mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Class FQN is needed when unpacking CustomObj instance. For all other Arguments, e.g. Tensor, TensorList, SymInt, we always know their exact type. However, CustomObjArgument had an opaque type. Adding this field also helps unveiling the type of this opaque object. Test Plan: CI Differential Revision: D53029847 Pull Request resolved: https://github.com/pytorch/pytorch/pull/118158 Approved by: https://github.com/zhxchen17
633 lines
23 KiB
Python
633 lines
23 KiB
Python
import copy
|
|
import dataclasses
|
|
import functools
|
|
import types
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
TYPE_CHECKING,
|
|
Union,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
# Import the following modules during type checking to enable code intelligence features,
|
|
# such as auto-completion in tools like pylance, even when these modules are not explicitly
|
|
# imported in user code.
|
|
|
|
import sympy
|
|
|
|
from torch.utils._sympy.value_ranges import ValueRanges
|
|
|
|
import torch
|
|
import torch.fx._pytree as fx_pytree
|
|
import torch.utils._pytree as pytree
|
|
from torch.fx._compatibility import compatibility
|
|
from torch.fx.experimental.proxy_tensor import maybe_disable_fake_tensor_mode
|
|
|
|
from torch.fx.passes.infra.pass_base import PassResult
|
|
from torch.fx.passes.infra.pass_manager import PassManager
|
|
|
|
from .graph_signature import ( # noqa: F401
|
|
_sig_to_specs,
|
|
ArgumentSpec,
|
|
ConstantArgument,
|
|
CustomObjArgument,
|
|
ExportGraphSignature,
|
|
InputKind,
|
|
InputSpec,
|
|
OutputKind,
|
|
OutputSpec,
|
|
SymIntArgument,
|
|
TensorArgument,
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"ExportedProgram",
|
|
"ModuleCallEntry",
|
|
"ModuleCallSignature",
|
|
]
|
|
|
|
|
|
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ModuleCallSignature:
|
|
inputs: List[ArgumentSpec]
|
|
outputs: List[ArgumentSpec]
|
|
in_spec: pytree.TreeSpec
|
|
out_spec: pytree.TreeSpec
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ModuleCallEntry:
|
|
fqn: str
|
|
signature: Optional[ModuleCallSignature] = None
|
|
|
|
|
|
def _disable_prexisiting_fake_mode(fn):
|
|
@functools.wraps(fn)
|
|
def wrapper(*args, **kwargs):
|
|
with maybe_disable_fake_tensor_mode():
|
|
return fn(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
class ExportedProgram:
|
|
"""
|
|
Package of a program from :func:`export`. It contains
|
|
an :class:`torch.fx.Graph` that represents Tensor computation, a state_dict containing
|
|
tensor values of all lifted parameters and buffers, and various metadata.
|
|
|
|
You can call an ExportedProgram like the original callable traced by
|
|
:func:`export` with the same calling convention.
|
|
|
|
To perform transformations on the graph, use ``.module`` property to access
|
|
an :class:`torch.fx.GraphModule`. You can then use
|
|
`FX transformation <https://pytorch.org/docs/stable/fx.html#writing-transformations>`_
|
|
to rewrite the graph. Afterwards, you can simply use :func:`export`
|
|
again to construct a correct ExportedProgram.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
root: Union[torch.nn.Module, Dict[str, Any]],
|
|
graph: torch.fx.Graph,
|
|
graph_signature: ExportGraphSignature,
|
|
state_dict: Dict[str, Union[torch.Tensor, torch.nn.Parameter]],
|
|
range_constraints: "Dict[sympy.Symbol, Any]",
|
|
module_call_graph: List[ModuleCallEntry],
|
|
example_inputs: Optional[Tuple[Tuple[Any, ...], Dict[str, Any]]] = None,
|
|
verifier: Optional[Type[Any]] = None, # TODO Change typing hint to Verifier.
