mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-23 06:34:55 +08:00
* Track checkpoint performance in scuba As title. * [C2/CUDA]: fix cross entropy sigmoid with logits when adding log_d_trick, I forgot to add it to the cuda impl; this diff fixes it. * Back out "[caffe2] Unregister MKL fallbacks for NCHW conversions" Original commit changeset: 8918dd40205a Will land after @jongsoo's diff https://phabricator.intern.facebook.com/D7596315 lands * [Easy][C2] Don't add blob to external outputs from output_record if it's already external output As desc. * On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization FACEBOOK: The QPL logger needs the initialization code. In the past, the initialization code is put in the pipeline calling Caffe2. However, those places become obsolete quickly, as the product teams change places to call Caffe2 from time to time. We also need to track which teams use Caffe2 so that we can put the initialization code there. With this diff, the initialization code is put in the predictor constructor, only enabled for mobile phones. This way, we can always enable QPL logging. Once we do this, we can check how many times Caffe2 inference is called in production, and which models are more popular in production. This way, we can prioritize our effort supporting those models. Will clean up the old code calling the init in the product in a separate diff. * add padding op for sparse length tensor to pad length-based sparse tensor with padding_value * Add conv_op with cudaconvnet engine Add conv_op with cudaconvnet engine * [numa] Fix simple NUMA copy benchmark Move XavierFill into init_net and also compute BW * call roundf (device function) instead of round (host function) * [caffe2_benchmark][observer] Make caffe2_benchmark use its own observer 1. Add ClearGlobalNetObservers() 2. Make caffe2_benchmark use its own observer and observer_reporter * [detectron] Use roundf instead of round in the detectron module ops * allow K larger than number of elements in top k op one use case is to use this op together with PackSegments for sparse tensors, where the number of elements in each slice is not statistically defined. * add ChannelShuffle DNNLOWP op * fixup math_cpu.cc break
826 lines
31 KiB
Python
826 lines
31 KiB
Python
## @package checkpoint
|
|
# Module caffe2.python.checkpoint
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import os
|
|
import logging
|
|
from caffe2.python import core, context
|
|
from caffe2.python.net_builder import ops
|
|
from caffe2.python.task import (
|
|
final_output,
|
|
Node,
|
|
Task,
|
|
TaskGroup,
|
|
TaskOutput,
|
|
WorkspaceType,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
@context.define_context()
|
|
class Job(object):
|
|
"""
|
|
A Job defines three TaskGroups: the `init_group`, the `epoch_group` and the
|
|
`exit_group` which will be run by a JobRunner.
|
|
|
|
The `init_group` will be run only once at startup. Its role is to
|
|
initialize globally persistent blobs such as model weights, accumulators
|
|
and data file lists.
|
|
|
|
The `epoch_group` will be run in a loop after init_group. The loop will
|
|
exit when any of the stop signals added with `add_stop_condition` is True
|
|
at the end of an epoch.
|
|
|
|
The download_group will be run only once, after all the executions of
|
|
epoch_group finish. Its role is to collect the distribute scattered
|
|
parameters back after training.
|
|
|
|
The `exit_group` will be run only once at the very end of the job, the
|
|
role of this group is to save the results of training in the end of the job.
|
|
|
|
Jobs are context-driven, so that Tasks can be added to the active Job
|
|
without having to explicitly pass the job object around.
