mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39008 This commit adds a `torch.futures.Future` type and exposes its ctor, `wait`, `then`, and `set_result` APIs. This type is currently a wrapper of `c10::ivalue::Future` and mainly used by RPC for now. Later, we could revamp c10d APIs to return this `Future` type as well. More utils will be added into `torch.futures` package in followup PRs. Test Plan: Imported from OSS Differential Revision: D21723022 Pulled By: mrshenli fbshipit-source-id: 92e56160544e9bf00d11db3e8347a1b9707882c9
1174 lines
40 KiB
C++
1174 lines
40 KiB
C++
#pragma once
|
|
|
|
#include <ATen/core/ivalue.h>
|
|
#include <ATen/core/jit_type.h>
|
|
#include <ATen/core/stack.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/Dtype.h>
|
|
#include <torch/csrc/Layout.h>
|
|
#include <torch/csrc/QScheme.h>
|
|
#include <torch/csrc/WindowsTorchApiMacro.h>
|
|
#include <torch/csrc/jit/api/module.h>
|
|
#include <torch/csrc/jit/frontend/schema_matching.h>
|
|
#include <torch/csrc/jit/frontend/tracer.h>
|
|
#include <torch/csrc/jit/python/module_python.h>
|
|
#include <torch/csrc/jit/python/python_custom_class.h>
|
|
#include <torch/csrc/jit/python/python_ivalue.h>
|
|
#include <torch/csrc/jit/python/python_tracer.h>
|
|
#include <torch/csrc/jit/resource_guard.h>
|
|
#include <torch/csrc/jit/runtime/operator.h>
|
|
#include <torch/csrc/utils/auto_gil.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/six.h>
|
|
#ifdef USE_DISTRIBUTED
|
|
#include <torch/csrc/distributed/rpc/py_rref.h>
|
|
#include <torch/csrc/distributed/rpc/rref_impl.h>
|
|
#endif
|
|
|
|
#include <ATen/core/function_schema.h>
|
|
#include <c10/util/Exception.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
// The visibility attribute is to avoid a warning about storing a field in the
|
|
// struct that has a different visibility (from pybind) than the struct.
|
|
#ifdef _WIN32
|
|
#define VISIBILITY_HIDDEN
|
|
#else
|
|
#define VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
|
|
#endif
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
inline IValue toIValue(
|
|
py::handle obj,
|
|
const TypePtr& type,
|
|
c10::optional<int32_t> N = c10::nullopt);
|
|
|
|
py::object toPyObject(IValue ivalue);
|
|
|
|
// The PythonFutureWrapper for ivalue::Future
|
|
//
|
|
// NB: VISIBILITY_HIDDEN is for silencing compiling error,
|
|
// "error: 'torch::jit::PythonFutureWrapper' declared with greater visibility
|
|
// than the type of its field 'torch::jit::PythonFutureWrapper::unwrap_func'
|
|
// [-Werror=attributes]"
|
|
//
|
|
// NB: inherit from enable_shared_from_this because then(py::function) needs to
|
|
// get a shared_ptr from this pointer.
|
|
struct VISIBILITY_HIDDEN PythonFutureWrapper
|
|
: std::enable_shared_from_this<PythonFutureWrapper> {
|
|
using UnwrapFunc = std::function<void(py::object)>;
|
|
|
|
explicit PythonFutureWrapper(
|
|
c10::intrusive_ptr<c10::ivalue::Future> fut,
|
|
c10::optional<UnwrapFunc> unwrap_func = c10::nullopt)
|
|
: fut(std::move(fut)), unwrap_func(std::move(unwrap_func)) {}
|
|
|
|
explicit PythonFutureWrapper(const PythonFutureWrapper&) = delete;
|
|
PythonFutureWrapper& operator=(const PythonFutureWrapper&) = delete;
|
|
|
|
py::object wait() {
|
|
fut->wait();
|
|
if (jit::tracer::isTracing()) {
|
|
auto graph = jit::tracer::getTracingState()->graph;
|
|
|
|
Value* fut_val = jit::tracer::getValueTrace(fut);
|
|
auto output = graph->insert(aten::wait, {fut_val});
|
|
jit::tracer::setValueTrace(fut->value(), output);
|
|
}
|
|
{
|
|
// acquiring GIL as toPyObject creates new py::object
|
|
// without grabbing the GIL.
|
|
py::gil_scoped_acquire acquire;
|
|
py::object py_obj = toPyObject(fut->value());
|
|
if (unwrap_func) {
|
|
(*unwrap_func)(py_obj);
|
|
}
|
|
return py_obj;
|
|
}
|
|
}
|
|
|
|
// The py::function cb arg must take a std::shared_ptr<PythonFutureWrapper>
|
|
// (i.e., torch._C.Future) as the only argument. If the type mismatches, an
|
|
// error will be thrown when waiting for the value of this returned Future.
|
|
std::shared_ptr<PythonFutureWrapper> then(py::function cb) {
|
|
// We need this an additional layer of wrapper here to guard the
|
|
// destruction of the py::function object. Because, the
|
|
// Future owns a reference to the py::function in its callback
|
|
// vector, but Future does not acquire GIL on destruction.
|
|
auto pf = std::make_shared<PythonFunctionGuard>(std::move(cb));
|
|
return std::make_shared<jit::PythonFutureWrapper>(fut->then(
|
|
// Capture a copy of the ivalue::Future instead of the `this` pointer
|
|
// because the PythonFutureWrapper object could have been deleted
|
|
// when the callbacks are fired. For example, RPC only captures the
|
|
// ivalue::Future instead of PythonFutureWrapper in FutureMessage's
|
|
// callback functions. Hence, if user code does not hold a reference to
|
|
// this PythonFutureWrapper object, there is no guarantee that the
|
|
// PythonFutureWrapper is still valid when running the callback.
|
|
[pyFut(this->getPtr()), pf(std::move(pf))]() -> IValue {
|
|
try {
|
|
pybind11::gil_scoped_acquire ag;
|
|
return toIValue(pf->func_(pyFut), PyObjectType::get());
|
|
} catch (py::error_already_set& e) {
|
|
auto err = std::runtime_error(c10::str(
|
|
"Got the following error when running the callback: ",
|
|
e.what()));
|
|
{
|
|
pybind11::gil_scoped_acquire ag;
|
|
// Release ownership on py::objects and also restore Python
|
|
// Error Indicator.
