])
|
|
cpu_device_opt = core.DeviceOption(caffe2_pb2.CPU)
|
|
|
|
if model._broadcast_context is None:
|
|
model._broadcast_context = CollectivesConcurrencyControl(
|
|
"broadcast",
|
|
max_concurrent_distributed_ops,
|
|
init_net,
|
|
rendezvous
|
|
)
|
|
context = model._broadcast_context
|
|
|
|
for param_name in sorted(unique_param_names):
|
|
master_param = model._device_grouped_blobs[param_name][devices[0]]
|
|
params_group = list(viewvalues(model._device_grouped_blobs[param_name]))
|
|
|
|
def broadcast(params):
|
|
comm_world, control_input = context.get_control_and_context(params)
|
|
net.Broadcast(
|
|
inputs=[comm_world] + params,
|
|
outputs=params,
|
|
name=param_name,
|
|
engine=rendezvous['engine'],
|
|
control_input=control_input
|
|
)
|
|
|
|
device_opt = gpu_device_opt if _IsGPUBlob(
|
|
model, param_name
|
|
) else cpu_device_opt
|
|
|
|
if rendezvous['engine'] == 'GLOO':
|
|
with core.DeviceScope(device_opt):
|
|
broadcast(params_group)
|
|
else:
|
|
# Copy between GPU and CPU
|
|
with core.DeviceScope(device_opt):
|
|
param_cpu = net.CopyGPUToCPU(
|
|
master_param,
|
|
str(master_param) + "cpu"
|
|
)
|
|
with core.DeviceScope(cpu_device_opt):
|
|
broadcast([param_cpu])
|
|
with core.DeviceScope(device_opt):
|
|
net.CopyCPUToGPU(param_cpu, master_param)
|
|
|
|
# Broadcast locally
|
|
_Broadcast(devices, model, net, param_name)
|
|
|
|
|
|
def _SyncAllParamsSingleHost(devices, model, net, unique_param_names):
|
|
for param in unique_param_names:
|
|
_Broadcast(devices, model, net, param)
|
|
|
|
|
|
def _AllReduceBlobs(blob_names, devices, model, net, rendezvous, use_nccl,
|
|
max_concurrent_distributed_ops):
|
|
if rendezvous is None or rendezvous['num_shards'] <= 1:
|
|
_AllReduceBlobsSingleHost(
|
|
blob_names,
|
|
devices,
|
|
model,
|
|
net,
|
|
use_nccl
|
|
)
|
|
else:
|
|
_AllReduceBlobsDistributed(
|
|
blob_names,
|
|
devices,
|
|
model,
|
|
net,
|
|
rendezvous,
|
|
max_concurrent_distributed_ops,
|
|
)
|
|
|
|
|
|
def _PruneParametersForSharing(model):
|
|
assert model._shared_model
|
|
master_prefix = "{}_{}/".format(model._device_prefix, model._devices[0])
|
|
|
|
# Remove non-master parameters so that they will not receive parameter
|
|
# update operators.
|
|
model.params = model.GetParams(master_prefix)
|
|
paramset = set(model.params)
|
|
|
|
model.param_to_grad = {
|
|
p: model.param_to_grad[p]
|
|
for p in model.param_to_grad if p in paramset
|
|
}
|
|
model.weights = [w for w in model.weights if w in paramset]
|
|
model.biases = [w for w in model.biases if w in paramset]
|
|
|
|
|
|
def _RemapParameterBlobsForSharedModel(model, all_params):
|
|
assert model._shared_model
|
|
master_prefix = "{}_{}/".format(
|
|
model._device_prefix, model._devices[0])
|
|
log.info("Remapping param blobs to master -> {}".format(master_prefix))
|
|
master_params = set(model.GetParams())
|
|
|
|
# Remove all but master params
|
|
def modify_ops(net):
|
|
ops = []
|
|
for op in net.Proto().op:
|
|
delete_op = False
|
|
# Delete ops that output non-master version of parameter
|
|
for outp in op.output:
|
|
if outp in all_params and outp not in master_params:
|
|
delete_op = True
|
|
log.debug("Delete b/c {}: {}".format(outp, str(op)))
|
|
break
|
|
if delete_op:
|
|
continue
|
|
# Remap inputs to point to the master param
|
|
for j, inp in enumerate(op.input):
|
|
if inp in all_params and inp not in master_params:
|
|
op.input[j] = master_prefix + stripBlobName(inp)
|
|
ops.append(op)
|
|
del net.Proto().op[:]
|
|
net.Proto().op.extend(ops)
|
|
|
|
modify_ops(model.param_init_net)
|
|
modify_ops(model.net)
|
|
|
|
|
|
class CollectivesConcurrencyControl(object):
|
|
"""
|
|
