Files
pytorch/torch/csrc/cuda/Module.cpp
Eddie Yan ba06951c66 [BE] [cuDNN] Always build assuming cuDNN >= 8.1 (#95722)
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 27084ed</samp>

This pull request simplifies and cleans up the code that uses the cuDNN library for convolution, batch normalization, CTC loss, and quantized operations. It removes the unnecessary checks and conditions for older cuDNN versions and the experimental cuDNN v8 API, and ~~replaces them with the stable `cudnn_frontend` API that requires cuDNN v8 or higher. It also adds the dependency and configuration for the `cudnn_frontend` library in the cmake and bazel files.~~ Correction: The v7 API will still be available with this PR, and can still be used, without any changes to the defaults. This change simply always _builds_ the v8 API, and removes the case where _only_ the v7 API is built.

This is a re-land of https://github.com/pytorch/pytorch/pull/91527

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95722
Approved by: https://github.com/malfet, https://github.com/atalman
2024-01-03 15:41:28 +00:00

1541 lines
50 KiB
C++

#include <ATen/ATen.h>
#include <ATen/CachedTensorUtils.h>
#include <ATen/core/TensorBody.h>
#include <ATen/cuda/CUDAConfig.h>
#include <ATen/native/ConvUtils.h>
#include <c10/core/Device.h>
#include <c10/core/TensorImpl.h>
#include <c10/util/UniqueVoidPtr.h>
#include <pybind11/pytypes.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <unordered_set>
#if AT_CUDNN_ENABLED()
#endif
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAGeneratorImpl.h>
#include <ATen/cuda/CachingHostAllocator.h>
#include <ATen/cuda/Sleep.h>
#include <ATen/cuda/detail/CUDAHooks.h>
#include <ATen/cuda/jiterator.h>
#include <c10/core/StorageImpl.h>
#include <c10/cuda/CUDAAllocatorConfig.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAFunctions.h>
#include <ATen/cuda/CUDAGraphsUtils.cuh>
#ifdef USE_NCCL
#include <torch/csrc/cuda/python_nccl.h>
#endif
#include <c10/util/CallOnce.h>
#include <c10/util/irange.h>
#include <torch/csrc/CudaIPCTypes.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/cuda/CUDAPluggableAllocator.h>
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/cuda/memory_snapshot.h>
#include <torch/csrc/cuda/python_comm.h>
#include <torch/csrc/profiler/python/combined_traceback.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <array>
#include <chrono>
#include <iostream>
#include <sstream>
#include <thread>
#include <unordered_map>
#ifndef WIN32
#include <pthread.h>
#endif
using namespace torch;
static bool in_bad_fork = false; // True for children forked after cuda init
#ifndef WIN32
// Called in the forked child if cuda has already been initialized
static void forked_child() {
in_bad_fork = true;
torch::utils::set_requires_cuda_init(true);
}
#endif
// Should be called before the first cuda call.
// Note: This is distinct from initExtension because a stub cuda implementation
// has some working functions (e.g. device_count) but cannot fully initialize.
static void poison_fork() {
#ifndef WIN32
static c10::once_flag flag;
c10::call_once(flag, [] { pthread_atfork(nullptr, nullptr, forked_child); });
#endif
}
////////////////////////////////////////////////////////////////////////////////
// CUDA management methods
////////////////////////////////////////////////////////////////////////////////
void THCPModule_setDevice(int device) {
c10::cuda::set_device(static_cast<c10::DeviceIndex>(device));
}
PyObject* THCPModule_setDevice_wrap(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice");
int64_t device = THPUtils_unpackLong(arg);
torch::utils::cuda_lazy_init();
THCPModule_setDevice(device);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_exchangeDevice(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to exchangeDevice");
int64_t device = THPUtils_unpackLong(arg);
if (device < 0) {
return THPUtils_packInt32(-1);
}
torch::utils::cuda_lazy_init();
int current_device = c10::cuda::ExchangeDevice(device);
return THPUtils_packInt32(current_device);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_maybeExchangeDevice(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to exchangeDevice");
int64_t device = THPUtils_unpackLong(arg);
if (device < 0) {
return THPUtils_packInt32(-1);
}
torch::utils::cuda_lazy_init();
int current_device = c10::cuda::MaybeExchangeDevice(device);
return THPUtils_packInt32(current_device);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getDevice_wrap(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
torch::utils::cuda_lazy_init();
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
auto device = static_cast<int32_t>(c10::cuda::current_device());
return THPUtils_packInt32(device);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_canDeviceAccessPeer_wrap(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject* arg1 = nullptr;
PyObject* arg2 = nullptr;
if (!PyArg_ParseTuple(args, "OO", &arg1, &arg2)) {
THPUtils_invalidArguments(
args,
nullptr,
"can_device_peer_access",
1,
"(int device, int peer_device);");
return nullptr;
}
THPUtils_assert(
THPUtils_checkLong(arg1), "invalid argument to canDeviceAccessPeer");
THPUtils_assert(
THPUtils_checkLong(arg2), "invalid argument to canDeviceAccessPeer");
int64_t device = THPUtils_unpackLong(arg1);
int64_t peer_device = THPUtils_unpackLong(arg2);
torch::utils::cuda_lazy_init();
auto can_access = at::cuda::canDeviceAccessPeer(device, peer_device);