|
|
e.restore();
|
|
// Clear the Python Error Indicator as we has recorded the
|
|
// exception in the response message.
|
|
PyErr_Clear();
|
|
}
|
|
|
|
throw err;
|
|
}
|
|
},
|
|
PyObjectType::get()));
|
|
}
|
|
|
|
void markCompleted(const py::object& pyValue) {
|
|
DCHECK(PyGILState_Check());
|
|
IValue value = toIValue(pyValue, PyObjectType::get());
|
|
|
|
py::gil_scoped_release release;
|
|
fut->markCompleted(std::move(value));
|
|
}
|
|
|
|
c10::intrusive_ptr<c10::ivalue::Future> fut;
|
|
// unwrap_func works like a callback for the value returned by
|
|
// PythonFutureWrapper::wait().
|
|
c10::optional<UnwrapFunc> unwrap_func;
|
|
|
|
private:
|
|
// Wrap Python function to guard deref
|
|
struct PythonFunctionGuard {
|
|
explicit PythonFunctionGuard(py::function func) : func_(std::move(func)) {}
|
|
|
|
~PythonFunctionGuard() {
|
|
pybind11::gil_scoped_acquire ag;
|
|
func_.dec_ref();
|
|
// explicitly setting PyObject* to nullptr to prevent py::object's dtor to
|
|
// decref on the PyObject again.
|
|
// See Note [Destructing py::object] in python_ivalue.h
|
|
func_.ptr() = nullptr;
|
|
}
|
|
|
|
py::function func_;
|
|
};
|
|
|
|
std::shared_ptr<PythonFutureWrapper> getPtr() {
|
|
return shared_from_this();
|
|
}
|
|
};
|
|
|
|
// error reporting: when reporting user-caused errors, these functions should
|
|
// not use AT_ERROR macros, since these macros add stack trace information
|
|
// that is confusing to display to the end user since it always reports
|
|
// locations in libtorch code rather than user code.
|
|
|
|
inline std::shared_ptr<CompilationUnit> get_python_cu() {
|
|
return py::module::import("torch.jit")
|
|
.attr("_python_cu")
|
|
.cast<std::shared_ptr<CompilationUnit>>();
|
|
}
|
|
|
|
struct TypedIValue : public std::pair<IValue, TypePtr> {
|
|
using pair::pair;
|
|
|
|
IValue& ivalue() {
|
|
return this->first;
|
|
}
|
|
TypePtr& type() {
|
|
return this->second;
|
|
}
|
|
};
|
|
|
|
inline TypedIValue toDictKeyIValue(py::handle key) {
|
|
if (py::isinstance<py::str>(key)) {
|
|
return TypedIValue(
|
|
ConstantString::create(py::cast<std::string>(key)),
|
|
StringType::create());
|
|
} else if (py::isinstance<py::int_>(key)) {
|
|
return TypedIValue(py::cast<int64_t>(key), IntType::create());
|
|
} else if (py::isinstance<py::float_>(key)) {
|
|
return TypedIValue(py::cast<double>(key), FloatType::create());
|
|
} else {
|
|
AT_ERROR("Dictionary inputs may only have string, int, or float keys");
|
|
}
|
|
}
|
|
|
|
inline c10::optional<TypePtr> unifyOrInitializeType(
|
|
TypePtr accum,
|
|
TypePtr unify) {
|
|
if (!accum) {
|
|
return unify;
|
|
}
|
|
return unifyTypes(accum, unify);
|
|
}
|
|
|
|
struct InferredType {
|
|
InferredType(TypePtr type) : type_(std::move(type)) {}
|
|
InferredType(std::string reason)
|
|
: type_(nullptr), reason_(std::move(reason)) {}
|
|
TypePtr type() const {
|
|
TORCH_INTERNAL_ASSERT(type_);
|
|
return type_;
|
|
}
|
|
bool success() const {
|
|
return type_ != nullptr;
|
|
}
|
|
const std::string& reason() const {
|
|
TORCH_INTERNAL_ASSERT(!type_);
|
|
return reason_;
|
|
}
|
|
|
|
private:
|
|
TypePtr type_;
|
|
std::string reason_;
|
|
};
|
|
|
|
InferredType tryToInferContainerType(py::handle input);
|
|
|
|
// Try to infer the type of a Python object
|
|
// The type cannot be inferred if:
|
|
// input is a None
|
|
// input is an empty container (list, dict)
|
|
// input is an list with element types that cannot be unified
|
|
// input is an dict with key or value types that cannot be unified
|
|
inline InferredType tryToInferType(py::handle input) {
|
|
// Try tensor types
|
|
if (THPVariable_Check(input.ptr())) {
|
|
auto tensor = py::cast<at::Tensor>(input);
|
|
return InferredType(TensorType::create(tensor));
|
|
}
|
|
|
|
if (input.is(py::none())) {
|
|
return InferredType(NoneType::get());
|
|
}
|
|
|
|
if (py::isinstance<StrongFunctionPtr>(input)) {
|
|
auto fn = py::cast<StrongFunctionPtr>(input).function_;
|
|
return InferredType(FunctionType::create(fn));
|
|
}
|
|
|
|
// Try basic types first
|
|
if (py::isinstance<py::bool_>(input)) {
|
|
return InferredType(BoolType::get());
|
|
} else if (py::isinstance<py::int_>(input)) {
|
|
return InferredType(IntType::get());
|
|
} else if (py::isinstance<py::float_>(input)) {
|
|
return InferredType(FloatType::get());
|
|
} else if (py::isinstance<py::str>(input)) {
|
|
return InferredType(StringType::get());
|
|
} else if (THPLayout_Check(input.ptr())) {
|
|
return InferredType(IntType::get());
|
|
} else if (THPDevice_Check(input.ptr())) {
|
|
return InferredType(DeviceObjType::get());
|
|
} else if (THPDtype_Check(input.ptr())) {
|
|
return InferredType(IntType::get());
|
|
} else if (THPQScheme_Check(input.ptr())) {
|
|
return InferredType(IntType::get());
|
|
} else if (THPLayout_Check(input.ptr())) {
|
|
return InferredType(IntType::get());
|
|
}
|
|
|
|
py::bool_ isClass =
|
|
py::module::import("inspect").attr("isclass")(input.get_type());
|
|
if (py::cast<bool>(isClass)) {
|
|
py::str qualifiedName = py::module::import("torch.jit")
|
|
.attr("_qualified_name")(input.get_type());
|
|
auto pyClass = py::module::import("torch.jit")
|
|
.attr("_get_script_class")(qualifiedName);
|
|
if (!pyClass.is_none()) {
|
|
auto cu = get_python_cu();
|
|
const auto classname =
|
|
c10::QualifiedName(py::cast<std::string>(qualifiedName));
|
|
auto class_type = cu->get_class(classname);
|
|
TORCH_INTERNAL_ASSERT(class_type);