|
|
tensor_constants: Optional[
|
|
Dict[str, torch.Tensor]
|
|
] = None, # TODO: deprecate this
|
|
constants: Optional[
|
|
Dict[str, Union[torch.Tensor, torch._C.ScriptObject]]
|
|
] = None,
|
|
):
|
|
from torch._export.exported_program import _create_graph_module_for_export
|
|
|
|
# Remove codegen related things from the graph. It should just be a flat graph.
|
|
graph._codegen = torch.fx.graph.CodeGen()
|
|
self._graph_module = _create_graph_module_for_export(root, graph)
|
|
if isinstance(root, torch.fx.GraphModule):
|
|
self._graph_module.meta.update(root.meta)
|
|
|
|
self._graph_signature: ExportGraphSignature = graph_signature
|
|
self._state_dict: Dict[str, Any] = state_dict
|
|
self._range_constraints: "Dict[sympy.Symbol, ValueRanges]" = range_constraints
|
|
assert module_call_graph is not None
|
|
self._module_call_graph: List[ModuleCallEntry] = module_call_graph
|
|
self._example_inputs = example_inputs
|
|
|
|
self._constants = tensor_constants or constants or {}
|
|
assert self._constants is not None
|
|
|
|
from torch._export.verifier import Verifier
|
|
|
|
if verifier is None:
|
|
verifier = Verifier
|
|
assert issubclass(verifier, Verifier)
|
|
self._verifier = verifier
|
|
# Validate should be always the last step of the constructor.
|
|
self.verifier().check(self)
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def graph_module(self):
|
|
return self._graph_module
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def graph(self):
|
|
return self.graph_module.graph
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def graph_signature(self):
|
|
return self._graph_signature
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def state_dict(self):
|
|
return self._state_dict
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def parameters(self) -> Iterator[torch.nn.Parameter]:
|
|
"""
|
|
Returns an iterator over original module's parameters.
|
|
"""
|
|
for _, param in self.named_parameters():
|
|
yield param
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def named_parameters(self) -> Iterator[Tuple[str, torch.nn.Parameter]]:
|
|
"""
|
|
Returns an iterator over original module parameters, yielding
|
|
both the name of the parameter as well as the parameter itself.
|
|
"""
|
|
for param_name in self.graph_signature.parameters:
|
|
yield param_name, self.state_dict[param_name]
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def buffers(self) -> Iterator[torch.Tensor]:
|
|
"""
|
|
Returns an iterator over original module buffers.
|
|
"""
|
|
for _, buf in self.named_buffers():
|
|
yield buf
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def named_buffers(self) -> Iterator[Tuple[str, torch.Tensor]]:
|
|
"""
|
|
Returns an iterator over original module buffers, yielding
|
|
both the name of the buffer as well as the buffer itself.
|
|
"""
|
|
for buffer_name in self.graph_signature.buffers:
|
|
yield buffer_name, self.state_dict[buffer_name]
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def range_constraints(self):
|
|
return self._range_constraints
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def module_call_graph(self):
|
|
return self._module_call_graph
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def example_inputs(self):
|
|
return self._example_inputs
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def call_spec(self):
|
|
from torch._export.exported_program import CallSpec
|
|
|
|
if len(self.module_call_graph) == 0:
|
|
return CallSpec(in_spec=None, out_spec=None)
|
|
assert self.module_call_graph[0].fqn == ""
|
|
return CallSpec(
|
|
in_spec=self.module_call_graph[0].signature.in_spec,
|
|
out_spec=self.module_call_graph[0].signature.out_spec,
|
|
)
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def verifier(self) -> Any:
|
|
return self._verifier
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def dialect(self) -> str:
|
|
return self._verifier.dialect
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def tensor_constants(self):
|
|
return self._constants
|
|
|
|
@property
|
|
@compatibility(is_backward_compatible=False)
|
|
def constants(self):
|
|
return self._constants
|
|
|
|
def __call__(self, *args: Any, **kwargs: Any) -> Any:
|
|
import torch._export.error as error
|
|
|
|
if self.call_spec.in_spec is not None:
|
|
try:
|
|
user_args = (args, kwargs or {})
|
|
args = fx_pytree.tree_flatten_spec(
|
|
user_args, self.call_spec.in_spec, exact_structural_match=True
|
|
) # type: ignore[assignment]
|
|
except Exception:
|
|
_, received_spec = pytree.tree_flatten(user_args)
|
|
raise TypeError( # noqa: TRY200
|
|
"Trying to flatten user inputs with exported input tree spec: \n"
|
|
f"{self.call_spec.in_spec}\n"
|
|
"but actually got inputs with tree spec of: \n"
|
|
f"{received_spec}"
|
|
)
|
|
|
|
additional_inputs = []
|
|
for input_ in self.graph_signature.input_specs:
|
|
if input_.kind == InputKind.USER_INPUT:
|
|
continue
|
|
elif input_.kind in (InputKind.PARAMETER, InputKind.BUFFER):
|
|
additional_inputs.append(self.state_dict[input_.target])
|
|
elif input_.kind in (InputKind.CONSTANT_TENSOR, InputKind.CUSTOM_OBJ):
|
|
additional_inputs.append(self.constants[input_.target])
|
|
additional_inputs = tuple(additional_inputs)
|
|
|
|
self._check_input_constraints(*args)