Creates common worlds (up to max_concurrent_context) and manage the
|
|
sequential execution of collectives that shares the same context with
|
|
cyclic control inputs.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
name,
|
|
max_concurrent_context,
|
|
param_init_net,
|
|
rendezvous
|
|
):
|
|
self.name = name
|
|
self.param_init_net = param_init_net
|
|
self.max_concurrent_context = max_concurrent_context
|
|
self.counter = 0
|
|
self.common_worlds = []
|
|
self.control_inputs = []
|
|
self.rendezvous = rendezvous
|
|
|
|
def get_control_and_context(self, control_output_blob):
|
|
common_world, control_input = [None, None]
|
|
current_slot = self.counter % self.max_concurrent_context
|
|
if len(self.common_worlds) < self.max_concurrent_context:
|
|
common_world = _CreateOrCloneCommonWorld(
|
|
self.param_init_net,
|
|
"{}_{}_cw".format(self.name, current_slot),
|
|
rendezvous=self.rendezvous,
|
|
)
|
|
self.common_worlds.append(common_world)
|
|
self.control_inputs.append(control_output_blob)
|
|
else:
|
|
common_world = self.common_worlds[current_slot]
|
|
control_input = self.control_inputs[current_slot]
|
|
self.control_inputs[current_slot] = control_output_blob
|
|
self.counter += 1
|
|
return common_world, control_input
|
|
|
|
|
|
def _AllReduceBlobsDistributed(
|
|
blob_names,
|
|
devices,
|
|
model,
|
|
net,
|
|
rendezvous,
|
|
max_concurrent_distributed_ops,
|
|
):
|
|
num_workers = model.net.Proto().num_workers
|
|
assert num_workers > 1, "Please specify more than 1 worker"
|
|
all_reduce_engine = rendezvous['engine']
|
|
|
|
master_device_opt = core.DeviceOption(model._device_type, devices[0])
|
|
|
|
reducing_device_opt = master_device_opt
|
|
|
|
context = CollectivesConcurrencyControl(
|
|
"allreduce",
|
|
max_concurrent_distributed_ops,
|
|
model.param_init_net,
|
|
rendezvous
|
|
)
|
|
|
|
nccl_control_blob = None
|
|
|
|
for blob_name in blob_names:
|
|
master_blob = model._device_grouped_blobs[blob_name][devices[0]]
|
|
blobs_group = list(viewvalues(model._device_grouped_blobs[blob_name]))
|
|
|
|
assert master_blob in blobs_group
|
|
|
|
# Remark: NCCLReduce does not support in-place modifications
|
|
# so we need a temporary blob
|
|
reduced_blob = str(master_blob) + "_red"
|
|
|
|
def allreduce(blobs, **kwargs):
|
|
with core.DeviceScope(reducing_device_opt):
|
|
comm_world, control_input = \
|
|
context.get_control_and_context(blobs[0])
|
|
net.Allreduce(
|
|
inputs=[comm_world] + blobs,
|
|
outputs=blobs,
|
|
name=blob_name,
|
|
engine=all_reduce_engine,
|
|
control_input=control_input,
|
|
**kwargs
|
|
)
|
|
|
|
if rendezvous['engine'] == 'GLOO':
|
|
# With Gloo cross GPU and cross machine allreduce
|
|
# can be executed in a single operation.
|
|
# Try to use GPUDirect if transport == ibverbs.
|
|
allreduce(
|
|
blobs_group,
|
|
gpu_direct=(rendezvous.get("transport", None) == "ibverbs"),
|
|
)
|
|
else:
|
|
# Step 1: sum blobs from local GPUs to master GPU
|
|
with core.DeviceScope(master_device_opt):
|
|
model.ConstantFill(master_blob, reduced_blob, value=0.0)
|
|
|
|
# Temp fix since NCCLReduce does not work
|
|
net.NCCLAllreduce(
|
|
blobs_group,
|
|
blobs_group,
|
|
control_input=nccl_control_blob,
|
|
)
|
|
nccl_control_blob = blobs_group[0]
|
|
net.Copy(master_blob, reduced_blob)
|
|
|
|
# Step 2: allreduce between all hosts, between master GPUs
|
|
allreduce([reduced_blob])
|
|
|
|
with core.DeviceScope(master_device_opt):
|
|
net.Copy(reduced_blob, master_blob)
|
|
|
|
# Step 3: broadcast locally
|
|
_Broadcast(devices, model, net, blob_name)
|
|
|
|
|
|
def _AllReduceBlobsSingleHost(blob_names, devices, model, net, use_nccl):
|
|
"""Performs NCCL AllReduce to distribute blobs to all the GPUs."""