|
|
return InferredType(class_type);
|
|
}
|
|
}
|
|
|
|
if (py::isinstance<Object>(input)) {
|
|
auto object = py::cast<Object>(input);
|
|
return InferredType(object.type());
|
|
#ifdef USE_DISTRIBUTED
|
|
} else if (py::isinstance<torch::distributed::rpc::PyRRef>(input)) {
|
|
auto rref_ivalue = input.cast<torch::distributed::rpc::PyRRef>().toIValue();
|
|
return InferredType(rref_ivalue.type());
|
|
#endif
|
|
}
|
|
|
|
// Try container types
|
|
return tryToInferContainerType(input);
|
|
}
|
|
|
|
inline InferredType tryToInferContainerType(py::handle input) {
|
|
if (six::isTuple(input)) {
|
|
py::tuple tuple = py::cast<py::tuple>(input);
|
|
std::vector<TypePtr> element_types;
|
|
element_types.reserve(tuple.size());
|
|
|
|
for (py::handle elem : tuple) {
|
|
auto type_match = tryToInferType(elem);
|
|
if (type_match.success()) {
|
|
element_types.push_back(type_match.type());
|
|
} else {
|
|
// Forward error message along
|
|
return type_match.reason();
|
|
}
|
|
}
|
|
return InferredType(TupleType::create(element_types));
|
|
} else if (PyDict_Check(input.ptr())) {
|
|
// Check to make sure we can generate useful input/output types
|
|
auto dict = py::cast<py::dict>(input);
|
|
size_t len = py::len(dict);
|
|
if (!len) {
|
|
return InferredType("Dictionary inputs must have entries");
|
|
}
|
|
|
|
TypePtr key_type = nullptr;
|
|
TypePtr value_type = nullptr;
|
|
|
|
for (auto entry : dict) {
|
|
// Try to infer the key type and unify it with the existing one
|
|
auto entry_key_type_match = tryToInferType(entry.first);
|
|
if (!entry_key_type_match.success()) {
|
|
return entry_key_type_match.reason();
|
|
}
|
|
auto unified_key =
|
|
unifyOrInitializeType(key_type, entry_key_type_match.type());
|
|
if (!unified_key) {
|
|
return InferredType(c10::str(
|
|
"Dictionary inputs to traced functions must have consistent type. Found ",
|
|
key_type->python_str(),
|
|
" and ",
|
|
(entry_key_type_match.type())->python_str()));
|
|
}
|
|
|
|
// Try to infer the value type and unify it with the existing one
|
|
auto entry_value_type_match = tryToInferType(entry.second);
|
|
if (!entry_value_type_match.success()) {
|
|
return entry_value_type_match.reason();
|
|
}
|
|
auto unified_value =
|
|
unifyOrInitializeType(value_type, entry_value_type_match.type());
|
|
if (!unified_value) {
|
|
return InferredType(c10::str(
|
|
"Dictionary inputs to traced functions must have consistent type. Found ",
|
|
value_type->python_str(),
|
|
" and ",
|
|
(entry_value_type_match.type())->python_str()));
|
|
}
|
|
|
|
key_type = *unified_key;
|
|
value_type = *unified_value;
|
|
}
|
|
return InferredType(DictType::create(key_type, value_type));
|
|
} else if (PyList_Check(input.ptr())) {
|
|
auto list = py::cast<py::list>(input);
|
|
size_t len = py::len(list);
|
|
if (!len) {
|
|
return InferredType("List trace inputs must have elements");
|
|
}
|
|
|
|
TypePtr element_type = nullptr;
|
|
for (auto elem : list) {
|
|
auto element_type_match = tryToInferType(elem);
|
|
if (!element_type_match.success()) {
|
|
return InferredType(c10::str(
|
|
"Could not infer type of list element: ",
|
|
element_type_match.reason()));
|
|
}
|
|
auto unified_type =
|
|
unifyOrInitializeType(element_type, element_type_match.type());
|
|
if (!unified_type) {
|
|
return InferredType(c10::str(
|
|
"List inputs to traced functions must have consistent element type. Found ",
|
|
element_type->python_str(),
|
|
" and ",
|
|
(element_type_match.type())->python_str()));
|
|
}
|
|
element_type = *unified_type;
|
|
}
|
|
return InferredType(ListType::create(element_type));
|
|
} else {
|
|
// TODO: this message is not correct anymore, since this InferredType is
|
|
// used from a bunch of circumstances unrelated to tracing. We can re-use
|
|
// this instead of the attribute_failure stuff in concreteType
|
|
return InferredType(c10::str(
|
|
"Only tensors and (possibly nested) tuples of tensors, lists, or dicts",
|
|
"are supported ",
|
|
"as inputs or outputs of traced functions",
|
|
", but instead got value of type ",
|
|
py::str(input.get_type().attr("__name__")),
|
|
"."));
|
|
}
|
|
}
|
|
|
|
inline bool isTraceableType(TypePtr type) {
|
|
if (type->isSubtypeOf(TensorType::get())) {
|
|
return true;
|
|
}
|
|
|
|
if (auto list_type = type->cast<ListType>()) {
|
|
return isTraceableType(list_type->getElementType());
|
|
}
|
|
|
|
if (auto tuple_type = type->cast<TupleType>()) {
|
|
return std::all_of(
|
|
tuple_type->elements().begin(),
|
|
tuple_type->elements().end(),
|
|
[](TypePtr element_type) { return isTraceableType(element_type); });
|
|
}
|
|
|
|
if (auto dict_type = type->cast<DictType>()) {
|
|
return isTraceableType(dict_type->getValueType());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline IValue toTypeInferredIValue(py::handle input) {
|
|
auto match = tryToInferType(input);
|
|
if (!match.success()) {
|
|
AT_ERROR(
|
|
"Tracer cannot infer type of ", py::str(input), "\n:", match.reason());
|
|
}
|
|
return toIValue(input, match.type());
|
|
}
|
|
|
|
inline Stack toTraceableStack(const py::tuple& inputs) {
|
|
auto info = toTypeInferredIValue(inputs);
|
|
TORCH_CHECK(
|
|
isTraceableType(info.type()),
|
|
"Type '",
|
|
info.type()->python_str(),
|
|
"' cannot be traced. Only Tensors and (possibly nested) Lists, Dicts, and"
|
|
" Tuples of Tensors can be traced");
|
|
return info.toTuple()->elements();
|
|
}
|
|
|
|
inline IValue createGenericList(py::handle obj, const TypePtr& elem_type) {