|
|
|
|
# NOTE: calling convention is first params, then buffers, then args as user supplied them.
|
|
# See: torch/_functorch/aot_autograd.py#L1034
|
|
res = torch.fx.Interpreter(self.graph_module).run(
|
|
*additional_inputs,
|
|
*args,
|
|
enable_io_processing=False,
|
|
)
|
|
|
|
if self.call_spec.out_spec is not None:
|
|
buffer_mutation = self.graph_signature.buffers_to_mutate
|
|
user_input_mutation = self.graph_signature.user_inputs_to_mutate
|
|
num_mutated = len(buffer_mutation) + len(user_input_mutation)
|
|
mutated_values = res[:num_mutated]
|
|
|
|
# Exclude dependency token from final result.
|
|
assertion_dep_token = self.graph_signature.assertion_dep_token
|
|
if assertion_dep_token is not None:
|
|
assertion_dep_token_index = next(iter(assertion_dep_token.keys()))
|
|
res = res[:assertion_dep_token_index]
|
|
|
|
res = res[num_mutated:]
|
|
try:
|
|
res = pytree.tree_unflatten(res, self.call_spec.out_spec)
|
|
except Exception:
|
|
_, received_spec = pytree.tree_flatten(res)
|
|
raise error.InternalError( # noqa: TRY200
|
|
"Trying to flatten user outputs with exported output tree spec: \n"
|
|
f"{self.call_spec.out_spec}\n"
|
|
"but actually got outputs with tree spec of: \n"
|
|
f"{received_spec}"
|
|
)
|
|
finally:
|
|
user_inputs = [
|
|
spec
|
|
for spec in self.graph_signature.input_specs
|
|
if spec.kind == InputKind.USER_INPUT
|
|
]
|
|
for i, value in enumerate(mutated_values):
|
|
output_spec = self.graph_signature.output_specs[i]
|
|
if output_spec.kind == OutputKind.BUFFER_MUTATION:
|
|
assert output_spec.target is not None
|
|
self.state_dict[output_spec.target] = value
|
|
elif output_spec.kind == OutputKind.USER_INPUT_MUTATION:
|
|
assert output_spec.target is not None
|
|
index = next(
|
|
i
|
|
for i, spec in enumerate(user_inputs)
|
|
if spec.arg.name == output_spec.target
|
|
)
|
|
args[index].copy_(value)
|
|
else:
|
|
raise AssertionError(f"Unexpected kind: {output_spec.kind}")
|
|
|
|
return res
|
|
|
|
def __str__(self) -> str:
|
|
graph_module = self.graph_module.print_readable(print_output=False).replace(
|
|
"\n", "\n "
|
|
)
|
|
string = (
|
|
"ExportedProgram:\n"
|
|
f" {graph_module}\n"
|
|
f"Graph signature: {self.graph_signature}\n"
|
|
f"Range constraints: {self.range_constraints}\n"
|
|
)
|
|
return string
|
|
|
|
def module(self) -> torch.nn.Module:
|
|
"""
|
|
Returns a self contained GraphModule with all the parameters/buffers inlined.