|
|
|
|
Example of usage:
|
|
|
|
def build_reader(partitions):
|
|
with Job.current().init_group:
|
|
reader = HiveReader(init_reader, ..., partitions)
|
|
Task(step=init_reader)
|
|
with Job.current().epoch_group:
|
|
limited_reader = ReaderWithLimit(reader, num_iter=10000)
|
|
data_queue = pipe(limited_reader, num_threads=8)
|
|
Job.current().add_stop_condition(limited_reader.data_finished())
|
|
return data_queue
|
|
|
|
def build_hogwild_trainer(reader, model):
|
|
with Job.current().init_group:
|
|
Task(step=model.param_init_net)
|
|
with Job.current().epoch_group:
|
|
pipe(reader, processor=model, num_threads=8)
|
|
with Job.current().exit_group:
|
|
Task(step=model.save_model_net)
|
|
|
|
with Job() as job:
|
|
reader = build_reader(partitions)
|
|
model = build_model(params)
|
|
build_hogwild_trainer(reader, model)
|
|
"""
|
|
def __init__(self,
|
|
init_group=None, epoch_group=None,
|
|
download_group=None, exit_group=None,
|
|
stop_conditions=None, nodes_to_checkpoint=None):
|
|
self.init_group = init_group or TaskGroup(
|
|
workspace_type=WorkspaceType.GLOBAL)
|
|
self.epoch_group = epoch_group or TaskGroup()
|
|
self.download_group = download_group or TaskGroup()
|
|
self.exit_group = exit_group or TaskGroup()
|
|
self.stop_conditions = stop_conditions or []
|
|
self._nodes_to_checkpoint = nodes_to_checkpoint
|
|
|
|
def nodes_to_checkpoint(self):
|
|
if self._nodes_to_checkpoint:
|
|
return self._nodes_to_checkpoint
|
|
else:
|
|
return self.init_group.used_nodes()
|
|
|
|
def compile(self, session_class):
|
|
self._nodes_to_checkpoint = self.nodes_to_checkpoint()
|
|
self.init_group = session_class.compile(self.init_group)
|
|
self.epoch_group = session_class.compile(self.epoch_group)
|
|
self.download_group = session_class.compile(self.download_group)
|
|
self.exit_group = session_class.compile(self.exit_group)
|
|
|
|
def __enter__(self):
|
|
self.epoch_group.__enter__()
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.epoch_group.__exit__()
|
|
|
|
def add_stop_condition(self, output):
|
|
if isinstance(output, core.BlobReference):
|
|
t = Task(outputs=[output], group=self.epoch_group)
|
|
output = t.outputs()[0]
|
|
assert isinstance(output, TaskOutput)
|
|
self.stop_conditions.append(output)
|
|
|
|
|
|
def get_ckpt_filename(node_name, epoch):
|
|
"""Returns the checkpoint filename.
|
|
|
|
Args:
|
|
node_name: A string. The name of the node.
|
|
epoch: An integer. The checkpoint epoch.
|
|
|
|
Returns:
|
|
ckpt_filename: A string. The filename of the checkpoint.
|
|
"""
|
|
return node_name + '.' + str(epoch)
|
|
|
|
|
|
def db_name(epoch, node_name, db_prefix, path_prefix=None):
|
|
"""Returns the full db name where checkpoint files are saved.
|
|
|
|
Args:
|
|
epoch: An integer. The checkpoint epoch.
|
|
node_name: A string. The name of the node.
|
|
db_prefix: A string. The prefix used to construct full db name.
|
|
path_prefix: A string. Optional param used to construct db name or path
|
|
where checkpoint files are are stored.
|
|
Returns:
|
|
db_name: A string. The absolute path of full_db_name where checkpoint
|
|
files are saved
|
|
"""
|
|
if path_prefix:
|
|
db_name = path_prefix + get_ckpt_filename(node_name, epoch)
|
|
else:
|
|
ckpt_filename = get_ckpt_filename(node_name, epoch)
|
|
db_name = os.path.join(db_prefix, ckpt_filename)
|
|
return db_name
|
|
|
|
|
|
class CheckpointManager(object):
|
|
"""
|
|
Controls saving and loading of workspaces on every epoch boundary of a job.
|
|
If a CheckpointManager instance is passed to JobRunner, then JobRunner will
|
|
call `init`, `read` and `save` at different moments in between epoch runs.
|
|
|
|
Args:
|
|
db_prefix: The prefix used to construct full db name. Since `absolute_path`
|
|
is set to True, this will be used as db_name in SaveOp.
|
|
node_name: Name of the node where this checkpoint_manager is used.
|
|
db_type: Type of database to use for storing checkpoint.
|
|
metadata_handler: An optional object capable of reading/writing
|
|
checkpoint info in storage of choice.
|
|
"""
|
|
def __init__(self, db_prefix, node_name, db_type, metadata_handler=None):
|
|
self._db_prefix = db_prefix
|
|
self._node_name = node_name
|
|
self._db_type = db_type
|
|
self._metadata_handler = metadata_handler
|
|
# make sure these blobs are the first in the checkpoint file.
|
|
self._net = core.Net('!!checkpoint_mngr')
|
|
self._blob_names = self._net.AddExternalInput('blob_names')
|
|
self._names_output = None
|
|
self._path_prefix = None
|
|
self._path_type = None
|
|
self._current_db_name = None
|
|
self._current_checkpoint_duration = None
|
|
|
|
"""
|
|
Initialize the checkpoint manager. Determines all blobs that need to be saved
|
|
or loads from a checkpoint.