|
|
|
|
if len(devices) == 1:
|
|
return
|
|
|
|
# Now we need to Allreduce blobs on all the GPUs.
|
|
# Pick GPU #0 as a master GPU.
|
|
master_device_opt = core.DeviceOption(model._device_type, devices[0])
|
|
last_out = None
|
|
concatenated_idx = set()
|
|
|
|
for blob_name in blob_names:
|
|
# Group by blob_name for reduce.
|
|
blobs_group = list(viewvalues(model._device_grouped_blobs[blob_name]))
|
|
if len(blobs_group) == 1:
|
|
# Non-reducible
|
|
continue
|
|
assert len(blobs_group) == len(devices), \
|
|
"Each GPU from {}, should have a copy of {}.".format(
|
|
devices, blob_name)
|
|
|
|
if _IsGPUBlob(model, blob_name):
|
|
with core.DeviceScope(master_device_opt):
|
|
if not isinstance(blobs_group[0], core.GradientSlice):
|
|
_AllReduce(
|
|
devices, model, net, blob_name, use_nccl, last_out
|
|
)
|
|
# last_out is used to serialize the execution of nccls
|
|
last_out = blobs_group[0]
|
|
|
|
else:
|
|
# Sparse gradients: all-gather for indices and values
|
|
master_ns = "{}_{}".format(model._device_prefix, devices[0])
|
|
'''
|
|
Skip if we have already copied concatenated indices
|
|
to the indices of GradientSlice. This happens when two
|
|
or more grad blobs are gathered with the same indices
|
|
blob
|
|
'''
|
|
skip_idx_concat = False
|
|
for g in blobs_group:
|
|
if g.indices in concatenated_idx:
|
|
skip_idx_concat = True
|
|
|
|
if not skip_idx_concat:
|
|
grad_idx_concat, _ = net.Concat(
|
|
[g.indices for g in blobs_group],
|
|
["{}/{}_index_concat".format(master_ns, blob_name),
|
|
"{}/{}_index_splitinfo".format(master_ns, blob_name)],
|
|
axis=0,
|
|
name="note:data_parallel_model")
|
|
|
|
for gpu, g in viewitems(model._device_grouped_blobs[blob_name]):
|
|
device_opt = core.DeviceOption(model._device_type, gpu)
|
|
with core.DeviceScope(device_opt):
|
|
model.Copy(grad_idx_concat, g.indices)
|
|
concatenated_idx.add(g.indices)
|
|
|
|
grad_val_concat, _ = net.Concat(
|
|
[g.values for g in blobs_group],
|
|
["{}/{}_val_concat".format(master_ns, blob_name),
|
|
"{}/{}_val_splitinfo".format(master_ns, blob_name)],
|
|
axis=0, name="note:data_parallel_model")
|
|
|
|
for gpu, g in viewitems(model._device_grouped_blobs[blob_name]):
|
|
device_opt = core.DeviceOption(model._device_type, gpu)
|
|
with core.DeviceScope(device_opt):
|
|
model.Copy(grad_val_concat, g.values)
|
|
|
|
else:
|
|
assert not isinstance(blobs_group[0], core.GradientSlice), \
|
|
"Synchronizing gradient slices not supported"
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
# Poor man's allreduce
|
|
net.Sum(blobs_group, [blobs_group[0]])
|
|
if not model._shared_model:
|
|
_Broadcast(devices, model, net, blob_name)
|
|
|
|
|
|
def _BroadcastComputedParams(devices, model, rendezvous, use_nccl=False):
|
|
if rendezvous is None:
|
|
_BroadcastComputedParamsSingleHost(devices, model, use_nccl)
|
|
else:
|
|
_BroadcastComputedParamsDistributed(devices, model, rendezvous, use_nccl)
|
|
|
|
|
|
def _BroadcastComputedParamsDistributed(
|
|
devices,
|
|
model,
|
|
rendezvous,
|
|
use_nccl=False
|
|
):
|
|
_BroadcastComputedParamsSingleHost(devices, model, use_nccl)
|
|
log.warn("Distributed broadcast of computed params is not implemented yet")
|
|
|
|
|
|
def _BroadcastComputedParamsSingleHost(devices, model, use_nccl=False):
|
|
'''
|
|
Average computed params over all devices
|
|
'''
|
|
if len(devices) == 1:
|
|
return
|
|
|
|
for param_name in model._computed_param_names:
|
|
# Copy from master to others -- averaging would be perhaps better,
|
|
# but currently NCCLAllReduce is too prone to deadlock
|
|
_Broadcast(devices, model, model.net, param_name, use_nccl)
|
|
|
|
|
|
def _GetReverseOrderedGrads(model):
|
|
'''
|
|
Returns the gradients in reverse order (namespace stripped),
|
|
for the optimal synchronization order.