|
|
auto elems = c10::impl::GenericList(elem_type);
|
|
for (auto elem : obj) {
|
|
elems.push_back(toIValue(std::move(elem), elem_type));
|
|
}
|
|
return IValue(std::move(elems));
|
|
}
|
|
|
|
inline IValue createGenericDict(
|
|
py::dict obj,
|
|
const TypePtr& key_type,
|
|
const TypePtr& value_type) {
|
|
c10::impl::GenericDict elems(key_type, value_type);
|
|
elems.reserve(py::len(obj));
|
|
for (auto entry : obj) {
|
|
elems.insert(
|
|
toIValue(entry.first, key_type), toIValue(entry.second, value_type));
|
|
}
|
|
return IValue(std::move(elems));
|
|
}
|
|
|
|
template <class T>
|
|
inline void guardAgainstNamedTensor(const T& var) {
|
|
TORCH_CHECK(
|
|
!var.has_names(),
|
|
"NYI: Named tensors are currently unsupported in TorchScript. As a "
|
|
"workaround please drop names via `tensor = tensor.rename(None)`.");
|
|
}
|
|
|
|
inline IValue toIValue(
|
|
py::handle obj,
|
|
const TypePtr& type,
|
|
c10::optional<int32_t> N) {
|
|
switch (type->kind()) {
|
|
case TypeKind::TensorType: {
|
|
auto var = py::cast<autograd::Variable>(obj);
|
|
if (var.is_sparse()) {
|
|
TORCH_WARN_ONCE(
|
|
"Using sparse tensors in TorchScript is experimental. Many optimization "
|
|
"pathways have not been thoroughly tested with sparse tensors. Please "
|
|
"include the fact that the network is running sparse tensors in any bug "
|
|
"reports submitted.");
|
|
}
|
|
guardAgainstNamedTensor<autograd::Variable>(var);
|
|
return var;
|
|
}
|
|
case TypeKind::FloatType:
|
|
return py::cast<double>(obj);
|
|
case TypeKind::IntType:
|
|
// TODO(xintchen): Handling LayoutType and ScalarTypeType correctly.
|
|
case TypeKind::LayoutType:
|
|
case TypeKind::ScalarTypeType:
|
|
if (THPDtype_Check(obj.ptr())) {
|
|
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
|
|
return static_cast<int64_t>(dtype->scalar_type);
|
|
}
|
|
if (THPQScheme_Check(obj.ptr())) {
|
|
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
|
|
return static_cast<uint8_t>(qscheme->qscheme);
|
|
}
|
|
if (THPLayout_Check(obj.ptr())) {
|
|
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
|
|
return static_cast<int8_t>(layout->layout);
|
|
}
|
|
return py::cast<int64_t>(obj);
|
|
case TypeKind::NoneType:
|
|
if (!obj.is_none()) {
|
|
throw py::cast_error(
|
|
c10::str("Cannot cast ", py::str(obj), " to None"));
|
|
}
|
|
return {};
|
|
case TypeKind::BoolType:
|
|
return py::cast<bool>(obj);
|
|
case TypeKind::TupleType: {
|
|
py::tuple tuple = py::cast<py::tuple>(obj);
|
|
size_t tuple_size = tuple.size();
|
|
auto tuple_type = type->cast<TupleType>();
|
|
const auto& elem_types = tuple_type->elements();
|
|
if (elem_types.size() != tuple_size) {
|
|
throw py::cast_error(c10::str(
|
|
"Object ",
|
|
py::str(obj),
|
|
" had a different number of elements than type ",
|
|
type->python_str()));
|
|
}
|
|
std::vector<IValue> values;
|
|
values.reserve(tuple_size);
|
|
for (size_t i = 0; i < tuple_size; ++i) {
|
|
values.push_back(toIValue(tuple[i], elem_types[i]));
|
|
}
|
|
return tuple_type->name()
|
|
? c10::ivalue::Tuple::createNamed(std::move(values), tuple_type)
|
|
: c10::ivalue::Tuple::create(std::move(values));
|
|
}
|
|
case TypeKind::StringType:
|
|
return ConstantString::create(py::cast<std::string>(obj));
|
|
case TypeKind::DeviceObjType: {
|
|
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
|
|
return device->device;
|
|
}
|
|
case TypeKind::ListType: {
|
|
const auto& elem_type = type->expect<ListType>()->getElementType();
|
|
switch (elem_type->kind()) {
|
|
// allows single int/float to be broadcasted to a fixed size list
|
|
case TypeKind::IntType:
|
|
if (!N || !py::isinstance<py::int_>(obj)) {
|
|
return IValue(py::cast<std::vector<int64_t>>(obj));
|
|
} else {
|
|
double value = py::cast<int64_t>(obj);
|
|
c10::List<double> repeated;
|
|
repeated.reserve(*N);
|
|
for (int i = 0; i < *N; ++i) {
|
|
repeated.push_back(value);
|
|
}
|
|
return repeated;
|
|
}
|
|
case TypeKind::FloatType:
|
|
if (!N || !py::isinstance<py::float_>(obj)) {
|
|
return IValue(py::cast<std::vector<double>>(obj));
|
|
} else {
|
|
double value = py::cast<double>(obj);
|
|
c10::List<double> repeated;
|
|
repeated.reserve(*N);
|
|
for (int i = 0; i < *N; ++i) {
|
|
repeated.push_back(value);
|
|
}
|
|
return repeated;
|
|
}
|
|
case TypeKind::BoolType:
|
|
return IValue(py::cast<std::vector<bool>>(obj));
|
|
case TypeKind::TensorType:
|
|
return IValue(py::cast<std::vector<at::Tensor>>(obj));
|
|
default:
|
|
return createGenericList(obj, elem_type);
|
|
}
|
|
}
|
|
case TypeKind::DictType: {
|
|
const auto& dict_type = type->expect<DictType>();
|
|
return createGenericDict(
|
|
py::cast<py::dict>(obj),
|
|
dict_type->getKeyType(),
|
|
dict_type->getValueType());
|
|
}
|
|
case TypeKind::OptionalType: {
|
|
// check if it's a none obj since optional accepts NoneType
|
|
if (obj.is_none()) {
|
|
// check if it's a none obj since optional accepts NoneType
|
|
// return an IValue() to denote a NoneType
|
|
return {};
|
|
}
|
|
return toIValue(obj, type->expect<OptionalType>()->getElementType());
|
|
}
|
|
case TypeKind::ClassType: {
|
|
auto classType = type->expect<ClassType>();
|
|
if (auto mod = as_module(py::cast<py::object>(obj))) {
|
|
// if obj is already a ScriptModule, just return its ivalue
|
|
return mod.value()._ivalue();
|
|
}
|
|
// otherwise is a normal class object, we create a fresh
|
|
// ivalue::Object to use from the py object.