|
|
|
|
Args:
|
|
nodes: An array of nodes where this checkpoint manager is running. Should
|
|
only contain a single node.
|
|
retrieve_from_epoch: Set to a number to load blobs from this epoch.
|
|
path_prefix: Used to construct db name or path where checkpoint files are
|
|
stored.
|
|
path_type: Indicate the type of path where checkpoint files are stored.
|
|
"""
|
|
def init(
|
|
self,
|
|
nodes=None,
|
|
retrieve_from_epoch=None,
|
|
path_prefix=None,
|
|
path_type=None
|
|
):
|
|
"""
|
|
Build a Task that will be run once after the job's `init_group` is run.
|
|
This task will determine which blobs need to be checkpointed.
|
|
If retrieve_from_epoch is not None, then the checkpoint metadata is
|
|
retrieved from a previously saved checkpoint.
|
|
"""
|
|
assert nodes is None or len(nodes) == 1, (
|
|
'CheckpointManager only supports single node.')
|
|
|
|
with Task(outputs=[self._blob_names]) as task:
|
|
if retrieve_from_epoch is None:
|
|
ops.GetAllBlobNames(
|
|
[],
|
|
self._blob_names,
|
|
include_shared=False)
|
|
else:
|
|
full_db_name = db_name(retrieve_from_epoch,
|
|
self._node_name, self._db_prefix, path_prefix)
|
|
db_type = path_type or self._db_type
|
|
logger.info("Initializing checkpoints from = %s"
|
|
% full_db_name)
|
|
ops.Load(
|
|
[], self._blob_names,
|
|
db=full_db_name,
|
|
db_type=db_type,
|
|
absolute_path=True)
|
|
self._names_output = task.outputs()[0]
|
|
return task
|
|
|
|
def blob_list(self):
|
|
assert self._names_output
|
|
return self._names_output.fetch().tolist()
|
|
|
|
def _timed_task(self, cp_op_name, add_op):
|
|
"""
|
|
Build a Task that will measure the time span of checkpoint operations,
|
|
once operation is done, time can be read from _current_checkpoint_duration.
|
|
|
|
Args:
|
|
cp_op_name: A string name of the checkpoint operation.
|
|
add_op: A functor to add the checkpoint operation.
|
|
|
|
Returns:
|
|
A task with timer.
|
|
"""
|
|
with Task(name=cp_op_name) as task:
|
|
with ops.task_init():
|
|
timer = ops.TimerBegin([], counter_name=self._node_name)
|
|
add_op()
|
|
with ops.task_exit():
|
|
time_span_blob = ops.TimerGetAndEnd(timer)
|
|
self._current_checkpoint_duration = final_output(time_span_blob)
|
|
return task
|
|
|
|
def collect_checkpoint_stats(self, stats):
|
|
"""
|
|
Add one checkpoint stats into the stats.
|
|
|
|
Args:
|
|
stats: A dict of checkpoint stats that will be reported.
|
|
"""
|
|
if self._current_db_name and self._current_checkpoint_duration:
|
|
stats[self._current_db_name] = self._current_checkpoint_duration.fetch()[0]
|
|
else:
|
|
logger.info(
|
|
"Failed to collect checkpoint stats: {}".format(
|
|
self._current_db_name
|
|
)
|
|
)
|
|
|
|
def load(self, epoch, path_prefix=None, path_type=None):
|
|
"""
|
|
Build a Task that will be run by JobRunner when the job is to be
|
|
resumed from a given epoch. This task will run a Load op that will
|
|
load and deserialize all relevant blobs from a persistent storage.
|
|
"""
|
|
self._current_db_name = db_name(
|
|
epoch, self._node_name, self._db_prefix, path_prefix
|
|
)
|
|
db_type = path_type or self._db_type
|
|
logger.info("Loading checkpoints from = %s" % self._current_db_name)
|
|
|
|
def add_op():
|
|
ops.Load(
|
|
[],
|
|
self.blob_list(),
|
|
db=self._current_db_name,
|
|
db_type=db_type,
|
|
absolute_path=True)
|
|
|
|
return self._timed_task('checkpoint_load', add_op)
|
|
|
|
def load_blobs_from_checkpoint(self, blob_names, epoch):
|
|
"""
|
|
Builds a Task that loads only the necessary blobs from a checkpoint of
|
|
the given epoch. The necessary blobs are given in the blob_names
|
|
argument.