|
|
'''
|
|
return list(reversed(model._grad_names))
|
|
|
|
|
|
# A helper function to extract a parameter's name
|
|
def stripBlobName(param):
|
|
# Format is "a/b/c/d" -> "b/c/d"
|
|
if isinstance(param, core.GradientSlice):
|
|
return stripBlobName(param.indices) + ":" + stripBlobName(param.values)
|
|
else:
|
|
name = str(param)
|
|
return name[name.index(scope._NAMESCOPE_SEPARATOR) + 1:]
|
|
|
|
|
|
def _AnalyzeOperators(model):
|
|
'''
|
|
Look at all the operators and check that they do not cross device scopes
|
|
'''
|
|
for op in model.Proto().op:
|
|
if "NCCL" in op.type or "Copy" in op.type or "Concat" in op.type:
|
|
continue
|
|
if "Sum" == op.type and op.name == "dpm":
|
|
continue
|
|
if "Allreduce" in op.type and "GLOO" in op.engine:
|
|
continue
|
|
|
|
op_dev = op.device_option
|
|
op_gpu = op_dev.cuda_gpu_id
|
|
|
|
# This avoids failing on operators that are only for CPU
|
|
if op_dev.device_type != caffe2_pb2.CUDA:
|
|
continue
|
|
|
|
namescope = "{}_{}/".format(model._device_prefix, op_gpu)
|
|
for inp in list(op.input) + list(op.output):
|
|
if inp.startswith("{}_".format(model._device_prefix)
|
|
) and not inp.startswith(namescope):
|
|
raise Exception(
|
|
"Blob {} of op {}, should have namescope {}. Op: {}".format(
|
|
inp,
|
|
op.type,
|
|
"{}_{}/".format(model._device_prefix, op_gpu),
|
|
str(op),
|
|
)
|
|
)
|
|
|
|
|
|
def _InferBlobDevice(model):
|
|
'''
|
|
Assign blob to device option based on the operator outputing it
|
|
'''
|
|
mapping = {}
|
|
|
|
def map_ops(proto):
|
|
for op in proto.op:
|
|
device_option = op.device_option
|
|
if op.type == "Iter":
|
|
# Hack for Iters which have blob in CPU context
|
|
device_option = caffe2_pb2.DeviceOption()
|
|
device_option.device_type = caffe2_pb2.CPU
|
|
for b in list(op.input) + list(op.output):
|
|
if b not in mapping:
|
|
mapping[b] = device_option
|
|
if op.type.startswith('RecurrentNetwork'):
|
|
step_args = [a for a in op.arg if a.name.endswith("step_net")]
|
|
for step_arg in step_args:
|
|
map_ops(step_arg.n)
|
|
map_ops(model.param_init_net.Proto())
|
|
map_ops(model.net.Proto())
|
|
model._blob_to_device = mapping
|
|
|
|
def _IsGPUBlob(model, blob_name):
|
|
if blob_name in model._blob_to_device:
|
|
return model._blob_to_device[blob_name].device_type == caffe2_pb2.CUDA
|
|
else:
|
|
blob_name = "{}_{}/{}".format(
|
|
model._device_prefix, model._devices[0], blob_name
|
|
)
|
|
if blob_name not in model._blob_to_device:
|
|
return model._device_type == caffe2_pb2.CUDA
|
|
return model._blob_to_device[blob_name].device_type == caffe2_pb2.CUDA
|
|
|
|
|
|
def _GroupByDevice(model, devices, params, non_data_params):
|
|
'''
|
|
Groups blobs by device, returning a map of [blobname] = {0: BlobRef, 1: ..}.