return PyBool_FromLong(can_access);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getDeviceCount_wrap(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
poison_fork();
return THPUtils_packUInt64(at::cuda::device_count());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getArchFlags(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
poison_fork();
#ifdef CUDA_ARCH_FLAGS
static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS);
return THPUtils_packString(flags);
#else
Py_RETURN_NONE;
#endif
END_HANDLE_TH_ERRORS
}
static PyObject* THCPModule_isInBadFork(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
return PyBool_FromLong(in_bad_fork);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCurrentStream_wrap(
PyObject* /* unused */,
PyObject* device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
int64_t device = THPUtils_unpackLong(device_index);
auto stream = at::cuda::getCurrentCUDAStream(device);
PyObject* output_tuple = PyTuple_New(3);
PyTuple_SetItem(
output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id())));
PyTuple_SetItem(
output_tuple,
1,
THPUtils_packInt64(static_cast<int64_t>(stream.device_index())));
PyTuple_SetItem(
output_tuple,
2,
THPUtils_packInt64(static_cast<int64_t>(stream.device_type())));
return output_tuple;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCurrentStream_raw(
PyObject* /* unused */,
PyObject* device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromVoidPtr(at::cuda::getCurrentCUDAStream(device).stream());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getDefaultStream_wrap(
PyObject* /* unused */,
PyObject* device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getDefaultStream");
int64_t device = THPUtils_unpackLong(device_index);
auto stream = at::cuda::getDefaultCUDAStream(device);
PyObject* output_tuple = PyTuple_New(3);
PyTuple_SetItem(
output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id())));
PyTuple_SetItem(
output_tuple,
1,
THPUtils_packInt64(static_cast<int64_t>(stream.device_index())));
PyTuple_SetItem(
output_tuple,
2,
THPUtils_packInt64(static_cast<int64_t>(stream.device_type())));
return output_tuple;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_setStream_wrap(
PyObject* self,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
int64_t stream_id = 0;
int64_t device_index = 0;
int64_t device_type = 0;
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
constexpr const char* kwlist[] = {
"stream_id", "device_index", "device_type", nullptr};
if (!PyArg_ParseTupleAndKeywords(
args,
kwargs,
"|LLL",
const_cast<char**>(kwlist),
&stream_id,
&device_index,
&device_type)) {
}
auto stream = at::cuda::CUDAStream::unpack3(
stream_id, device_index, static_cast<c10::DeviceType>(device_type));
auto device = c10::cuda::current_device();
if (device != stream.device_index()) {
THCPModule_setDevice(stream.device_index());
}
at::cuda::setCurrentCUDAStream(stream);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCompiledVersion(PyObject* self, PyObject* noargs) {
#if defined(USE_ROCM)
return THPUtils_packInt64((int64_t)ROCM_VERSION);
#else
return THPUtils_packInt64((int64_t)CUDA_VERSION);
#endif
}
PyObject* THCPModule_cudaHostAllocator(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
c10::Allocator* allocator = at::cuda::getCachingHostAllocator();
return PyLong_FromVoidPtr(allocator);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_raw_alloc(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
PyObject* size_o = nullptr;
PyObject* stream_o = nullptr;
if (!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"caching_allocator_alloc",
1,
"(ssize_t size, intptr_t stream);");
return nullptr;
}
auto size = PyLong_AsSsize_t(size_o);
cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o));
void* mem = nullptr;
{
pybind11::gil_scoped_release no_gil;
mem = c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream);
}
return PyLong_FromVoidPtr(mem);
END_HANDLE_TH_ERRORS
}
// Unpack a PyObject to at::Scalar, throw an exception if it fails
at::Scalar as_scalar(PyObject* arg) {
// Zero-dim tensors are converted to Scalars as-is. Note this doesn't
// currently handle most NumPy scalar types except np.float64.
if (THPVariable_Check(arg)) {
return THPVariable_Unpack(arg).item();
}
if (THPUtils_checkLong(arg)) {
return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(arg)));
}
if (PyBool_Check(arg)) {
return at::Scalar(THPUtils_unpackBool(arg));
}
if (PyComplex_Check(arg)) {
return at::Scalar(THPUtils_unpackComplexDouble(arg));
}
return at::Scalar(THPUtils_unpackDouble(arg));
}
// Entrypoint for the callable created by torch.cuda.jiterator
// See jiterator.py for more details
PyObject* THCPModule_cudaJiteratorCompileAndLaunchKernel(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
PyObject* code_string_o = nullptr;
PyObject* kernel_name_o = nullptr;
PyObject* return_by_ref_o = nullptr;
PyObject* num_outputs_o = nullptr;
PyObject* tensors_o = nullptr;
PyObject* kwargs_o = nullptr;
if (!PyArg_ParseTuple(
args,
"OOOOO|O",
&code_string_o,
&kernel_name_o,
&return_by_ref_o,
&num_outputs_o,
&tensors_o,
&kwargs_o)) {
return nullptr;
}
const std::string code_string = THPUtils_unpackString(code_string_o);
const std::string kernel_name = THPUtils_unpackString(kernel_name_o);
const bool return_by_ref = THPUtils_unpackBool(return_by_ref_o);
const int num_outputs = static_cast<int>(THPUtils_unpackLong(num_outputs_o));
THPUtils_assert(
PyTuple_Check(tensors_o),