|
|
|
|
Args:
|
|
blob_names: A list of strings. Each string is the name of a
|
|
blob.
|
|
epoch: The checkpoint epoch to load from.
|
|
|
|
Returns:
|
|
A Task which loads the specified blobs from the checkpoint of the
|
|
given epoch.
|
|
"""
|
|
self._current_db_name = db_name(epoch, self._node_name, self._db_prefix)
|
|
logger.info('Load from %s' % self._current_db_name)
|
|
|
|
def add_op():
|
|
ops.Load(
|
|
[],
|
|
blob_names,
|
|
db=self._current_db_name,
|
|
db_type=self._db_type,
|
|
absolute_path=True,
|
|
allow_incomplete=True)
|
|
|
|
return self._timed_task('checkpoint_partial_load', add_op)
|
|
|
|
def check_db_exists(self, epoch):
|
|
logger.info('Check existence of %s' %
|
|
db_name(epoch, self._node_name, self._db_prefix))
|
|
with Task() as task:
|
|
existence = ops.Const(False)
|
|
ops.DBExists(
|
|
[],
|
|
[existence],
|
|
db_name=db_name(epoch, self._node_name, self._db_prefix),
|
|
db_type=self._db_type,
|
|
absolute_path=True)
|
|
task.add_output(existence)
|
|
return task
|
|
|
|
def report_checkpoint_stats(self, action_name):
|
|
"""
|
|
Report checkpoint operation stats for current node.
|
|
|
|
Args:
|
|
action_name: A string of the name of checkpoint operation.
|
|
"""
|
|
all_stats = {}
|
|
self.collect_checkpoint_stats(all_stats)
|
|
if self._metadata_handler:
|
|
self._metadata_handler.report(action_name, all_stats)
|
|
|
|
def save(self, epoch):
|
|
"""
|
|
Build a Task that is run once after `init_group` and after each
|
|
epoch is run. This will execute a Save ops to serialize and persist
|
|
blobs present in the global workspace.
|
|
"""
|
|
self._current_db_name = db_name(epoch, self._node_name, self._db_prefix)
|
|
logger.info('Saving to %s' % self._current_db_name)
|
|
|
|
def add_op():
|
|
ops.Save(
|
|
self.blob_list(), [],
|
|
db=self._current_db_name,
|
|
db_type=self._db_type,
|
|
absolute_path=True)
|
|
|
|
return self._timed_task('checkpoint_save', add_op)
|
|
|
|
def write_checkpoint_metadata(self, epoch):
|
|
"""
|
|
Write metadata for checkpoint
|
|
|
|
Args:
|
|
epoch: An integer. The epoch-id for which checkpoint metadata is
|
|
written
|
|
"""
|
|
if self._metadata_handler is not None:
|
|
self._metadata_handler.write(epoch=epoch)
|
|
|
|
def get_resume_from_epoch_id(self, user_epoch=None):
|
|
"""
|
|
Identify the epoch-id from which Job must resume
|
|
|
|
Args:
|
|
user_epoch: An integer. Optional parameter for user to explicitly
|
|
identify the epoch-id to load checkpoint from
|
|
Retruns:
|
|
epoch: the epoch-id to load checkpoints from
|
|
or None if no checkpoints were written
|
|
"""
|
|
last_epoch = user_epoch
|
|
if self._metadata_handler is not None:
|
|
last_epoch = self._metadata_handler.last_epoch(user_epoch=user_epoch)
|
|
return last_epoch
|
|
|
|
def set_params(self, nodes, path_prefix=None, path_type=None):
|
|
"""Set parameters associated with CP manager
|
|
|
|
Args:
|
|
nodes: An array of nodes where this checkpoint manager is running.
|
|
path_prefix: Used to construct db name or path where checkpoint files are
|
|
stored.
|
|
path_type: Indicate the type of path where checkpoint files are stored.