|
|
"""
|
|
from ._unlift import _unlift_exported_program_lifted_states
|
|
|
|
module = _unlift_exported_program_lifted_states(self)
|
|
|
|
def _train(self, mode: bool = True):
|
|
raise NotImplementedError("Calling train() is not supported yet.")
|
|
|
|
def _eval(self, mode: bool = True):
|
|
raise NotImplementedError("Calling eval() is not supported yet.")
|
|
|
|
module.train = types.MethodType(_train, module) # type: ignore[method-assign]
|
|
module.eval = types.MethodType(_eval, module) # type: ignore[method-assign]
|
|
return module
|
|
|
|
@_disable_prexisiting_fake_mode
|
|
def run_decompositions(
|
|
self, decomp_table: Optional[Dict[torch._ops.OperatorBase, Callable]] = None
|
|
) -> "ExportedProgram":
|
|
"""
|
|
Run a set of decompositions on the exported program and returns a new
|
|
exported program. By default we will run the Core ATen decompositions to
|
|
get operators in the
|
|
`Core ATen Operator Set <https://pytorch.org/docs/stable/torch.compiler_ir.html>`_.
|
|
|
|
For now, we do not decompose joint graphs.
|
|
"""
|
|
from torch._decomp import core_aten_decompositions
|
|
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
|
|
_AddRuntimeAssertionsForInlineConstraintsPass,
|
|
)
|
|
from torch._export.passes.lift_constants_pass import lift_constants_pass
|
|
from torch._export.passes.replace_sym_size_ops_pass import (
|
|
_replace_sym_size_ops_pass,
|
|
)
|
|
from torch._functorch.aot_autograd import aot_export_module
|
|
|
|
def _get_placeholders(gm):
|
|
placeholders = []
|
|
for node in gm.graph.nodes:
|
|
if node.op != "placeholder":
|
|
break
|
|
placeholders.append(node)
|
|
return placeholders
|
|
|
|
decomp_table = decomp_table or core_aten_decompositions()
|
|
|
|
old_placeholders = _get_placeholders(self.graph_module)
|
|
fake_args = [node.meta["val"] for node in old_placeholders]
|
|
|
|
buffers_to_remove = [name for name, _ in self.graph_module.named_buffers()]
|
|
for name in buffers_to_remove:
|
|
delattr(self.graph_module, name)
|
|
# TODO(zhxhchen17) Return the new graph_signature directly.
|
|
gm, graph_signature = aot_export_module(
|
|
self.graph_module, fake_args, decompositions=decomp_table, trace_joint=False
|
|
)
|
|
|
|
# Update the signatures with the new placeholder names in case they
|
|
# changed when calling aot_export
|
|
def update_arg(old_arg, new_ph):
|
|
if isinstance(old_arg, ConstantArgument):
|
|
return old_arg
|
|
elif isinstance(old_arg, TensorArgument):
|
|
return TensorArgument(name=new_ph.name)
|
|
elif isinstance(old_arg, SymIntArgument):
|
|
return SymIntArgument(name=new_ph.name)
|
|
raise RuntimeError(f"Type of old_arg not supported: {type(old_arg)}")
|
|
|
|
new_placeholders = _get_placeholders(gm)
|
|
new_outputs = list(gm.graph.nodes)[-1].args[0]
|
|
|
|
# To match the output target with correct input for input mutations
|
|
# need to find the old to new placeholder map
|
|
old_new_placeholder_map = {
|
|
spec.arg.name: new_placeholders[i].name
|
|
for i, spec in enumerate(self.graph_signature.input_specs)
|
|
if not isinstance(spec.arg, ConstantArgument)
|
|
}
|
|
|
|
input_specs = [
|
|
InputSpec(spec.kind, update_arg(spec.arg, new_placeholders[i]), spec.target)
|
|
for i, spec in enumerate(self.graph_signature.input_specs)
|
|
]
|
|
output_specs = [
|
|
OutputSpec(
|
|
spec.kind,
|
|
update_arg(spec.arg, new_outputs[i]),
|
|
old_new_placeholder_map.get(spec.target, spec.target),
|
|
)
|
|
for i, spec in enumerate(self.graph_signature.output_specs)
|
|
]
|
|
|
|
assert len(new_placeholders) == len(old_placeholders)
|
|
|
|
new_graph_signature = ExportGraphSignature(
|
|
input_specs=input_specs, output_specs=output_specs
|
|
)