|
|
// 1. create a bare ivalue
|
|
const size_t numAttrs = classType->numAttributes();
|
|
auto cu = classType->compilation_unit();
|
|
auto userObj = c10::ivalue::Object::create(
|
|
c10::StrongTypePtr(cu, classType), numAttrs);
|
|
|
|
// 2. copy all the contained types
|
|
for (size_t slot = 0; slot < numAttrs; slot++) {
|
|
const auto& attrType = classType->getAttribute(slot);
|
|
const auto& attrName = classType->getAttributeName(slot);
|
|
|
|
const auto& contained = py::getattr(obj, attrName.c_str());
|
|
userObj->setSlot(slot, toIValue(contained, attrType));
|
|
}
|
|
return userObj;
|
|
}
|
|
case TypeKind::InterfaceType: {
|
|
auto interfaceType = type->expect<InterfaceType>();
|
|
// When converting an pyobj to an interface, we check if rhs
|
|
// is module or normal torchscript class, get the type and ivalue
|
|
// from them correspondingly.
|
|
c10::ClassTypePtr classType = nullptr;
|
|
IValue res;
|
|
if (auto mod = as_module(py::cast<py::object>(obj))) {
|
|
classType = mod.value().type();
|
|
res = mod.value()._ivalue();
|
|
} else {
|
|
// We inspect the value to found the compiled TorchScript class
|
|
// and then create a ivalue::Object from that class type.
|
|
py::str qualified_name = py::module::import("torch.jit")
|
|
.attr("_qualified_name")(obj.get_type());
|
|
auto pyCu = get_python_cu();
|
|
classType = pyCu->get_class(c10::QualifiedName(qualified_name));
|
|
if (!classType) {
|
|
throw std::runtime_error(c10::str(
|
|
"Assigning the object ",
|
|
py::str(obj),
|
|
" to an interface fails because the value is not "
|
|
"a TorchScript compatible type, did you forget to",
|
|
"turn it into a user defined TorchScript class?"));
|
|
}
|
|
res = toIValue(std::move(obj), classType);
|
|
}
|
|
// check if the classType conform with the interface or not
|
|
std::stringstream why_not;
|
|
if (!classType->isSubtypeOfExt(interfaceType, &why_not)) {
|
|
throw py::cast_error(c10::str(
|
|
"Object ",
|
|
py::str(obj),
|
|
" is not compatible with interface ",
|
|
interfaceType->python_str(),
|
|
"\n",
|
|
why_not.str()));
|
|
}
|
|
return res;
|
|
}
|
|
case TypeKind::NumberType: {
|
|
if (THPDtype_Check(obj.ptr())) {
|
|
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
|
|
return static_cast<int64_t>(dtype->scalar_type);
|
|
}
|
|
if (THPQScheme_Check(obj.ptr())) {
|
|
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
|
|
return static_cast<uint8_t>(qscheme->qscheme);
|
|
}
|
|
if (THPLayout_Check(obj.ptr())) {
|
|
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
|
|
return static_cast<int8_t>(layout->layout);
|
|
}
|
|
if (py::isinstance<py::int_>(obj)) {
|
|
return py::cast<int64_t>(obj);
|
|
} else if (py::isinstance<py::float_>(obj)) {
|
|
return py::cast<double>(obj);
|
|
} else {
|
|
throw py::cast_error(
|
|
c10::str("Cannot cast ", py::str(obj), " to ", type->python_str()));
|
|
}
|
|
}
|
|
case TypeKind::RRefType: {
|
|
#ifdef USE_DISTRIBUTED
|
|
return obj.cast<torch::distributed::rpc::PyRRef>().toIValue();
|
|
#else
|
|
AT_ERROR("RRef is only supported with the distributed package");
|
|
#endif
|
|
} break;
|
|
case TypeKind::PyObjectType: {
|
|
return c10::ivalue::ConcretePyObjectHolder::create(obj);
|
|
}
|
|
case TypeKind::CapsuleType: {
|
|
return IValue::make_capsule(
|
|
py::cast<c10::intrusive_ptr<CustomClassHolder>>(obj));
|
|
}
|
|
case TypeKind::FutureType: {
|
|
return obj.cast<std::shared_ptr<PythonFutureWrapper>>()->fut;
|
|
}
|
|
case TypeKind::AnyType:
|
|
return toTypeInferredIValue(obj);
|
|
case TypeKind::FunctionType:
|
|
case TypeKind::GeneratorType:
|
|
case TypeKind::VarType:
|
|
case TypeKind::QSchemeType:
|
|
case TypeKind::AnyListType:
|
|
case TypeKind::AnyTupleType:
|
|
case TypeKind::AnyClassType:
|
|
break;
|
|
}
|
|
throw py::cast_error(c10::str(
|
|
"toIValue() cannot handle converting to type: ", type->python_str()));
|
|
}
|
|
|
|
// Small wrapper around getting the type name string from Python to make
|
|
// types easier to interpret, e.g. give the structural type for a NamedTuple
|
|
inline std::string friendlyTypeName(py::handle obj) {
|
|
if (py::isinstance<py::tuple>(obj) && py::hasattr(obj, "_fields")) {
|
|
auto field_names =
|
|
py::cast<std::vector<std::string>>(py::getattr(obj, "_fields"));
|
|
std::stringstream ss;
|
|
ss << py::str(obj.get_type().attr("__name__"));
|
|
ss << " (aka NamedTuple(";
|
|
bool first = true;
|
|
for (auto& field_name : field_names) {
|
|
if (!first) {
|
|
ss << ", ";
|
|
}
|
|
ss << field_name;
|
|
first = false;
|
|
}
|
|
ss << "))";
|
|
return ss.str();
|
|
} else {
|
|
return py::str(obj.get_type().attr("__name__"));
|
|
}
|
|
}
|
|
|
|
// Thrown when trying to create a schema for a list of python
|
|
// arguments that cannot be converted.