|
|
"""
|
|
if path_prefix:
|
|
self._path_prefix = path_prefix
|
|
if path_type:
|
|
self._path_type = path_type
|
|
if self._metadata_handler:
|
|
self._metadata_handler.set_params(
|
|
db_prefix=self._db_prefix,
|
|
db_type=self._db_type,
|
|
node_names=[str(self._node_name)],
|
|
path_prefix=self._path_prefix,
|
|
path_type=self._path_type)
|
|
|
|
def cp_accessible(self, epoch=None):
|
|
"""Returns True if Checkpoint data is accessible
|
|
|
|
Args:
|
|
epoch: An integer. The epoch of the checkpoint. If None,
|
|
it implies we need to check if checkpoint directory is accessible
|
|
|
|
Returns:
|
|
is_cp_accessible: A boolean. Returns True if Checkpoint data is accessible
|
|
"""
|
|
if self._metadata_handler is not None:
|
|
return self._metadata_handler.cp_accessible(epoch)
|
|
else:
|
|
return True
|
|
|
|
|
|
class MultiNodeCheckpointManager(object):
|
|
"""
|
|
Coordinates checkpointing and checkpointing across multiple nodes.
|
|
Each of `init`, `load` and `save` will build TaskGroups which will
|
|
trigger checkpointing on each of the nodes involved in a distributed job.
|
|
|
|
Args:
|
|
db_prefix: The prefix used to construct full db name. Since `absolute_path`
|
|
is set to True, this will be used as db_name in SaveOp.
|
|
db_type: Type of database to use for storing checkpoint.
|
|
metadata_handler: An optional object capable of reading/writing
|
|
checkpoint info in storage of choice.
|
|
"""
|
|
def __init__(self, db_prefix, db_type, metadata_handler=None):
|
|
self._node_managers = None
|
|
self._db_prefix = db_prefix
|
|
self._db_type = db_type
|
|
self._metadata_handler = metadata_handler
|
|
self._path_prefix = None
|
|
self._path_type = None
|
|
|
|
def _task_group(self, func, *args, **kw):
|
|
assert self._node_managers is not None, 'init must be called first.'
|
|
with TaskGroup(WorkspaceType.GLOBAL) as task_group:
|
|
for node, manager in self._node_managers:
|
|
with Node(node):
|
|
func(manager, *args, **kw)
|
|
return task_group
|
|
|
|
"""
|
|
Args:
|
|
nodes: An array of nodes where this checkpoint manager is running.
|
|
retrieve_from_epoch: Set to a number to load blobs from this epoch.
|
|
path_prefix: Used to construct db name or path where checkpoint files are
|
|
stored.
|
|
path_type: Indicate the type of path where checkpoint files are stored.
|
|
"""
|
|
def init(
|
|
self, nodes, retrieve_from_epoch=None, path_prefix=None, path_type=None
|
|
):
|
|
if self._node_managers is not None:
|
|
assert [node for node, _ in self._node_managers] == nodes
|
|
return TaskGroup(WorkspaceType.GLOBAL)
|
|
self._node_managers = []
|
|
for node in nodes:
|
|
with Node(node):
|
|
manager = CheckpointManager(
|
|
db_prefix=self._db_prefix,
|
|
node_name=str(node),
|
|
db_type=self._db_type)
|
|
self._node_managers.append((node, manager))
|
|
return self._task_group(
|
|
CheckpointManager.init,
|
|
nodes=[node],
|
|
retrieve_from_epoch=retrieve_from_epoch,
|
|
path_prefix=path_prefix,
|
|
path_type=path_type)
|
|
|
|
def load(self, epoch, path_prefix=None, path_type=None):
|
|
return self._task_group(
|
|
CheckpointManager.load,
|
|
epoch,
|
|
path_prefix=path_prefix,
|
|
path_type=path_type)
|
|
|
|
def load_blobs_locally(self, nodes, blob_names, epoch, session):
|
|
"""Loads the necessary blobs from the checkpoints to the current node.
|
|
|
|
Args:
|
|
blob_names: A list of strings. Each string is the name of a
|
|
blob.
|
|
epoch: An integer. The checkpoint epoch to load from.
|
|
session: A Session object to execute the Load ops.
|
|
"""
|
|
if self._node_managers is not None:
|
|
assert [node for node, _ in self._node_managers] == nodes
|
|
else:
|
|
self._node_managers = []
|
|
for node in nodes:
|
|
with Node(node):
|
|
manager = CheckpointManager(
|
|
db_prefix=self._db_prefix,
|
|
node_name=str(node),
|
|
db_type=self._db_type)
|
|
self._node_managers.append((node, manager))
|
|
assert self._node_managers is not None, 'must initialize node managers'
|
|
for _, manager in self._node_managers:
|
|
existence_task = manager.check_db_exists(epoch)
|
|
session.run(existence_task)
|
|
existence = existence_task.outputs()[0].fetch()
|
|
if not existence:
|
|
logger.info('DB %s does not exist!' %
|
|
db_name(epoch, manager._node_name, manager._db_prefix))
|
|
return False
|
|
load_task = manager.load_blobs_from_checkpoint(blob_names, epoch)
|
|
session.run(load_task)
|
|
logger.info('Successfully loaded from checkpoints.')
