mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
It contains formatting and other minor fixes. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127833 Approved by: https://github.com/ezyang
126 lines
3.7 KiB
C++
126 lines
3.7 KiB
C++
#include <torch/csrc/utils/tensor_flatten.h>
|
|
|
|
#include <map>
|
|
#include <unordered_map>
|
|
|
|
namespace torch::utils {
|
|
|
|
using namespace at;
|
|
|
|
std::vector<TensorGroup> take_tensors(
|
|
TensorList tensors,
|
|
size_t size_limit,
|
|
bool fine_grained) {
|
|
std::vector<TensorGroup> results;
|
|
// an overapproximation, but at least we won't have to copy stuff around
|
|
results.reserve(tensors.size());
|
|
std::map<int64_t, TensorGroup> groups;
|
|
size_t cur_group_size = 0;
|
|
|
|
for (const auto& tensor : tensors) {
|
|
size_t tensor_size = 0;
|
|
if (tensor.is_sparse()) {
|
|
const auto& indices = tensor._indices();
|
|
const auto& values = tensor._values();
|
|
tensor_size = indices.numel() * indices.element_size() +
|
|
values.numel() * indices.element_size();
|
|
} else {
|
|
tensor_size = tensor.numel() * tensor.element_size();
|
|
}
|
|
|
|
auto& type_group = groups[static_cast<int64_t>(type_id(tensor))];
|
|
type_group.tensors.push_back(tensor);
|
|
|
|
if (fine_grained) {
|
|
cur_group_size += tensor_size;
|
|
// Regardless the type, the current total size exceeds the limit
|
|
if (cur_group_size >= size_limit) {
|
|
// Spill all types to separate groups in results
|
|
for (auto& entry : groups) {
|
|
auto& group = entry.second;
|
|
results.emplace_back(std::move(group));
|
|
}
|
|
cur_group_size = 0;
|
|
groups.clear();
|
|
}
|
|
} else {
|
|
type_group.size += tensor_size;
|
|
if (type_group.size >= size_limit) {
|
|
results.emplace_back();
|
|
std::swap(results.back(), type_group);
|
|
}
|
|
}
|
|
}
|
|
// End case. Look for any remaining groups and return them.
|
|
for (auto& entry : groups) {
|
|
auto& group = entry.second;
|
|
if (group.tensors.empty()) {
|
|
continue;
|
|
}
|
|
results.emplace_back(std::move(group));
|
|
}
|
|
return results;
|
|
}
|
|
|
|
void reorder_tensors_like(std::vector<Tensor>& tensors, TensorList order) {
|
|
AT_ASSERT(tensors.size() == order.size());
|
|
std::unordered_map<size_t, std::vector<size_t>> type_id_to_indices;
|
|
for (size_t i = 0, num_tensors = tensors.size(); i < num_tensors; ++i)
|
|
type_id_to_indices[type_id(tensors[i])].push_back(i);
|
|
|
|
std::unordered_map<size_t, size_t> type_id_to_type_used;
|
|
std::vector<Tensor> ordered_tensors;
|
|
ordered_tensors.reserve(tensors.size());
|
|
for (auto& tmpl_tensor : order) {
|
|
size_t tmpl_type_id = type_id(tmpl_tensor);
|
|
auto& indices = type_id_to_indices[tmpl_type_id];
|
|
auto& used = type_id_to_type_used[tmpl_type_id];
|
|
ordered_tensors.push_back(tensors[indices[used++]]);
|
|
}
|
|
std::swap(tensors, ordered_tensors);
|
|
}
|
|
|
|
namespace {
|
|
|
|
at::Tensor get_indices(const at::Tensor& t) {
|
|
return t._indices();
|
|
}
|
|
|
|
at::Tensor get_values(const at::Tensor& t) {
|
|
return t._values();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::pair<at::Tensor, at::Tensor> flatten_sparse_tensors(
|
|
at::TensorList tensors) {
|
|
auto flat_indices = utils::flatten_dense_tensors(fmap(tensors, &get_indices));
|
|
auto flat_values = utils::flatten_dense_tensors(fmap(tensors, &get_values));
|
|
return std::make_pair(flat_indices, flat_values);
|
|
}
|
|
|
|
std::vector<at::Tensor> unflatten_sparse_tensors(
|
|
const at::Tensor& flat_indices,
|
|
const at::Tensor& flat_values,
|
|
at::TensorList tensors) {
|
|
if (tensors.empty())
|
|
return {};
|
|
|
|
auto indices =
|
|
utils::unflatten_dense_tensors(flat_indices, fmap(tensors, &get_indices));
|
|
auto values =
|
|
utils::unflatten_dense_tensors(flat_values, fmap(tensors, &get_values));
|
|
|
|
std::vector<at::Tensor> outputs;
|
|
outputs.reserve(tensors.size());
|
|
for (size_t i = 0, num_tensors = tensors.size(); i < num_tensors; ++i) {
|
|
auto& ref_t = tensors[i];
|
|
auto t =
|
|
at::_sparse_coo_tensor_unsafe(indices[i], values[i], ref_t.sizes());
|
|
outputs.emplace_back(t._coalesced_(ref_t.is_coalesced()));
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
} // namespace torch::utils
|