"tensors argument is expected to "
"be a tuple, but got %s",
THPUtils_typename(tensors_o));
Py_ssize_t num_tensors = PyTuple_GET_SIZE(tensors_o);
c10::SmallVector<at::Tensor> tensors;
for (const auto i : c10::irange(num_tensors)) {
PyObject* _tensor = PyTuple_GET_ITEM(tensors_o, i);
THPUtils_assert(
THPVariable_Check(_tensor),
"%d of input tensors tuple is not a Tensor",
i);
tensors.emplace_back(THPVariable_Unpack(_tensor));
}
c10::SmallVector<at::Scalar> extra_args;
PyObject* key = nullptr;
PyObject* value = nullptr;
Py_ssize_t pos = 0;
while (PyDict_Next(kwargs_o, &pos, &key, &value)) {
extra_args.emplace_back(as_scalar(value));
}
c10::SmallVector<at::Tensor> outputs = at::cuda::CompileAndLaunchKernel(
code_string,
kernel_name,
num_outputs,
tensors,
extra_args,
return_by_ref);
if (num_outputs == 1) {
return THPVariable_Wrap(outputs[0]);
} else {
PyObject* output_tuple = PyTuple_New(num_outputs);
for (int i = 0; i < num_outputs; ++i) {
PyTuple_SetItem(output_tuple, i, THPVariable_Wrap(outputs[i]));
}
return output_tuple;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_raw_delete(
PyObject* _unused,
PyObject* obj) {
HANDLE_TH_ERRORS
void* mem_ptr = PyLong_AsVoidPtr(obj);
{
pybind11::gil_scoped_release no_gil;
c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_set_allocator_settings(
PyObject* _unused,
PyObject* env) {
HANDLE_TH_ERRORS
c10::cuda::CUDACachingAllocator::setAllocatorSettings(
THPUtils_unpackString(env));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getAllocatorBackend(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(c10::cuda::CUDACachingAllocator::name());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaSynchronize(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS {
pybind11::gil_scoped_release no_gil;
c10::cuda::device_synchronize();
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaIPCCollect(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
torch::CudaIPCCollect();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaSleep(PyObject* _unused, PyObject* cycles) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'");
int64_t unpacked_cycles = THPUtils_unpackLong(cycles);
{
pybind11::gil_scoped_release no_gil;
at::cuda::sleep(unpacked_cycles);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// We need to ensure that as long as a thread will NEVER loose the GIL as long
// as it holds the CUDA mutex. Otherwise another thread might be scheduled and
// try to e.g. allocate a new tensor which will cause a deadlock. It's enough to
// have a single global, because it can be only set once (cudaMutex is not
// recursive) by the thread that owns the mutex (obviously there can be only one
// such thread).
static PyGILState_STATE cudaMutexGILState;
PyObject* THCPModule_cudaLockMutex(PyObject* module, PyObject* noargs) {
auto mutex = c10::cuda::getFreeMutex();
// This has to be a busy loop because we **absolutely need to** hold the GIL
// or it's a recipe for a deadlock otherwise (if we let other Python threads
// run while we have the cudaMutex, but not the GIL, they might try to e.g.
// free a CUDA tensor and acquire the cudaMutex without giving up the GIL,
// because it happens deep within THC).
while (true) {
if (mutex->try_lock())
break;
{
pybind11::gil_scoped_release no_gil;
std::this_thread::sleep_for(std::chrono::microseconds(10));
}
}
cudaMutexGILState = PyGILState_Ensure();
Py_RETURN_NONE;
}
PyObject* THCPModule_cudaUnlockMutex(PyObject* module, PyObject* noargs) {
auto mutex = c10::cuda::getFreeMutex();
PyGILState_Release(cudaMutexGILState);
mutex->unlock();
Py_RETURN_NONE;
}
PyObject* THCPModule_hasPrimaryContext(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(arg), "invalid argument to has_primary_context");
int64_t device_index = static_cast<int64_t>(THPUtils_unpackLong(arg));
if (c10::cuda::hasPrimaryContext(device_index)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_setMemoryFraction(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
PyObject* fraction_o = nullptr;
PyObject* device_o = nullptr;
if (!PyArg_ParseTuple(args, "OO", &fraction_o, &device_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"set_memory_fraction",
1,
"(double fraction, int device);");
return nullptr;
}
double fraction = PyFloat_AsDouble(fraction_o);
int64_t device = PyLong_AsLongLong(device_o);
c10::cuda::CUDACachingAllocator::setMemoryFraction(fraction, device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_emptyCache(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
c10::cuda::CUDACachingAllocator::emptyCache();
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_memoryStats(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(arg), "invalid argument to memory_allocated");
const int device = (int)THPUtils_unpackLong(arg);
using c10::cuda::CUDACachingAllocator::DeviceStats;
using c10::cuda::CUDACachingAllocator::Stat;
using c10::cuda::CUDACachingAllocator::StatArray;
using c10::cuda::CUDACachingAllocator::StatType;
const auto statToDict = [](const Stat& stat) {
py::dict dict;
dict["current"] = stat.current;
dict["peak"] = stat.peak;
dict["allocated"] = stat.allocated;
dict["freed"] = stat.freed;
return dict;
};
const auto statArrayToDict = [=](const StatArray& statArray) {
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)>
statTypeNames = {"all", "small_pool", "large_pool"};
py::dict dict;
for (const auto i : c10::irange(statTypeNames.size())) {