|
|
return True
|
|
|
|
def get_ckpt_db_name(self, node_name, epoch):
|
|
"""Returns the DB name of the given node and the given epoch.
|
|
|
|
The DB name is effectively the checkpoint path of the given node and
|
|
the given epoch.
|
|
|
|
Args:
|
|
node_name: A string. The node name of interest.
|
|
epoch: An integer. The epoch of the checkpoint.
|
|
|
|
Returns:
|
|
checkpoint_db_name: A string. The checkpoint path of the given
|
|
node and the given epoch.
|
|
"""
|
|
for node, manager in self._node_managers:
|
|
if str(node) == node_name:
|
|
return db_name(epoch, manager._node_name, manager._db_prefix)
|
|
|
|
def report_checkpoint_stats(self, action_name):
|
|
"""
|
|
Report the checkpoint stats for all the nodes, we need to aggregate all
|
|
the node's stats together so that we know which node's checkpoint
|
|
operation dominates.
|
|
|
|
Args:
|
|
action_name: A string of the name of checkpoint operation.
|
|
"""
|
|
all_stats = {}
|
|
for _, manager in self._node_managers:
|
|
manager.collect_checkpoint_stats(all_stats)
|
|
logger.debug("checkpoint stats: {}".format(all_stats))
|
|
if self._metadata_handler:
|
|
self._metadata_handler.report(action_name, all_stats)
|
|
|
|
def save(self, epoch):
|
|
"""
|
|
Build a Task that will execute a Save ops to serialize and persist
|
|
blobs present in the global workspace.
|
|
"""
|
|
return self._task_group(CheckpointManager.save, epoch)
|
|
|
|
def write_checkpoint_metadata(self, epoch):
|
|
"""
|
|
Write metadata for checkpoint
|
|
|
|
Args:
|
|
epoch: An integer. The epoch-id for which checkpoint metadata is
|
|
written
|
|
"""
|
|
if self._metadata_handler is not None:
|
|
self._metadata_handler.write(epoch=epoch)
|
|
|
|
def get_resume_from_epoch_id(self, user_epoch=None):
|
|
"""
|
|
Identify the epoch-id from which Job must resume
|
|
|
|
Args:
|
|
user_epoch: An integer. Optional parameter for user to explicitly
|
|
identify the epoch-id to load checkpoint from
|
|
Retruns:
|
|
epoch: the epoch-id to load checkpoints from
|
|
or None if no checkpoints were written
|
|
"""
|
|
last_epoch = user_epoch
|
|
if self._metadata_handler is not None:
|
|
last_epoch = self._metadata_handler.last_epoch(user_epoch=user_epoch)
|
|
return last_epoch
|
|
|
|
def set_params(self, nodes, path_prefix=None, path_type=None):
|
|
"""Set parameters associated with CP manager
|
|
|
|
Args:
|
|
nodes: An array of nodes where this checkpoint manager is running.
|
|
path_prefix: Used to construct db name or path where checkpoint files are
|
|
stored.
|
|
path_type: Indicate the type of path where checkpoint files are stored.
|
|
"""
|
|
self._node_names = [str(node) for node in nodes]
|
|
if path_prefix:
|
|
self._path_prefix = path_prefix
|
|
if path_type:
|
|
self._path_type = path_type
|
|
if self._metadata_handler:
|
|
self._metadata_handler.set_params(
|
|
db_prefix=self._db_prefix,
|
|
db_type=self._db_type,
|
|
node_names=self._node_names,
|
|
path_prefix=self._path_prefix,
|
|
path_type=self._path_type)
|
|
|
|
def cp_accessible(self, epoch=None):
|
|
"""Returns True if Checkpoint data is accessible
|
|
|
|
Args:
|
|
epoch: An integer. The epoch of the checkpoint. If None,
|
|
it implies we need to check if checkpoint directory is accessible
|
|
|
|
Returns:
|
|
is_cp_accessible: A boolean. Returns True if Checkpoint data is accessible
|
|
"""
|
|
if self._metadata_handler is not None:
|
|
return self._metadata_handler.cp_accessible(epoch)
|
|
else:
|
|
return True
|
|
|
|
|
|
class UploadTaskGroupBuilder(object):
|
|
"""A simple class to upload checkpoints."""