|
|
Returns ordered dictionary, ensuring the original order.
|
|
'''
|
|
grouped = OrderedDict()
|
|
# Only consider params that were created to be "data parallel"
|
|
params = params[len(non_data_params):]
|
|
|
|
for _i, p in enumerate(params):
|
|
assert isinstance(p, core.BlobReference) or \
|
|
isinstance(p, core.GradientSlice), \
|
|
"Param {} is not BlobReference or GradientSlice".format(p)
|
|
|
|
name = stripBlobName(p)
|
|
gpuid = None
|
|
|
|
if isinstance(p, core.BlobReference):
|
|
gpuid = int(p.GetNameScope().split("_")[1].split("/")[0])
|
|
assert "{}_{}/".format(model._device_prefix, gpuid) in p.GetNameScope(),\
|
|
"Param {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
|
|
else:
|
|
gpuid = int(p.indices.GetNameScope().split("_")[1].split("/")[0])
|
|
assert "{}_{}/".format(model._device_prefix, gpuid) in p.indices.GetNameScope(),\
|
|
"Indices {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
|
|
assert "{}_{}/".format(model._device_prefix, gpuid) in p.values.GetNameScope(),\
|
|
"Values {} expected to have namescope '{}_{}'".format(str(p), model._device_prefix, gpuid)
|
|
|
|
if name not in grouped:
|
|
grouped[name] = {}
|
|
grouped[name][gpuid] = p
|
|
|
|
return grouped
|
|
|
|
|
|
def _ValidateParams(params):
|
|
set_params = set(params)
|
|
if len(params) > len(set_params):
|
|
dupes = []
|
|
sp = sorted(params)
|
|
for j, p in enumerate(sp):
|
|
if j > 0 and sp[j - 1] == p:
|
|
dupes.append(p)
|
|
|
|
assert len(params) == len(set_params), \
|
|
"Duplicate entries in params: {}".format(dupes)
|
|
|
|
|
|
def _ComputeBlobsToSync(model):
|
|
'''
|
|
We sync all blobs that are generated by param init net and
|
|
are 'data parallel', i.e assigned to a device
|
|
'''
|
|
sync_names = set()
|
|
|
|
# We don't sync params if the model is shared
|
|
if model._shared_model:
|
|
blobs_to_sync = [str(p) for p in model.GetComputedParams('')]
|
|
sync_names = [stripBlobName(p) for p in blobs_to_sync]
|
|
else:
|
|
blobs_to_sync = []
|
|
|
|
for op in model.param_init_net.Proto().op:
|
|
dp_outputs = [
|
|
o for o in op.output
|
|
if o.startswith("{}_".format(model._device_prefix))
|
|
]
|
|
sync_names.update([stripBlobName(o) for o in dp_outputs])
|
|
blobs_to_sync.extend(dp_outputs)
|
|
|
|
# Sanity check
|
|
diff = set(model._param_names) - sync_names
|
|
assert diff == set(), \
|
|
"Some params not instantiated in param init net: {}".format(diff)
|
|
|
|
# Remove duplicates and sort
|
|
prefixlen = len(model._device_prefix) + 1
|
|
|
|
def extract_sort_key(b):
|
|
# Sort first based on device id, and then by whole string
|
|
deviceid = int(b[prefixlen:b.index(scope._NAMESCOPE_SEPARATOR)])
|
|
return (deviceid, b)
|
|
|
|
blobs_to_sync = sorted(
|
|
list(set(blobs_to_sync)),
|
|
key=extract_sort_key)
|
|
|
|
blobs_to_sync = [core.BlobReference(b) for b in blobs_to_sync]
|
|
return (blobs_to_sync, sync_names)
|
|
|
|
|
|
def _OptimizeGradientMemorySimple(model, losses_by_gpu, devices):
|
|
log.warning("------- DEPRECATED API, please use " +
|
|
"data_parallel_model.OptimizeGradientMemory() ----- ")
|
|
for device in devices:
|
|
namescope = "{}_{}/".format(model._device_prefix, device)
|
|
model.net._net = memonger.share_grad_blobs(
|
|
model.net,
|
|
losses_by_gpu[device],
|
|
set(viewvalues(model.param_to_grad)),
|
|
namescope,
|
|
share_activations=False,
|
|
)
|
|
|
|
|
|
def _AddDynamicMemoryOptimization(model, blobs_to_keep, devices):
|
|
blobs_to_keep_all_devices = set()
|
|
if blobs_to_keep is not None:
|
|
for device in devices:
|
|
for blob_name in blobs_to_keep:
|
|
blobs_to_keep_all_devices.add(
|
|
"{}_{}/{}".format(model._device_prefix, device, blob_name)
|
|
)
|
|
|
|
if model._rendezvous is not None:
|
|
# GLOO operators expect the tensor addresses to remain same over
|
|
# iterations so we need to remove param grads from the dynamic memory
|
|
# management.
|
|
blobs_to_keep_all_devices.update(
|
|
[str(b) for b in viewvalues(model.param_to_grad)]
|
|
)
|
|
|
|
model.net._net = memonger.release_blobs_when_used(
|
|
model.net.Proto(),
|
|
blobs_to_keep_all_devices
|
|
)
|
|
|
|
|
|
def OptimizeGradientMemory(model,
|
|
input_shapes,
|
|
excluded_blobs,
|
|
recycle_activations):
|
|
"""
|
|
Optimize memory usage of the backward pass by recycling blobs for gradient
|
|
inputs that have been 'used'.
|
|
input_shapes: dict of blob name to shape for the inputs of the model.
|
|
Pass empty dictionary if not known.
|
|
excluded_blobs: list of blobs that cannot be recycled. These are blobs
|
|
that you will access externally.
|
|
recycle_activations: whether to also recycle forward pass activations
|
|
"""
|
|
if input_shapes is not None:
|
|
input_shapes_all_devices = {}
|
|
for b, shp in viewitems(input_shapes):
|
|
for d in model._devices:
|
|
input_shapes_all_devices["{}_{}/{}".
|
|
format(model._device_prefix, d, b)] = shp
|
|
|
|
(shapes, types) = workspace.InferShapesAndTypes(
|
|
[model.param_init_net, model.net],
|
|
input_shapes_all_devices,
|
|
)
|
|
else:
|
|
shapes = None
|
|
|
|
for device in model._devices:
|
|
namescope = "{}_{}/".format(model._device_prefix, device)
|
|
excluded_blobs_by_device = set(namescope + b for b in excluded_blobs)
|
|
model.net._net = memonger.share_grad_blobs(
|
|
model.net,
|
|
model._losses_by_gpu[device],
|
|
set(viewvalues(model.param_to_grad)),
|
|
namescope,
|
|
dont_share_blobs=excluded_blobs_by_device,
|
|
share_activations=recycle_activations,
|
|
blob_shapes=shapes,
|
|
)
|
|
|
|
|
|
def _CreateOrCloneCommonWorld(
|
|
net,
|
|
common_world_blob,
|
|
rendezvous,
|
|
name=None,
|
|
timeout_sec=None):
|
|
|
|
if timeout_sec is None:
|
|
timeout_sec = _DEFAULT_TIMEOUT_SEC
|
|
|
|
timeout_ms = timeout_sec * 1000
|
|
|
|
# Check if there is an existing CreateCommonWorld
|
|
# with the same timeout we're looking for. If so,
|
|
# we can clone it instead of creating a new one.
|
|
existing = None
|
|
for op in net.Proto().op:
|
|
if op.type != "CreateCommonWorld":
|
|
continue
|
|
|
|
# Find common world timeout
|
|
op_timeout_ms = -1
|
|
for arg in op.arg:
|
|
if arg.name == 'timeout_ms':
|
|
op_timeout_ms = arg.i
|
|
break
|
|
if op_timeout_ms != timeout_ms:
|
|
continue
|
|
|
|
# This common world was created with the same timeout we're
|
|
# looking for, so we can clone it
|
|
existing = op.output[0]
|
|
break
|
|
|
|
if name is None:
|
|
name = "{}_op".format(common_world_blob)
|
|
|
|
if existing is not None:
|
|
comm_world = net.CloneCommonWorld(
|
|
[existing],
|
|
common_world_blob,
|
|
name=name,
|
|
engine=rendezvous['engine'],
|
|
)
|
|
else:
|
|
kwargs=dict()
|
|
if 'transport' in rendezvous:
|
|
kwargs['transport'] = rendezvous['transport']
|
|
if 'interface' in rendezvous:
|
|
kwargs['interface'] = rendezvous['interface']
|
|
if 'mpi_rendezvous' in rendezvous:
|
|
kwargs['mpi_rendezvous'] = rendezvous['mpi_rendezvous']
|
|
comm_world = net.CreateCommonWorld(
|
|
rendezvous['kv_handler'] or [],
|
|
common_world_blob,
|
|
name=name,
|
|
size=rendezvous['num_shards'],
|
|
rank=rendezvous['shard_id'],
|
|
engine=rendezvous['engine'],
|
|
timeout_ms=timeout_ms,
|
|
**kwargs
|
|
)
|
|
|
|
return comm_world
|
|
|
|
|
|
def _RunComparison(model, blob_name, device=None):
|
|
if device is None:
|
|
device = model._blob_to_device[blob_name]
|
|
with core.DeviceScope(device):
|
|
rendezvous = model._rendezvous
|
|
if rendezvous is None or rendezvous['num_shards'] == 1:
|
|
return True
|
|
|
|
test_data_arr = np.zeros(rendezvous['num_shards']).astype(np.float32)
|
|
test_data_arr[rendezvous['shard_id']] = 1
|
|
workspace.FeedBlob("compare_arr", test_data_arr)
|
|
|
|
comparison_net = core.Net("allcompare_net")
|
|
|
|
kwargs=dict()
|
|
if 'mpi_rendezvous' in rendezvous:
|
|
kwargs['mpi_rendezvous'] = rendezvous['mpi_rendezvous']
|
|
comm_world = comparison_net.CreateCommonWorld(
|
|
rendezvous['kv_handler'] or [],
|
|
"initial_sync",
|
|
name=model.net.Proto().name + ".cw_master_select",
|
|
size=rendezvous['num_shards'],
|
|
rank=rendezvous['shard_id'],
|
|
engine=rendezvous['engine'],
|
|
**kwargs
|
|
)
|
|
|
|
blob_name_checksum = blob_name + "_checksum"
|
|
comparison_net.SumSqrElements(
|
|
[blob_name], [blob_name_checksum], average=False
|
|
)
|
|
|
|
blob_name_gather = blob_name + "_gather"
|
|
comparison_net.Mul(
|
|
inputs=["compare_arr", blob_name_checksum],
|
|
outputs=blob_name_gather,
|
|
broadcast=1
|
|
)
|
|
|
|
comparison_net.Allreduce(
|
|
inputs=[comm_world, blob_name_gather],
|
|
outputs=[blob_name_gather],
|
|
engine=rendezvous['engine'],
|
|
)
|
|
|
|
workspace.RunNetOnce(comparison_net)
|
|
gather_arr = workspace.FetchBlob(blob_name_gather)
|
|
|
|
baseline = gather_arr[0]
|
|
for i in range(rendezvous['num_shards']):
|
|
assert gather_arr[i] == baseline, \
|
|
"allcompare failed on shard {}.".format(rendezvous['shard_id'])
|
|
|
|
return True
|
|
|
|
|
|
def _InterleaveOps(model):
|
|
'''
|
|
Data Parallel Model creates a net with ops in one device grouped together.
|
|
This will interleave the ops so that each op for each device is next
|
|
to each other in the net. Kind of like combining decks of cards. This
|
|
ensures that progress is made along the critical path roughly concurrently
|
|
for each device, which is important due to the extra intra-node
|
|
synchronization required for multi-device batch normalization.