|
|
// Can be caught by the caller to attempt to use other schema
|
|
// when there is an overloaded operator.
|
|
struct schema_match_error : public std::runtime_error {
|
|
using std::runtime_error::runtime_error;
|
|
};
|
|
|
|
inline IValue argumentToIValue(
|
|
const FunctionSchema& schema,
|
|
size_t argumentPosition,
|
|
py::handle object) {
|
|
const auto& argument = schema.arguments().at(argumentPosition);
|
|
try {
|
|
return toIValue(object, argument.type(), argument.N());
|
|
} catch (const py::cast_error& error) {
|
|
throw schema_match_error(c10::str(
|
|
schema.formatTypeMismatchMsg(
|
|
argument,
|
|
friendlyTypeName(object),
|
|
argumentPosition,
|
|
py::repr(object)),
|
|
"\nCast error details: ",
|
|
error.what()));
|
|
}
|
|
}
|
|
|
|
inline IValue returnToIValue(const TypePtr& type, py::handle object) {
|
|
try {
|
|
return toIValue(object, type);
|
|
} catch (const py::cast_error& error) {
|
|
throw std::runtime_error(c10::str(
|
|
" expected value of type ",
|
|
type->str(),
|
|
" for return value but instead got value of type ",
|
|
py::str(object.get_type().attr("__name__")),
|
|
".",
|
|
"\nValue: ",
|
|
py::repr(object),
|
|
"\nCast error details: ",
|
|
error.what()));
|
|
}
|
|
}
|
|
|
|
inline py::object toPyObject(IValue ivalue) {
|
|
if (ivalue.isNone()) {
|
|
return py::none();
|
|
} else if (ivalue.isTensor()) {
|
|
auto tensor = std::move(ivalue).toTensor();
|
|
if (tensor.is_sparse()) {
|
|
TORCH_WARN_ONCE(
|
|
"Using sparse tensors in TorchScript is experimental. Many optimization "
|
|
"pathways have not been thoroughly tested with sparse tensors. Please "
|
|
"include the fact that the network is running sparse tensors in any bug "
|
|
"reports submitted.");
|
|
}
|
|
guardAgainstNamedTensor<at::Tensor>(tensor);
|
|
return py::cast(autograd::Variable(std::move(tensor)));
|
|
} else if (ivalue.isDouble()) {
|
|
return py::cast(std::move(ivalue).toDouble());
|
|
} else if (ivalue.isInt()) {
|
|
return py::cast(std::move(ivalue).toInt());
|
|
} else if (ivalue.isBool()) {
|
|
return py::cast(std::move(ivalue).toBool());
|
|
} else if (ivalue.isString()) {
|
|
return py::cast(std::move(ivalue).toStringRef());
|
|
} else if (ivalue.isList()) {
|
|
auto list = std::move(ivalue).toList();
|
|
py::list t{list.size()};
|
|
for (size_t i = 0; i < list.size(); ++i) {
|
|
t[i] = toPyObject(IValue{list.get(i)});
|
|
}
|
|
return std::move(t);
|
|
} else if (ivalue.isTuple()) {
|
|
auto tuple = std::move(ivalue).toTuple();
|
|
const auto& elements = tuple->elements();
|
|
py::tuple t{elements.size()};
|
|
for (size_t i = 0; i < elements.size(); ++i) {
|
|
t[i] = toPyObject(IValue{elements.at(i)});
|
|
}
|
|
if (tuple->type() && tuple->type()->schema() &&
|
|
tuple->type()->schema()->name() != "") {
|
|
auto unqualName = tuple->type()->name()->name();
|
|
auto fieldNames = fmap(
|
|
tuple->type()->schema()->arguments(),
|
|
[](const Argument& arg) { return arg.name(); });
|
|
return py::module::import("torch.jit")
|
|
.attr("_create_named_tuple")(t, unqualName, fieldNames);
|
|
} else {
|
|
return std::move(t);
|
|
}
|
|
} else if (ivalue.isDevice()) {
|
|
return py::cast<py::object>(THPDevice_New(std::move(ivalue).toDevice()));
|
|
} else if (ivalue.isGenericDict()) {
|
|
auto dict = std::move(ivalue).toGenericDict();
|
|
py::dict py_dict;
|
|
for (auto& pair : dict) {
|
|
py_dict[toPyObject(IValue{pair.key()})] =
|
|
toPyObject(IValue{pair.value()});
|
|
}
|
|
return std::move(py_dict);
|
|
} else if (ivalue.isRRef()) {
|
|
#ifdef USE_DISTRIBUTED
|
|
auto RRefPtr =
|
|
c10::dynamic_intrusive_pointer_cast<torch::distributed::rpc::RRef>(
|
|
std::move(ivalue).toRRef());
|
|
return py::cast(torch::distributed::rpc::PyRRef(RRefPtr));
|
|
#else
|
|
AT_ERROR("RRef is only supported with the distributed package");
|
|
#endif
|
|
} else if (ivalue.isObject()) {
|
|
const auto obj = std::move(ivalue).toObject();
|
|
if (obj->type()->is_module()) {
|
|
return py::cast(Module(obj));
|
|
}
|
|
|
|
auto pyCu = get_python_cu();
|
|
if (obj->name().find("__torch__.torch.classes") == 0) {
|
|
return py::cast(Object(obj));
|
|
}
|
|
const auto classType = pyCu->get_class(c10::QualifiedName(obj->name()));
|
|
AT_ASSERT(classType);
|
|
auto pyClass =
|
|
py::module::import("torch.jit").attr("_get_script_class")(obj->name());
|
|