|
|
# NOTE: aot_export adds symint metadata for placeholders with int
|
|
# values; since these become specialized, we replace such metadata with
|
|
# the original values.
|
|
# Also, set the param/buffer metadata back to the placeholders.
|
|
for old_node, new_node in zip(old_placeholders, new_placeholders):
|
|
if not isinstance(old_node.meta["val"], torch.Tensor):
|
|
new_node.meta["val"] = old_node.meta["val"]
|
|
|
|
if (
|
|
new_node.target in new_graph_signature.inputs_to_parameters
|
|
or new_node.target in new_graph_signature.inputs_to_buffers
|
|
):
|
|
for k, v in old_node.meta.items():
|
|
new_node.meta[k] = v
|
|
|
|
# TODO unfortunately preserving graph-level metadata is not
|
|
# working well with aot_export. So we manually copy it.
|
|
# (The node-level meta is addressed above.)
|
|
gm.meta.update(self.graph_module.meta)
|
|
|
|
new_range_constraints = _get_updated_range_constraints(gm)
|
|
|
|
constants = lift_constants_pass(gm, new_graph_signature)
|
|
for k, v in constants.items():
|
|
assert k not in self.constants
|
|
self.constants[k] = v
|
|
|
|
_replace_sym_size_ops_pass(gm)
|
|
exported_program = ExportedProgram(
|
|
root=gm,
|
|
graph=gm.graph,
|
|
graph_signature=new_graph_signature,
|
|
state_dict=self.state_dict,
|
|
range_constraints=new_range_constraints,
|
|
module_call_graph=copy.deepcopy(self.module_call_graph),
|
|
example_inputs=self.example_inputs,
|
|
verifier=self.verifier,
|
|
constants=self.constants,
|
|
)
|
|
|
|
if len(new_range_constraints) > 0:
|
|
exported_program = exported_program._transform_do_not_use(
|
|
_AddRuntimeAssertionsForInlineConstraintsPass(new_range_constraints)
|
|
)
|
|
|
|
return exported_program
|
|
|
|
def _transform_do_not_use(self, *passes: PassType) -> "ExportedProgram":
|
|
pm = PassManager(list(passes))
|
|
res = pm(self.graph_module)
|
|
transformed_gm = res.graph_module if res is not None else self.graph_module
|
|
assert transformed_gm is not None
|
|
|
|
if transformed_gm is self.graph_module and not res.modified:
|
|
return self
|
|
|
|
# TODO(zhxchen17) Remove this.
|
|
def _get_updated_graph_signature(
|
|
old_signature: ExportGraphSignature,
|
|
new_gm: torch.fx.GraphModule,
|
|
) -> ExportGraphSignature:
|
|
"""
|
|
Update the graph signature's user_input/user_outputs.