|
|
'''
|
|
orig_ops = list(model.net.Proto().op)
|
|
num_devices = len(model._devices)
|
|
num_ops_per_dev = len(orig_ops) // num_devices
|
|
assert num_devices * num_ops_per_dev == len(orig_ops), \
|
|
'Number of ops per device in original net is not uniform'
|
|
new_ops = []
|
|
ops = {d: [] for d in range(num_devices)}
|
|
for op in orig_ops:
|
|
ops[op.device_option.cuda_gpu_id].append(op)
|
|
|
|
for j in range(num_ops_per_dev):
|
|
tp = None
|
|
for d in model._devices:
|
|
if tp is None:
|
|
tp = ops[d][j].type
|
|
new_ops.append(ops[d][j])
|
|
# Sanity
|
|
assert ops[d][j].type == tp, \
|
|
"Type mismatch {} / {}".format(tp, ops[d][j].type)
|
|
|
|
del model.net.Proto().op[:]
|
|
model.net.Proto().op.extend(new_ops)
|
|
|
|
|
|
def _InterDeviceBatchNormalization(model):
|
|
orig_ops = list(model.net.Proto().op)
|
|
new_ops = []
|
|
num_devices = len(model._devices)
|
|
batch_norm_ops = []
|
|
injected_ops = []
|
|
|
|
spatial_bn_phase = False
|
|
sums_blobs = []
|
|
sumsq_blobs = []
|
|
name = []
|
|
input_blob_name = None
|
|
|
|
spatial_bn_gradient_phase = False
|
|
scale_grad_blobs = []
|
|
bias_grad_blobs = []
|
|
|
|
for op in orig_ops:
|
|
if op.type != 'SpatialBN' and op.type != 'SpatialBNGradient':
|
|
if spatial_bn_phase:
|
|
new_ops.extend(injected_ops)
|
|
new_ops.append(
|
|
core.CreateOperator("Sum",
|
|
sums_blobs,
|
|
input_blob_name + "_sums_combined"))
|
|
new_ops.append(
|
|
core.CreateOperator("Sum",
|
|
sumsq_blobs,
|
|
input_blob_name + "_sumsq_combined"))
|
|
new_ops.extend(batch_norm_ops)
|
|
injected_ops = []
|
|
batch_norm_ops = []
|
|
sums_blobs = []
|
|
sumsq_blobs = []
|
|
spatial_bn_phase = False
|
|
input_blob_name = None
|
|
elif spatial_bn_gradient_phase:
|
|
new_ops.extend(injected_ops)
|
|
scale_blob = \
|
|
"cpu_0/" + stripBlobName(scale_grad_blobs[0]) + "_combined"
|
|
bias_blob = \
|
|
"cpu_0/" + stripBlobName(bias_grad_blobs[0]) + "_combined"
|
|
new_ops.append(
|
|
core.CreateOperator("Sum", scale_grad_blobs, scale_blob))
|
|
new_ops.append(
|
|
core.CreateOperator("Sum", bias_grad_blobs, bias_blob))
|
|
for blob in scale_grad_blobs:
|
|
new_ops.append(
|
|
core.CreateOperator("Copy", scale_blob, blob))
|
|
for blob in bias_grad_blobs:
|
|
new_ops.append(core.CreateOperator("Copy", bias_blob, blob))
|
|
new_ops.extend(batch_norm_ops)
|
|
injected_ops = []
|
|
batch_norm_ops = []
|
|
scale_grad_blobs = []
|
|
bias_grad_blobs = []
|
|
spatial_bn_gradient_phase = False
|
|
new_ops.append(op)
|
|
elif op.type == 'SpatialBN':
|
|
spatial_bn_phase = True
|
|
if input_blob_name is None:
|
|
input_blob_name = op.input[0]
|
|
name = op.input[0]
|
|
injected_ops.append(
|
|
core.CreateOperator(
|
|
"ChannelStats",
|
|
name,
|
|
[name + "_sums", name + "_sumsq"]))
|
|
sums_blobs.append(name + "_sums")
|
|
sumsq_blobs.append(name + "_sumsq")
|
|
op.input.append(input_blob_name + "_sums_combined")
|
|
op.input.append(input_blob_name + "_sumsq_combined")
|
|
op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
|
|
batch_norm_ops.append(op)
|
|
elif op.type == 'SpatialBNGradient':
|
|
spatial_bn_gradient_phase = True
|
|
injected_ops.append(
|
|
core.CreateOperator("ChannelBackpropStats",
|
|
[op.input[0], op.input[3], op.input[4],
|
|
op.input[2]],
|
|
[op.output[1], op.output[2]]))
|
|
scale_grad_blobs.append(op.output[1])
|
|
bias_grad_blobs.append(op.output[2])
|
|
op.arg.extend([utils.MakeArgument("num_batches", num_devices)])
|
|
op.input.extend([op.output[1], op.output[2]])
|
|
batch_norm_ops.append(op)
|
|
|
|
assert not spatial_bn_phase, \
|
|
"Net modification for inter-device batch normalization failed"
|
|
del model.net.Proto().op[:]
|
|
model.net.Proto().op.extend(new_ops)
|