|
|
def build(self, epoch, checkpoint_manager):
|
|
"""Builds the task group to upload checkpoints.
|
|
|
|
Args:
|
|
epoch: An integer. The checkpoint epoch to be uploaded.
|
|
checkpoint_manager: Can be a CheckpointManager for single machine
|
|
or a MultiNodeCheckpointManager for multi-machine. The manager
|
|
that initializes/saves/loads checkpoints.
|
|
|
|
Raises:
|
|
NotImplementedError: This base class only has the interface,
|
|
the implementation will be in the subclasses.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
|
|
class JobRunner(object):
|
|
"""
|
|
Implement the runtime logic for jobs with checkpointing at the level of
|
|
epoch. Can be used to run either single-host or distributed jobs. Job
|
|
runner is a callable to be called once from the master, passing a session
|
|
as an argument. This call will block until the Job execution is complete.
|
|
|
|
If a checkpoint_manager is passed, checkpoints will be taken after
|
|
initialization and after each epoch execution. If, in addition,
|
|
`resume_from_epoch` is an epoch number, the corresponding checkpoint will
|
|
be loaded and job execution will continue from the given epoch. In
|
|
this case, the job's init_group will not be run.
|
|
|
|
Refer to checkpoint_test.py for an example.
|
|
"""
|
|
def __init__(self, job, checkpoint_manager=None, resume_from_epoch=None,
|
|
upload_task_group_builder=None):
|
|
"""Initializes the JobRunner.
|
|
|
|
Args:
|
|
job: A Job object. The job to be executed.
|
|
checkpoint_manager: Can be a CheckpointManager for single machine
|
|
or a MultiNodeCheckpointManager for multi-machine. The manager
|
|
that initializes/saves/loads checkpoints.
|
|
resume_from_epoch: An integer. The epoch to resume from.
|
|
upload_task_group_builder: A subclass of the
|
|
UploadTaskGroupBuilder. Creates a task group to upload
|
|
checkpoints.
|
|
"""
|
|
self.resume_from_epoch = resume_from_epoch
|
|
self.checkpoint_manager = checkpoint_manager
|
|
self.job = job
|
|
self.upload_task_group_builder = upload_task_group_builder
|
|
|
|
def train(self, session):
|
|
"""Runs the training flow.
|
|
|
|
Args:
|
|
session: A Session object. Valid choises are: LocalSession,
|
|
LocalHostScheduler, and DistributedSession. It is used to
|
|
execute one TaskGroup a time.
|
|
"""
|
|
# identify the epoch we must resume from
|
|
if self.checkpoint_manager:
|
|
self.checkpoint_manager.set_params(nodes=self.job.nodes_to_checkpoint())
|
|
self.resume_from_epoch = self.checkpoint_manager.\
|
|
get_resume_from_epoch_id(self.resume_from_epoch)
|
|
if self.resume_from_epoch is not None:
|
|
logger.info('Resuming from epoch {}'.format(self.resume_from_epoch))
|
|
|
|
# Initialize all the nodes.
|
|
from_scratch = self.resume_from_epoch is None
|
|
if from_scratch:
|
|
session.run(self.job.init_group)
|
|
|
|
if self.checkpoint_manager:
|
|
logger.info('Preparing checkpoints ...')
|
|
session.run(self.checkpoint_manager.init(
|
|
self.job.nodes_to_checkpoint(),
|
|
retrieve_from_epoch=self.resume_from_epoch))
|
|
# Save the first checkpoint before training starts, or resume from
|
|
# a previously saved checkpoint.
|
|
if from_scratch:
|
|
self.save_checkpoints(0, session)
|
|
else:
|
|
logger.info('Loading checkpoints for epoch {} ...'.format(
|
|
self.resume_from_epoch))
|
|
session.run(
|
|
self.checkpoint_manager.load(self.resume_from_epoch))
|
|
self.checkpoint_manager.report_checkpoint_stats('checkpoint_load')
|
|
logger.info('Checkpoint loaded')
|
|
|
|
logger.info("Finished initializing")