if (pyClass.is_none()) {
|
|
std::stringstream err;
|
|
err << "Unknown reference to ScriptClass ";
|
|
err << obj->name();
|
|
err << ". Did you forget to import it?)";
|
|
throw std::runtime_error(err.str());
|
|
}
|
|
auto pyObj = pyClass.attr("__new__")(pyClass);
|
|
|
|
const auto numAttrs = classType->numAttributes();
|
|
|
|
for (size_t slot = 0; slot < numAttrs; slot++) {
|
|
const auto& attrName = classType->getAttributeName(slot);
|
|
IValue v = obj->getSlot(slot);
|
|
py::setattr(pyObj, attrName.c_str(), toPyObject(std::move(v)));
|
|
}
|
|
return pyObj;
|
|
} else if (ivalue.isPyObject()) {
|
|
// return borrowed reference to ensure it correctly incref the underlying
|
|
// PyObject
|
|
return py::reinterpret_borrow<py::object>(ivalue.toPyObject());
|
|
} else if (ivalue.isCapsule()) {
|
|
return py::cast(ivalue.toCapsule());
|
|
} else if (ivalue.isFuture()) {
|
|
return py::cast(std::make_shared<PythonFutureWrapper>(ivalue.toFuture()));
|
|
} else if (ivalue.isRRef()) {
|
|
#ifdef USE_DISTRIBUTED
|
|
return py::cast(torch::distributed::rpc::PyRRef(
|
|
c10::static_intrusive_pointer_cast<distributed::rpc::RRef>(
|
|
ivalue.toRRef())));
|
|
#else
|
|
TORCH_CHECK(false, "RRef is only supported with the distributed package");
|
|
#endif
|
|
} else {
|
|
AT_ERROR(
|
|
"Missing cases in 'toPyObject'! Can't convert ",
|
|
ivalue.tagKind(),
|
|
" to a Python object");
|
|
}
|
|
}
|
|
|
|
struct VISIBILITY_HIDDEN tuple_slice {
|
|
/*implicit*/ tuple_slice(py::tuple tup_)
|
|
: tup(std::move(tup_)), b(0), e(tup.size()) {}
|
|
tuple_slice(py::tuple tup_, int64_t b_)
|
|
: tup(std::move(tup_)), b(b_), e(tup.size()) {}
|
|
tuple_slice(py::tuple tup_, int64_t b_, int64_t e_)
|
|
: tup(std::move(tup_)), b(b_), e(e_) {}
|
|
py::detail::tuple_iterator begin() const {
|
|
return {tup, static_cast<pybind11::ssize_t>(b)};
|
|
}
|
|
py::detail::tuple_iterator end() const {
|
|
return {tup, static_cast<pybind11::ssize_t>(e)};
|
|
}
|
|
size_t size() const {
|
|
return e - b;
|
|
}
|
|
py::detail::tuple_accessor operator[](size_t index) const {
|
|
return {tup, static_cast<size_t>(b + index)};
|
|
}
|
|
|
|
private:
|
|
py::tuple tup;
|
|
int64_t b;
|
|
int64_t e;
|
|
};
|
|
|
|
inline Stack createStackForSchema(
|
|
const FunctionSchema& schema,
|
|
const tuple_slice& args,
|
|
const py::kwargs& kwargs,
|
|
c10::optional<IValue> self) {
|
|
size_t all_arguments = (self ? 1 : 0) + args.size() + kwargs.size();
|
|
if (all_arguments > schema.arguments().size()) {
|
|
throw schema_match_error(c10::str(
|
|
schema.name(),
|
|
"() expected at most ",
|
|
schema.arguments().size(),
|
|
" argument(s) but received ",
|
|
all_arguments,
|
|
" argument(s). Declaration: ",
|
|
schema));
|
|
}
|
|
Stack stack;
|
|
stack.reserve(schema.arguments().size());
|
|
|
|
if (self) {
|
|
push(stack, std::move(*self));
|
|
}
|
|
// First push all positional args.
|
|
for (size_t i = 0; i < args.size(); ++i) {
|
|
// Use the type information from the schema to convert the PyObject.
|
|
push(stack, argumentToIValue(schema, stack.size(), args[i]));
|
|
}
|
|
|
|
// Now for every remaining non-positional argument in the schema, look for it
|
|
// in the kwargs dict and push it if found, or use its default value if it
|
|
// has one.
|
|
size_t consumed_kwargs = 0;
|
|
for (size_t i = stack.size(); i < schema.arguments().size(); ++i) {
|
|
const auto& arg = schema.arguments()[i];
|
|
if (kwargs.contains(arg.name().c_str())) {
|
|
push(stack, argumentToIValue(schema, i, kwargs[arg.name().c_str()]));
|
|
consumed_kwargs += 1;
|
|
} else if (arg.default_value()) {
|
|
push(stack, *arg.default_value());
|
|
} else {
|
|
throw schema_match_error(c10::str(
|
|
schema.name(),
|
|
"() is missing value for argument '",
|
|
arg.name(),
|
|
"'. Declaration: ",
|
|
schema));
|
|
}
|
|
}
|
|
|
|
if (consumed_kwargs != kwargs.size()) {
|
|
std::vector<std::string> names;
|
|
for (const auto& kwarg : kwargs) {
|
|
names.emplace_back(py::cast<std::string>(kwarg.first));
|
|
}
|
|
throw schema_match_error(schema.findErrorInKwargs(names));
|
|
}
|
|
|
|
return stack;
|
|
}
|
|
|
|
inline py::object createPyObjectForStack(Stack&& stack) {
|
|
if (stack.empty()) {
|
|
return py::none();
|
|
}
|
|
|
|
// Return a simple value and not a single-element tuple if there is only one
|
|
// return value.