dict[statTypeNames[i]] = statToDict(statArray[i]);
}
return dict;
};
const DeviceStats stats =
c10::cuda::CUDACachingAllocator::getDeviceStats(device);
py::dict result;
result["num_alloc_retries"] = stats.num_alloc_retries;
result["num_ooms"] = stats.num_ooms;
result["max_split_size"] = stats.max_split_size;
result["allocation"] = statArrayToDict(stats.allocation);
result["segment"] = statArrayToDict(stats.segment);
result["active"] = statArrayToDict(stats.active);
result["inactive_split"] = statArrayToDict(stats.inactive_split);
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
result["active_bytes"] = statArrayToDict(stats.active_bytes);
result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes);
result["requested_bytes"] = statArrayToDict(stats.requested_bytes);
result["oversize_allocations"] = statToDict(stats.oversize_allocations);
result["oversize_segments"] = statToDict(stats.oversize_segments);
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_resetAccumulatedMemoryStats(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(arg),
"invalid argument to reset_accumulated_memory_stats");
const int device = (int)THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_resetPeakMemoryStats(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
const int device = (int)THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetPeakStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
CapturedTraceback* getFromContext(
const std::shared_ptr<c10::GatheredContext>& x) {
if (CapturedTraceback* sc = dynamic_cast<CapturedTraceback*>(x.get())) {
return sc;
}
TORCH_CHECK(
false,
"attempting to gather stack context from the wrong StackContext type.");
}
PyObject* THCPModule_memorySnapshot(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
using c10::cuda::CUDACachingAllocator::BlockInfo;
using c10::cuda::CUDACachingAllocator::SegmentInfo;
py::str device_s = "device";
py::str address_s = "address";
py::str total_size_s = "total_size";
py::str allocated_size_s = "allocated_size";
py::str active_size_s = "active_size";
py::str requested_size_s = "requested_size";
py::str stream_s = "stream";
py::str segment_type_s = "segment_type";
py::str segment_pool_id = "segment_pool_id";
py::str large_s = "large";
py::str small_s = "small";
py::str size_s = "size";
py::str state_s = "state";
py::str active_allocated_s = "active_allocated";
py::str active_pending_free_s = "active_pending_free";
py::str inactive_s = "inactive";
py::str addr_s = "addr";
py::str cpp_frames_s = "cpp_frames";
py::str blocks_s = "blocks";
py::str is_expandable_s = "is_expandable";
py::str frames_s = "frames";
py::str time_us_s = "time_us";
py::list empty_frames;
std::vector<CapturedTraceback*> to_gather_frames;
std::vector<py::dict> to_gather_dest;
auto add_frame_key = [&](const py::dict& d,
const std::shared_ptr<c10::GatheredContext>& ctx) {
if (ctx) {
auto sc = getFromContext(ctx);
to_gather_frames.emplace_back(sc);
to_gather_dest.emplace_back(d);
} else {
d[frames_s] = empty_frames;
}
};
const auto segmentInfoToDict = [&](const SegmentInfo& segmentInfo) {
py::dict segmentDict;
segmentDict[device_s] = segmentInfo.device;
segmentDict[address_s] = segmentInfo.address;
segmentDict[total_size_s] = segmentInfo.total_size;
segmentDict[allocated_size_s] = segmentInfo.allocated_size;
segmentDict[active_size_s] = segmentInfo.active_size;
segmentDict[requested_size_s] = segmentInfo.requested_size;
// we want the python objects to pickle easily so use an int to
// represent the stream rather than a torch.cuda.stream object
segmentDict[stream_s] = int64_t(segmentInfo.stream);
segmentDict[segment_type_s] = (segmentInfo.is_large ? large_s : small_s);
segmentDict[segment_pool_id] = segmentInfo.owner_private_pool_id;
segmentDict[is_expandable_s] = segmentInfo.is_expandable;
add_frame_key(segmentDict, segmentInfo.context_when_allocated);
auto address = segmentInfo.address;
py::list blocks;
for (const auto& blockInfo : segmentInfo.blocks) {
py::dict blockDict;
blockDict[address_s] = address;
blockDict[size_s] = blockInfo.size;
blockDict[requested_size_s] = blockInfo.requested_size;
blockDict[state_s] =
(blockInfo.allocated
? active_allocated_s
: (blockInfo.active ? active_pending_free_s : inactive_s));
add_frame_key(blockDict, blockInfo.context_when_allocated);
blocks.append(blockDict);
address += blockInfo.size;
}
segmentDict[blocks_s] = blocks;
return segmentDict;
};
auto snapshot = c10::cuda::CUDACachingAllocator::snapshot();
py::list segments;
for (const auto& segmentInfo : snapshot.segments) {
segments.append(segmentInfoToDict(segmentInfo));
}
py::list traces;
py::str action_s = "action";
py::str alloc_s = "alloc";
py::str free_requested_s = "free_requested";
py::str free_completed_s = "free_completed";
py::str segment_alloc_s = "segment_alloc";
py::str segment_free_s = "segment_free";
py::str segment_map_s = "segment_map";
py::str segment_unmap_s = "segment_unmap";
py::str snapshot_s = "snapshot";
py::str oom_s = "oom";
py::str device_free_s = "device_free";
using namespace c10::cuda::CUDACachingAllocator;
auto action_to_str = [&](TraceEntry::Action action) {
switch (action) {
case TraceEntry::ALLOC:
return alloc_s;
case TraceEntry::FREE_REQUESTED:
return free_requested_s;
case TraceEntry::FREE_COMPLETED:
return free_completed_s;
case TraceEntry::SEGMENT_ALLOC:
return segment_alloc_s;
case TraceEntry::SEGMENT_FREE:
return segment_free_s;
case TraceEntry::OOM:
return oom_s;
case TraceEntry::SNAPSHOT:
return snapshot_s;
case TraceEntry::SEGMENT_UNMAP:
return segment_unmap_s;
case TraceEntry::SEGMENT_MAP:
return segment_map_s;
}
throw std::runtime_error("unreachable");
};
for (const auto& traceInfo : snapshot.device_traces) {
py::list trace;
for (const auto& te : traceInfo) {
py::dict trace_entry;
if (te.context_) {
// without further compression frames can get really large on dump
auto sc = getFromContext(te.context_);
to_gather_frames.emplace_back(sc);
to_gather_dest.emplace_back(trace_entry);
}
trace_entry[action_s] = action_to_str(te.action_);
trace_entry[TraceEntry::OOM == te.action_ ? device_free_s : addr_s] =
te.addr_;
trace_entry[size_s] = te.size_;
trace_entry[stream_s] = int64_t(te.stream_);
trace_entry[time_us_s] = te.time_.t_;
trace.append(trace_entry);
}
traces.append(trace);
}
py::dict result;
result["segments"] = segments;
result["device_traces"] = traces;
auto frames = py_symbolize(to_gather_frames);
for (auto i : c10::irange(frames.size())) {
to_gather_dest.at(i)[frames_s] = frames.at(i);
}
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_attachOutOfMemoryObserver(
PyObject* _unused,
PyObject* observer) {
HANDLE_TH_ERRORS
Py_XINCREF(observer);
auto obs = [observer](
int64_t device,
int64_t alloc,
int64_t device_allocated,
int64_t device_free) {
py::gil_scoped_acquire g;
PyObject* result = PyObject_CallFunction(
observer, "LLLL", device, alloc, device_allocated, device_free);
if (!result) {
throw py::error_already_set();
}
Py_XDECREF(result);
};
at::globalContext().lazyInitCUDA();
c10::cuda::CUDACachingAllocator::attachOutOfMemoryObserver(std::move(obs));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaSetSyncDebugMode(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_WARN_ONCE(
"Synchronization debug mode is a prototype feature and does not yet detect all "
"synchronizing operations");
THPUtils_assert(
THPUtils_checkLong(arg), "invalid argument to set_sync_debug_mode");
int64_t debug_mode = THPUtils_unpackLong(arg);
TORCH_CHECK(
debug_mode >= 0 && debug_mode <= 2,
"invalid value of debug_mode, expected one of 0,1,2");
c10::cuda::SyncDebugMode l;
switch (debug_mode) {
case 0:
l = c10::cuda::SyncDebugMode::L_DISABLED;
break;
case 1:
l = c10::cuda::SyncDebugMode::L_WARN;
break;
case 2:
l = c10::cuda::SyncDebugMode::L_ERROR;
break;
default:
l = c10::cuda::SyncDebugMode::L_DISABLED;
break; // can't happen
}
c10::cuda::warning_state().set_sync_debug_mode(l);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaGetSyncDebugMode(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto debug_mode = c10::cuda::warning_state().get_sync_debug_mode();
switch (debug_mode) {
case c10::cuda::SyncDebugMode::L_DISABLED:
return THPUtils_packInt32(0);
case c10::cuda::SyncDebugMode::L_WARN:
return THPUtils_packInt32(1);
case c10::cuda::SyncDebugMode::L_ERROR:
return THPUtils_packInt32(2);
default:
return THPUtils_packInt32(-1); // can't happen
}
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Cuda module initialization
////////////////////////////////////////////////////////////////////////////////
static void registerCudaDeviceProperties(PyObject* module) {
// Add _cudaDevicePropertires class to torch._C
auto m = py::handle(module).cast<py::module>();
py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties")
.def_readonly("name", &cudaDeviceProp::name)
.def_readonly("major", &cudaDeviceProp::major)
.def_readonly("minor", &cudaDeviceProp::minor)
.def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard)
.def_readonly("is_integrated", &cudaDeviceProp::integrated)
.def_readonly(
"multi_processor_count", &cudaDeviceProp::multiProcessorCount)
.def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem)
.def_readonly(
"max_threads_per_multi_processor",
&cudaDeviceProp::maxThreadsPerMultiProcessor)
#if !USE_ROCM
// NVIDA only property
.def_readonly(
"regs_per_multiprocessor", &cudaDeviceProp::regsPerMultiprocessor)
#endif // USE_ROCM
// HIP-only property; reuse name attribute for CUDA builds
.def_readonly(
"gcnArchName",
#if USE_ROCM
&cudaDeviceProp::gcnArchName
#else
&cudaDeviceProp::name
#endif // USE_ROCM
)
.def("__repr__", [](const cudaDeviceProp& prop) {
std::ostringstream stream;
stream << "_CudaDeviceProperties(name='" << prop.name
<< "', major=" << prop.major << ", minor=" << prop.minor
#if USE_ROCM
<< ", gcnArchName='" << prop.gcnArchName << "'"
#endif // USE_ROCM
<< ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
<< "MB, multi_processor_count=" << prop.multiProcessorCount
<< ")";
return stream.str();
});
m.def(
"_cuda_record_memory_history_legacy",
static_cast<void (*)(bool, bool, int64_t, bool, bool)>(
torch::cuda::_record_memory_history));
m.def(
"_cuda_record_memory_history",
static_cast<void (*)(
c10::optional<std::string>,
c10::optional<std::string>,
std::string,
size_t)>(torch::cuda::_record_memory_history));
m.def("_cuda_isHistoryEnabled", []() {
return c10::cuda::CUDACachingAllocator::isHistoryEnabled();
});
m.def("_cuda_get_conv_benchmark_empty_cache", []() {
return at::native::_cudnn_get_conv_benchmark_empty_cache();
});
m.def("_cudnn_set_conv_benchmark_empty_cache", [](bool enable) {
return at::native::_cudnn_set_conv_benchmark_empty_cache(enable);
});
}
// We choose to ignore certain blocks that are currently allocated
// when we set the pool to its checkpoint. For those blocks, we need
// to swap out the deleter function of their corresponding blocks
// so that a deallocation is not triggered when they die.