|
|
|
|
# Start training.
|
|
epoch = 1 if from_scratch else self.resume_from_epoch + 1
|
|
while True:
|
|
logger.info('Starting epoch %d' % epoch)
|
|
session.run(self.job.epoch_group)
|
|
logger.info('Finished epoch %d' % epoch)
|
|
stop_conditions = [o.fetch() for o in self.job.stop_conditions]
|
|
|
|
if self.checkpoint_manager:
|
|
self.save_checkpoints(epoch, session)
|
|
|
|
if any(stop_conditions):
|
|
logger.info('Stopping')
|
|
break
|
|
epoch += 1
|
|
logger.info('Finished training')
|
|
# Upload the checkpoints.
|
|
if (self.upload_task_group_builder):
|
|
upload_task_group = self.upload_task_group_builder.build(
|
|
epoch, self.checkpoint_manager)
|
|
session.run(upload_task_group)
|
|
logger.info('Finished uploading the checkpoints')
|
|
|
|
# Download the parameters to save
|
|
session.run(self.job.download_group)
|
|
logger.info('Finished downloading the parameters')
|
|
|
|
# Finally run the exit step to save nets
|
|
session.run(self.job.exit_group)
|
|
logger.info('Finished running the exit group')
|
|
return epoch
|
|
|
|
def load_blobs_from_checkpoints(self, blob_names, epoch, session):
|
|
"""Loads the necessary blobs from the checkpoints.
|
|
|
|
Checkpoints store the snapshots of the workspace in each node.
|
|
Sometimes we only need to load a subset of the blobs from the
|
|
checkpoints. One common scenario is to load only the model blobs from
|
|
the checkpoints for evaluation purpose. Given the names of the
|
|
necessary blobs, this function goes over all the checkpoints of all the
|
|
nodes, but only loads the blobs specified in the blob_names to the
|
|
current workspace.
|
|
|
|
Args:
|
|
blob_names: A list of strings. Each string is the name of a
|
|
blob.
|
|
epoch: An integer. The checkpoint epoch to load from.
|
|
session: A Session object to execute the load ops.
|
|
|
|
Raises:
|
|
ValueError: When the checkpoint manager is invalid.
|
|
"""
|
|
if not self.checkpoint_manager:
|
|
raise ValueError('Checkpoint manager is None')
|
|
logger.info('Loading checkpoint for epoch {} ...'.format(epoch))
|
|
result = self.checkpoint_manager.load_blobs_locally(
|
|
self.job.nodes_to_checkpoint(), blob_names, epoch, session)
|
|
self.checkpoint_manager.report_checkpoint_stats('checkpoint_partial_load')
|
|
return result
|
|
|
|
def save_checkpoints(self, epoch, session):
|
|
"""Triggers operation to save checkpoints
|
|
|
|
This method will trigger the Save ops to serialize and persist the
|
|
blobs present in the global workspaace.
|
|
|
|
Args:
|
|
epoch: An integer. The checkpoint epoch-id that we are saving.
|
|
session: A Session object to execute the save ops.
|
|
|
|
Raises:
|
|
ValueError: When the checkpoint manager is invalid.
|
|
"""
|
|
if not self.checkpoint_manager:
|
|
raise ValueError('Checkpoint manager is None')
|
|
try:
|
|
is_accessible = self.checkpoint_manager.cp_accessible(epoch=None)
|
|
if is_accessible:
|
|
logger.info('Saving checkpoints for epoch {}'.format(epoch))
|
|
session.run(self.checkpoint_manager.save(epoch))
|
|
self.checkpoint_manager.write_checkpoint_metadata(epoch)
|
|
logger.info('Checkpoints saved')
|
|
self.checkpoint_manager.report_checkpoint_stats('checkpoint_save')
|
|
else:
|
|
logger.warning("Checkpoint files cannot be accessed!")
|
|
except Exception as ex:
|
|
logger.warning("Unable to write checkpoint for epoch {}. Error={}".
|
|
format(epoch, ex))
|
|
|
|
|
|
def epoch_limiter(job, num_epochs):
|
|
"""
|
|
Creates a task that will output True when a given
|
|
number of epochs has finished.
|
|
"""
|
|
with job.init_group:
|
|
init_net = core.Net('epoch_counter_init')
|
|
counter = init_net.CreateCounter([], init_count=num_epochs - 1)
|
|
Task(step=init_net)
|
|
|
|
with job.epoch_group:
|
|
epoch_net = core.Net('epoch_countdown')
|
|
finished = epoch_net.CountDown(counter)
|
|
output = Task(step=epoch_net, outputs=finished).outputs()[0]
|
|
job.add_stop_condition(output)
|