|
|
"""
|
|
new_input_specs = []
|
|
for i, node in enumerate(new_gm.graph.nodes):
|
|
if node.op != "placeholder":
|
|
break
|
|
|
|
assert i < len(
|
|
old_signature.input_specs
|
|
), "Number of inputs changed after transformation"
|
|
old_input_spec = old_signature.input_specs[i]
|
|
arg = (
|
|
old_input_spec.arg
|
|
if isinstance(
|
|
old_input_spec.arg, (ConstantArgument, CustomObjArgument)
|
|
)
|
|
else type(old_input_spec.arg)(node.name)
|
|
)
|
|
new_input_specs.append(
|
|
InputSpec(old_input_spec.kind, arg, old_input_spec.target)
|
|
)
|
|
|
|
output_node = list(new_gm.graph.nodes)[-1]
|
|
assert output_node.op == "output"
|
|
|
|
new_output_specs = []
|
|
for i, node in enumerate(output_node.args[0]):
|
|
assert i < len(
|
|
old_signature.output_specs
|
|
), "Number of outputs changed after transformation"
|
|
old_output_spec = old_signature.output_specs[i]
|
|
arg = (
|
|
old_output_spec.arg
|
|
if isinstance(
|
|
old_output_spec.arg, (ConstantArgument, CustomObjArgument)
|
|
)
|
|
else type(old_output_spec.arg)(node.name)
|
|
)
|
|
new_output_specs.append(
|
|
OutputSpec(old_output_spec.kind, arg, old_output_spec.target)
|
|
)
|
|
|
|
new_signature = ExportGraphSignature(
|
|
input_specs=new_input_specs, output_specs=new_output_specs
|
|
)
|
|
return new_signature
|
|
|
|
transformed_ep = ExportedProgram(
|
|
root=transformed_gm,
|
|
graph=transformed_gm.graph,
|
|
graph_signature=_get_updated_graph_signature(
|
|
self.graph_signature, transformed_gm
|
|
),
|
|
state_dict=self.state_dict,
|
|
range_constraints=_get_updated_range_constraints(transformed_gm),
|
|
module_call_graph=copy.deepcopy(self._module_call_graph),
|
|
example_inputs=self.example_inputs,
|
|
verifier=self.verifier,
|
|
constants=self.constants,
|
|
)
|
|
transformed_ep.graph_module.meta.update(self.graph_module.meta)
|
|
transformed_ep.graph_module.meta.update(res.graph_module.meta)
|
|
return transformed_ep
|
|
|
|
def _check_input_constraints(self, *args):
|
|
from torch._export.utils import _check_input_constraints_for_graph
|
|
|
|
placeholders = [p for p in self.graph.nodes if p.op == "placeholder"]
|
|
input_placeholders = [
|
|
p
|
|
for p, s in zip(placeholders, self.graph_signature.input_specs)
|
|
if s.kind == InputKind.USER_INPUT
|
|
]
|
|
_check_input_constraints_for_graph(
|
|
input_placeholders, args, self.range_constraints
|
|
)
|
|
|
|
def _validate(self):
|
|
self.verifier().check(self)
|
|
|
|
# TODO(zhxchen17) Formalize this.
|
|
def _update(
|
|
self, graph_module, graph_signature, state_dict=None
|
|
) -> "ExportedProgram":
|
|
return ExportedProgram(
|
|
root=graph_module,
|
|
graph=graph_module.graph,
|
|
graph_signature=graph_signature,
|
|
state_dict=state_dict or self.state_dict,
|
|
range_constraints=copy.deepcopy(self.range_constraints),
|
|
module_call_graph=copy.deepcopy(self._module_call_graph),
|
|
example_inputs=self.example_inputs,
|
|
verifier=self.verifier,
|
|
tensor_constants=self.tensor_constants,
|
|
)
|
|
|
|
|
|
def _get_updated_range_constraints(
|
|
gm: torch.fx.GraphModule,
|
|
) -> "Dict[sympy.Symbol, Any]":
|
|
def get_shape_env(gm):
|
|
vals = [
|
|
node.meta["val"]
|
|
for node in gm.graph.nodes
|
|
if node.meta.get("val", None) is not None
|
|
]
|
|
from torch._guards import detect_fake_mode
|
|
|
|
fake_mode = detect_fake_mode(vals)
|
|
if fake_mode is not None:
|
|
return fake_mode.shape_env
|
|
for v in vals:
|
|
if isinstance(v, torch.SymInt):
|
|
return v.node.shape_env
|
|
|
|
shape_env = get_shape_env(gm)
|
|
if shape_env is None:
|
|
return {}
|
|
range_constraints = {
|
|
k: v
|
|
for k, v in shape_env.var_to_range.items()
|
|
if k not in shape_env.replacements
|
|
}
|
|
for k, v in shape_env.runtime_var_to_range.items():
|
|
if k not in shape_env.replacements:
|
|
range_constraints[k] = v
|
|
return range_constraints
|