|
|
if (stack.size() == 1) {
|
|
return toPyObject(std::move(stack[0]));
|
|
}
|
|
|
|
// If there is more than one return value, pop them into a py::tuple.
|
|
py::tuple return_values(stack.size());
|
|
for (size_t ret = 0; ret < return_values.size(); ++ret) {
|
|
return_values[ret] = toPyObject(std::move(stack[ret]));
|
|
}
|
|
|
|
return std::move(return_values);
|
|
}
|
|
|
|
// TODO: Remove once we clean up the GraphExecutor usage.
|
|
inline Stack evilDeprecatedBadCreateStackDoNotUse(
|
|
const py::tuple& tuple,
|
|
at::ArrayRef<Value*> inputs,
|
|
size_t reserve_extra_space = 0) {
|
|
if (tuple.size() != inputs.size()) {
|
|
AT_ERROR(
|
|
"expected " + std::to_string(inputs.size()) + " inputs, but got " +
|
|
std::to_string(tuple.size()));
|
|
}
|
|
Stack result;
|
|
result.reserve(tuple.size() + reserve_extra_space);
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
result.push_back(toIValue(std::move(tuple[i]), inputs[i]->type()));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Run `callee`, potentially inserting a CallFunction/CallMethod node into the
|
|
// tracing graph.
|
|
inline py::object runAndInsertCall(
|
|
Function& callee,
|
|
tuple_slice args,
|
|
py::kwargs kwargs,
|
|
c10::optional<IValue> self,
|
|
// Lambda that tells this function how to insert `callee` into the graph if
|
|
// we're tracing.
|
|
std::function<Value*(Graph&, const MatchedSchema& match)> callInserter) {
|
|
auto stack = createStackForSchema(
|
|
callee.getSchema(), std::move(args), std::move(kwargs), std::move(self));
|
|
auto tracing_state = tracer::getTracingState();
|
|
if (!tracing_state) {
|
|
pybind11::gil_scoped_release no_gil_guard;
|
|
// If we're not tracing, just run the callee as normal.
|
|
callee.run(stack);
|
|
} else {
|
|
// If we are tracing, insert the appropriate CallFunction or CallMethod node
|
|
// and then run the callee with tracing disabled.
|
|
|
|
// Get the graph `Value`s that represent the input IValues
|
|
auto inputs = last(stack, callee.graph()->inputs().size());
|
|
auto input_values =
|
|
fmap(inputs, [](const IValue& v) { return tracer::getValueTrace(v); });
|
|
TORCH_INTERNAL_ASSERT(callee.getSchema().returns().size() == 1)
|
|
auto return_type = callee.getSchema().returns().at(0).type();
|
|
auto graph = tracing_state->graph;
|
|
std::vector<NamedValue> named_values;
|
|
for (Value* v : input_values) {
|
|
named_values.emplace_back(v);
|
|
}
|
|
|
|
// Add a call node.
|
|
MatchedSchema match = matchSchema(
|
|
callee.getSchema(),
|
|
tracer::getPythonInterpreterSourceRange(),
|
|
*graph,
|
|
named_values,
|
|
{});
|
|
auto output_value = callInserter(*graph, match);
|
|
|
|
// Actually run the callee. Pause the tracer so that we don't double-add the
|
|
// callee nodes.
|
|
{
|
|
pybind11::gil_scoped_release no_gil_guard;
|
|
ResourceGuard guard(tracer::pauseTracing());
|
|
callee.run(stack);
|
|
}
|
|
|
|
// Associate the output IValues with the output `Value`s in the graph
|
|
tracer::setValueTrace(stack.back(), output_value);
|
|
}
|
|
|
|
TORCH_CHECK(
|
|
stack.size() > 0,
|
|
"Expected values in the stack after execution but found none");
|
|
return toPyObject(std::move(stack.back()));
|
|
}
|
|
|
|
inline py::object invokeScriptFunctionFromPython(
|
|
Function& callee,
|
|
tuple_slice args,
|
|
py::kwargs kwargs) {
|
|
return runAndInsertCall(
|
|
callee,
|
|
args,
|
|
kwargs,
|
|
/*self=*/c10::nullopt,
|
|
[&](Graph& graph, const MatchedSchema& match) {
|
|
return graph.insertFunctionCall(&callee, match);
|
|
});
|
|
}
|
|
|
|
inline py::object invokeScriptMethodFromPython(
|
|
Method& callee,
|
|
tuple_slice args,
|
|
py::kwargs kwargs) {
|
|
auto self = callee.owner()._ivalue();
|
|
return runAndInsertCall(
|
|
callee.function(),
|
|
args,
|
|
kwargs,
|
|
self,
|
|
[&](Graph& graph, const MatchedSchema& match) {
|
|
return graph.insertMethodCall(callee.name(), match);
|
|
});
|
|
}
|
|
|
|
inline py::object invokeOperatorFromPython(
|
|
const std::vector<std::shared_ptr<Operator>>& operations,
|
|
py::args args,
|
|
py::kwargs kwargs) {
|
|
Stack stack;
|
|
|
|
if (operations.size() == 1) {
|
|
const Operator& op = *operations.at(0);
|
|
// Create a stack full of the arguments and keyword arguments.
|
|
stack = createStackForSchema(
|
|
op.schema(), std::move(args), std::move(kwargs), c10::nullopt);
|
|
op.getOperation()(stack);
|
|
} else {
|
|
std::vector<schema_match_error> errors;
|
|
std::shared_ptr<Operator> found_op = nullptr;
|
|
for (const auto& op : operations) {
|
|
try {
|
|
stack = createStackForSchema(op->schema(), args, kwargs, c10::nullopt);
|
|
found_op = op;
|
|
break;
|
|
} catch (schema_match_error& error) {
|
|
errors.push_back(std::move(error));
|
|
}
|
|
}
|
|
if (!found_op) {
|
|
std::stringstream ss;
|
|
ss << "Overloaded torch operator invoked from Python failed to many any schema:\n";
|
|
for (const auto& err : errors) {
|
|
ss << err.what() << "\n\n";
|
|
}
|
|
throw std::runtime_error(ss.str());
|
|
}
|
|
found_op->getOperation()(stack);
|
|
}
|
|
|
|
return createPyObjectForStack(std::move(stack));
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|