void removeStorageDeleterFns(
const std::vector<c10::StorageImpl*>& stale_live_storages,
std::unordered_set<void*> definitely_stale_pointers) {
for (c10::StorageImpl* stale_storage : stale_live_storages) {
auto ptr = stale_storage->data_ptr().get();
auto allocated_pointer = definitely_stale_pointers.find(ptr);
TORCH_CHECK(allocated_pointer != definitely_stale_pointers.end());
auto t = c10::cuda::CUDACachingAllocator::get();
bool succeeded = stale_storage->mutable_data_ptr().compare_exchange_deleter(
t->raw_deleter(), &c10::detail::deleteNothing);
TORCH_CHECK(
succeeded,
"Unexpected deleter function on storage, could not swap function");
}
}
void addStorageDeleterFns(
std::vector<c10::StorageImpl*>& storages_to_add_deleters_to,
c10::cuda::CUDACachingAllocator::CheckpointDelta& delta) {
std::unordered_map<void*, c10::StorageImpl*> storages;
for (auto& storage : storages_to_add_deleters_to) {
storages[storage->data_ptr().get()] = storage;
}
for (auto& data_ptr : delta.dataptrs_allocd) {
auto storage_pair = storages.find(data_ptr.get());
if (storage_pair != storages.end()) {
auto ctx = storage_pair->second->data_ptr().get_context();
TORCH_CHECK(ctx == nullptr, " Not expecting deleter function");
storage_pair->second->set_data_ptr_noswap(std::move(data_ptr));
} else {
data_ptr.release_context();
}
}
}
static void registerCudaPluggableAllocator(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::class_<
c10::cuda::CUDACachingAllocator::CUDAAllocator,
std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>>(
m, "_cuda_CUDAAllocator");
m.def("_cuda_getAllocator", []() {
return py::cast(torch::cuda::CUDAPluggableAllocator::getCurrentAllocator());
});
m.def(
"_cuda_changeCurrentAllocator",
[](std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>
allocator) {
torch::cuda::CUDAPluggableAllocator::changeCurrentAllocator(allocator);
});
py::class_<
torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator,
c10::cuda::CUDACachingAllocator::CUDAAllocator,
std::shared_ptr<
torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator>>(
m, "_CUDAPluggableAllocator")
.def(
"set_init_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(int);
std::function<FuncType> func =
reinterpret_cast<FuncType*>(func_ptr);
self.set_init_fn(func);
})
.def(
"set_reset_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void();
std::function<FuncType> func =
reinterpret_cast<FuncType*>(func_ptr);
self.set_reset_fn(func);
})
.def(
"set_memory_fraction_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(double, int);
std::function<FuncType> func =
reinterpret_cast<FuncType*>(func_ptr);
self.set_memory_fraction_fn(func);
})
.def(
"set_base_alloc_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void*(void*, size_t*);
std::function<FuncType> func =
reinterpret_cast<FuncType*>(func_ptr);
self.set_base_alloc_fn(func);
})
.def(
"set_record_stream_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(void*, cudaStream_t);
std::function<FuncType> func =
reinterpret_cast<FuncType*>(func_ptr);
self.set_record_stream_fn(func);
})
.def(
"set_begin_allocate_to_pool",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(
int, c10::cuda::MempoolId_t, std::function<bool(cudaStream_t)>);
std::function<FuncType> func =
reinterpret_cast<FuncType*>(func_ptr);
self.set_begin_allocate_to_pool(func);
})
.def(
"set_end_allocate_to_pool_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(int, c10::cuda::MempoolId_t);
std::function<FuncType> func =
reinterpret_cast<FuncType*>(func_ptr);
self.set_end_allocate_to_pool_fn(func);
})
.def(
"set_release_pool",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(int, c10::cuda::MempoolId_t);
std::function<FuncType> func =
reinterpret_cast<FuncType*>(func_ptr);
self.set_release_pool(func);
});
m.def("_cuda_customAllocator", [](uint64_t malloc_ptr, uint64_t free_ptr) {
using MallocFuncType = void*(size_t, int, cudaStream_t);
using FreeFuncType = void(void*, size_t, int, cudaStream_t);
std::function<MallocFuncType> malloc_fn =
reinterpret_cast<MallocFuncType*>(malloc_ptr);
std::function<FreeFuncType> free_fn =
reinterpret_cast<FreeFuncType*>(free_ptr);
return torch::cuda::CUDAPluggableAllocator::createCustomAllocator(
malloc_fn, free_fn);
});
py::class_<
c10::cuda::CUDACachingAllocator::AllocatorState,
std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState>>(
m, "_cuda_CUDAAllocator_AllocatorState");
m.def("_cuda_getCheckpointState", [](int device, c10::cuda::MempoolId_t id) {
return c10::cuda::CUDACachingAllocator::getCheckpointState(device, id);
});
m.def("_free_And_Remove_DeleterFn", [](size_t storage_impl_ptr) {
c10::StorageImpl* storage_impl = (c10::StorageImpl*)storage_impl_ptr;
auto alloc = c10::cuda::CUDACachingAllocator::get();
auto data_ptr = storage_impl->data_ptr().get();
bool succeeded = storage_impl->mutable_data_ptr().compare_exchange_deleter(
alloc->raw_deleter(), c10::detail::deleteNothing);
TORCH_CHECK(succeeded, "Expected standard deleter");
c10::cuda::CUDACachingAllocator::raw_delete(data_ptr);
});
m.def("_set_storage_access_error_msg", [](at::Tensor t, std::string s) {
t.unsafeGetTensorImpl()
->release_storage_and_set_meta_custom_data_ptr_error_msg_(s);
});
m.def("_has_Standard_Deleter", [](size_t storage_impl_ptr) {
c10::StorageImpl* storage_impl = (c10::StorageImpl*)storage_impl_ptr;
auto alloc = c10::cuda::CUDACachingAllocator::get();
return (storage_impl->data_ptr().get_deleter() == alloc->raw_deleter());
});
