mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/26350 Python 3 lets us use `...` to perform indexing. Semantically, `...` means "the rest of the unspecified dimensions". For example, while indexing, one can do (for 5D `tensor`) `tensor[0, 0, ..., 0]` and the `...` is expanded into `tensor[0, 0, :, :, 0]`. Previously, we were using '*' to represent a similar behavior in names. For example, `tensor.refine_names` supports things like the following: ``` x = torch.randn(2, 3, 4, 5, 6) x_out = x.refine_names('*', 'H', 'W') # refine only the last two dimensions ``` This PR changes it so that named tensor API functions recognize `'...'` (in Python 2 and Python 3) and `...` (in Python 3 exclusively) instead of `'*'`. Test Plan: - [namedtensor ci] Differential Revision: D17424666 Pulled By: zou3519 fbshipit-source-id: 003182879fd38ced3fea051217572a457cdaf7cf
145 lines
5.2 KiB
Python
145 lines
5.2 KiB
Python
import torch
|
|
from torch._six import PY2
|
|
from collections import OrderedDict
|
|
|
|
"""
|
|
This file contains helper functions that implement experimental functionality
|
|
for named tensors in python. All of these are experimental, unstable, and
|
|
subject to change or deletion.
|
|
"""
|
|
|
|
|
|
def assert_namedtensor_build(api_name):
|
|
if not torch._C._BUILD_NAMEDTENSOR:
|
|
raise RuntimeError('NYI: {} is experimental and a part '
|
|
'of our named tensors project.'.format(api_name))
|
|
|
|
|
|
def check_serializing_named_tensor(tensor):
|
|
if torch._C._BUILD_NAMEDTENSOR and tensor.has_names():
|
|
raise RuntimeError(
|
|
"NYI: Named tensors don't support serialization. Please drop "
|
|
"names before serialization and/or serialize them seperately.")
|
|
|
|
|
|
def build_dim_map(tensor):
|
|
"""Returns a map of { dim: dim_name } where dim is a name if the dim is named
|
|
and the dim index otherwise."""
|
|
return OrderedDict([(idx if name is None else name, name)
|
|
for idx, name in enumerate(tensor.names)])
|
|
|
|
|
|
def unzip_namedshape(namedshape):
|
|
if isinstance(namedshape, OrderedDict):
|
|
namedshape = namedshape.items()
|
|
if not hasattr(namedshape, '__iter__') and not isinstance(namedshape, tuple):
|
|
raise RuntimeError(
|
|
'Expected namedshape to be OrderedDict or iterable of tuples, got: {}'
|
|
.format(type(namedshape)))
|
|
if len(namedshape) == 0:
|
|
raise RuntimeError('Expected namedshape to non-empty.')
|
|
return zip(*namedshape)
|
|
|
|
|
|
def namer_api_name(inplace):
|
|
if inplace:
|
|
return 'names_'
|
|
else:
|
|
return 'renamed'
|
|
|
|
|
|
def is_ellipsis(item):
|
|
if PY2:
|
|
return item == '...'
|
|
else:
|
|
return item == Ellipsis or item == '...'
|
|
|
|
|
|
def expand_single_ellipsis(numel_pre_glob, numel_post_glob, names):
|
|
return names[numel_pre_glob:len(names) - numel_post_glob]
|
|
|
|
|
|
def resolve_ellipsis(names, tensor_names, fn_name):
|
|
ellipsis_indices = [i for i, name in enumerate(names) if is_ellipsis(name)]
|
|
if len(ellipsis_indices) >= 2:
|
|
raise RuntimeError('{}: More than one Ellipsis (\'...\') found in names ('
|
|
'{}). This function supports up to one Ellipsis.'
|
|
.format(fn_name, names))
|
|
if len(ellipsis_indices) == 0:
|
|
return names
|
|
ellipsis_idx = ellipsis_indices[0]
|
|
globbed_names = expand_single_ellipsis(ellipsis_idx, len(names) - ellipsis_idx - 1, tensor_names)
|
|
return names[:ellipsis_idx] + globbed_names + names[ellipsis_idx + 1:]
|
|
|
|
|
|
def update_names_with_list(tensor, names, inplace):
|
|
# Special case for tensor.renamed(None)
|
|
if len(names) == 1 and names[0] is None:
|
|
return tensor._update_names(None, inplace)
|
|
|
|
return tensor._update_names(
|
|
resolve_ellipsis(names, tensor.names, namer_api_name(inplace)), inplace)
|
|
|
|
|
|
def update_names_with_mapping(tensor, rename_map, inplace):
|
|
dim_map = build_dim_map(tensor)
|
|
for old_dim in rename_map.keys():
|
|
new_dim = rename_map[old_dim]
|
|
if old_dim in dim_map.keys():
|
|
dim_map[old_dim] = new_dim
|
|
else:
|
|
raise RuntimeError(('{api_name}: Tried to rename dim \'{old_dim}\' to dim '
|
|
'{new_dim} in Tensor[{dims}] but dim \'{old_dim}\' does not exist')
|
|
.format(old_dim=old_dim, new_dim=new_dim, dims=tensor.names,
|
|
api_name=namer_api_name(inplace)))
|
|
return tensor._update_names(tuple(dim_map.values()), inplace)
|
|
|
|
|
|
def update_names(tensor, names, rename_map, inplace):
|
|
"""There are two usages:
|
|
|
|
tensor.renamed(*names) returns a view on tensor with named dims `names`.
|
|
`names` must be of length `tensor.dim()`; otherwise, if '*' is in `names`,
|
|
then it is expanded greedily to be equal to the corresponding names from
|
|
`tensor.names`.
|
|
|
|
For example,
|
|
```
|
|
>>> x = torch.empty(2, 3, 5, 7, names=('N', 'C', 'H', 'W'))
|
|
>>> x.renamed('*', 'height', 'width').names
|
|
('N', 'C', 'height', 'width')
|
|
|
|
>>> x.renamed('batch', '*', 'width').names
|
|
('batch', 'C', 'H', 'width')
|
|
```
|
|
|
|
tensor.renamed(**rename_map) returns a view on tensor that has renamed dims
|
|
as specified in the mapping `rename_map`.
|
|
|
|
For example,
|
|
```
|
|
>>> x = torch.empty(2, 3, 5, 7, names=('N', 'C', 'H', 'W'))
|
|
>>> x.renamed(W='width', H='height').names
|
|
('N', 'C', 'height', 'width')
|
|
```
|
|
|
|
Finally, tensor.renamed has an in-place version called tensor.names_.
|
|
"""
|
|
assert_namedtensor_build(namer_api_name(inplace))
|
|
|
|
has_names = len(names) > 0
|
|
has_rename_pairs = bool(rename_map)
|
|
if has_names and has_rename_pairs:
|
|
raise RuntimeError('{api_name}: This function takes either positional '
|
|
'args or keyword args, but not both. Use tensor.{api_name}(*names) '
|
|
'to name dims and tensor.{api_name}(**rename_map) to rename '
|
|
'dims.'.format(api_name=namer_api_name(inplace)))
|
|
|
|
# Special case for tensor.renamed(*[]), which is valid for a 0 dim tensor.
|
|
if not has_names and not has_rename_pairs:
|
|
return update_names_with_list(tensor, names, inplace)
|
|
|
|
if has_names:
|
|
return update_names_with_list(tensor, names, inplace)
|
|
return update_names_with_mapping(tensor, rename_map, inplace)
|