m.def("_set_cached_tensors_enabled", [](bool enabled) {
at::caching::set_cached_tensors_enabled(enabled);
});
m.def("_add_cached_tensor", [](const at::Tensor& t) {
at::caching::add_cached_tensor(t);
});
m.def("_remove_cached_tensor", [](const at::Tensor& t) {
at::caching::remove_cached_tensor(t);
});
m.def("_is_cached_tensor", [](const at::Tensor& t) {
return at::caching::is_cached_tensor(t);
});
m.def("_storage_Use_Count", [](size_t storage_impl_ptr) {
c10::StorageImpl* storage_impl = (c10::StorageImpl*)storage_impl_ptr;
return c10::raw::weak_intrusive_ptr::use_count(storage_impl);
});
m.def(
"_construct_CUDA_Tensor_From_Storage_And_Metadata",
[](py::dict& metadata, c10::Storage s) {
auto dtype_arg = metadata["dtype"].ptr();
auto meta = scalarTypeToTypeMeta(toScalarType(dtype_arg));
constexpr c10::DispatchKeySet cuda_dks(c10::DispatchKey::CUDA);
at::Tensor tensor = at::detail::make_tensor_base<c10::TensorImpl>(
std::move(s), cuda_dks, meta);
tensor.unsafeGetTensorImpl()->set_sizes_and_strides(
metadata["size"].cast<std::vector<int64_t>>(),
metadata["stride"].cast<std::vector<int64_t>>());
tensor.unsafeGetTensorImpl()->set_storage_offset(
metadata["storage_offset"].cast<int64_t>());
return tensor;
});
m.def(
"_cuda_beginAllocateCurrentStreamToPool",
[](int device, at::cuda::MempoolId_t mempool_id) {
auto stream = at::cuda::getCurrentCUDAStream(device);
TORCH_CHECK(stream, "Expected stream capture to be under way");
c10::cuda::CUDACachingAllocator::beginAllocateToPool(
device, mempool_id, [stream](cudaStream_t target) {
return target == stream;
});
});
m.def(
"_cuda_endAllocateCurrentStreamToPool",
[](int device, at::cuda::MempoolId_t mempool_id) {
c10::cuda::CUDACachingAllocator::endAllocateToPool(device, mempool_id);
});
m.def("_cuda_releasePool", [](int device, at::cuda::MempoolId_t mempool_id) {
c10::cuda::CUDACachingAllocator::releasePool(device, mempool_id);
});
m.def(
"_cuda_checkPoolLiveAllocations",
[](int device,
at::cuda::MempoolId_t mempool_id,
const py::set& expected_live_allocations) {
std::unordered_set<void*> allocations;
allocations.reserve(expected_live_allocations.size());
for (auto& elem : expected_live_allocations) {
allocations.insert(reinterpret_cast<void*>(py::cast<size_t>(elem)));
}
return c10::cuda::CUDACachingAllocator::checkPoolLiveAllocations(
device, mempool_id, allocations);
});
m.def(
"_cuda_setCheckpointPoolState",
[](int device,
std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState> pps,
std::vector<size_t> stale_storages_ptr,
std::vector<size_t> storages_to_add_deleters_to_ptr = {}) {
std::unordered_set<c10::StorageImpl*> ptr_set;
// iterate on std::vector for determinism
std::vector<c10::StorageImpl*> ptrs;
for (size_t ptr_int : stale_storages_ptr) {
c10::StorageImpl* ptr = (c10::StorageImpl*)ptr_int;
if (!ptr_set.count(ptr)) {
ptrs.push_back(ptr);
ptr_set.insert(ptr);
}
}
auto delta = c10::cuda::CUDACachingAllocator::setCheckpointPoolState(
device, pps);
auto& freed_pointers = delta.ptrs_freed;
std::unordered_set<void*> allocd_set;
for (auto& data_ptr : delta.dataptrs_allocd) {
allocd_set.insert(data_ptr.get());
}
std::unordered_set<void*> freed_pointer_set;
size_t definite_freed_count = 0;
for (void* ptr : freed_pointers) {
if (!allocd_set.count(ptr)) {
definite_freed_count += 1;
}
freed_pointer_set.insert((ptr));
}
// that block has already been freed,
// so even those this will error, so too will the allocator
// when the corresponding tensor dies because there is no
// live tensor corresponding to it
TORCH_CHECK(
ptr_set.size() >= definite_freed_count,
"Any stale tensors which are being manually freed"
" must be passed to set checkpoint");
removeStorageDeleterFns(ptrs, freed_pointer_set);
std::vector<c10::StorageImpl*> storages_to_add_deleters_to;
for (size_t ptr_int : storages_to_add_deleters_to_ptr) {
storages_to_add_deleters_to.push_back((c10::StorageImpl*)ptr_int);
}
addStorageDeleterFns(storages_to_add_deleters_to, delta);
});
}
static void bindGetDeviceProperties(PyObject* module) {
// Add method to torch.cuda
auto m = py::handle(module).cast<py::module>();
m.def(
"_get_device_properties",
[](int device) -> cudaDeviceProp* {
return at::cuda::getDeviceProperties(device);
},
py::return_value_policy::reference);
}
// Callback for python part. Used for additional initialization of python
// classes
static PyObject* THCPModule_initExtension(PyObject* self, PyObject* noargs) {
#if C10_ASAN_ENABLED
TORCH_WARN(
"torch.cuda: your pytorch binary has address sanitizer (asan) built in, "
"asan is currently not compatible with torch.cuda module, "
"you might get unexpected behavior (eg. out of memory, crash, etc.), "
"please rebuild pytorch without asan if you need to use this module");
#endif
HANDLE_TH_ERRORS
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
poison_fork();
at::globalContext().lazyInitCUDA();
auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda"));
if (!m)
throw python_error();
auto set_module_attr = [&](const char* name, PyObject* v) {
// PyObject_SetAttrString doesn't steal reference. So no need to incref.
if (PyObject_SetAttrString(m, name, v) < 0) {
throw python_error();
}
};
auto num_gpus = c10::cuda::device_count();
auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus));
for (const auto i : c10::irange(num_gpus)) {
auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator(
at::cuda::detail::getDefaultCUDAGenerator(i));
// This reference is meant to be given away, so no need to incref here.
PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen);
}
set_module_attr("default_generators", default_cuda_generators);
bindGetDeviceProperties(m);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCurrentBlasHandle_wrap(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
return PyLong_FromVoidPtr(handle);
END_HANDLE_TH_ERRORS
}
static PyObject* THCPModule_clearBlasWorkspaces_wrap(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS
at::cuda::clearCublasWorkspaces();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_rocm_is_backward_pass(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
#if USE_ROCM
if (at::ROCmBackwardPassGuard::is_backward_pass()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
#else
Py_RETURN_FALSE;
#endif
END_HANDLE_TH_ERRORS
}
static PyObject* THCPModule_isCurrentStreamCapturing_wrap(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS
// If there's no cuda context, at::cuda::currentStreamCaptureStatus returns
// CaptureStatus::None without initializing a context.
if (at::cuda::currentStreamCaptureStatus() == at::cuda::CaptureStatus::None) {
Py_RETURN_FALSE;
} else {
Py_RETURN_TRUE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_setBenchmarkLimitCuDNN(PyObject* _unused, PyObject* arg) {
THPUtils_assert(
THPUtils_checkLong(arg),
"set_benchmark_limit_cudnn expects an int, "
"but got %s",
THPUtils_typename(arg));
#if defined(USE_ROCM)
TORCH_WARN_ONCE(
"cuDNN Benchmark limit is not supported in MIOpen and will have no effect.");
#endif
auto benchmark_limit = static_cast<int>(THPUtils_unpackLong(arg));
at::globalContext().setBenchmarkLimitCuDNN(benchmark_limit);
Py_RETURN_NONE;
}
PyObject* THCPModule_benchmarkLimitCuDNN(PyObject* _unused, PyObject* noargs) {
return THPUtils_packInt32(at::globalContext().benchmarkLimitCuDNN());
}
// NOLINTNEXTLINE(modernize-avoid-c-arrays,
// cppcoreguidelines-avoid-non-const-global-variables,
// cppcoreguidelines-avoid-c-arrays)
static struct PyMethodDef _THCPModule_methods[] = {
{"_cuda_init", THCPModule_initExtension, METH_NOARGS, nullptr},
{"_cuda_setDevice", THCPModule_setDevice_wrap, METH_O, nullptr},
{"_cuda_exchangeDevice", THCPModule_exchangeDevice, METH_O, nullptr},
{"_cuda_maybeExchangeDevice",
THCPModule_maybeExchangeDevice,
METH_O,
nullptr},
{"_cuda_getDevice", THCPModule_getDevice_wrap, METH_NOARGS, nullptr},
{"_cuda_getDeviceCount",
THCPModule_getDeviceCount_wrap,
METH_NOARGS,
nullptr},
{"_cuda_canDeviceAccessPeer",
THCPModule_canDeviceAccessPeer_wrap,
METH_VARARGS,
nullptr},
{"_cuda_getArchFlags", THCPModule_getArchFlags, METH_NOARGS, nullptr},
{"_cuda_isInBadFork", THCPModule_isInBadFork, METH_NOARGS, nullptr},
{"_cuda_getCurrentStream",
THCPModule_getCurrentStream_wrap,
METH_O,
nullptr},
{"_cuda_getCurrentRawStream",
THCPModule_getCurrentStream_raw,
METH_O,
nullptr},
{"_cuda_getDefaultStream",
THCPModule_getDefaultStream_wrap,
METH_O,
nullptr},
{"_cuda_getCurrentBlasHandle",
THCPModule_getCurrentBlasHandle_wrap,
METH_NOARGS,
nullptr},
{"_cuda_clearCublasWorkspaces",
THCPModule_clearBlasWorkspaces_wrap,
METH_NOARGS,
nullptr},
{"_cuda_isCurrentStreamCapturing",
THCPModule_isCurrentStreamCapturing_wrap,
METH_NOARGS,
nullptr},
{"_cuda_setStream",
castPyCFunctionWithKeywords(THCPModule_setStream_wrap),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_cuda_getCompiledVersion",
THCPModule_getCompiledVersion,
METH_NOARGS,
nullptr},
{"_cuda_hasPrimaryContext", THCPModule_hasPrimaryContext, METH_O, nullptr},
{"_cuda_setMemoryFraction",
THCPModule_setMemoryFraction,
METH_VARARGS,
nullptr},
{"_cuda_emptyCache", THCPModule_emptyCache, METH_NOARGS, nullptr},
{"_cuda_memoryStats", THCPModule_memoryStats, METH_O, nullptr},
{"_cuda_resetAccumulatedMemoryStats",
THCPModule_resetAccumulatedMemoryStats,
METH_O,
nullptr},
{"_cuda_resetPeakMemoryStats",
THCPModule_resetPeakMemoryStats,
METH_O,
nullptr},
{"_cuda_memorySnapshot", THCPModule_memorySnapshot, METH_NOARGS, nullptr},
{"_cuda_attach_out_of_memory_observer",
THCPModule_attachOutOfMemoryObserver,
METH_O,
nullptr},
{"_cuda_cudaHostAllocator",
THCPModule_cudaHostAllocator,
METH_NOARGS,
nullptr},
{"_cuda_cudaCachingAllocator_raw_alloc",
THCPModule_cudaCachingAllocator_raw_alloc,
METH_VARARGS,
nullptr},
{"_cuda_cudaCachingAllocator_raw_delete",
THCPModule_cudaCachingAllocator_raw_delete,
METH_O,
nullptr},
{"_cuda_cudaCachingAllocator_set_allocator_settings",
THCPModule_cudaCachingAllocator_set_allocator_settings,
METH_O,
nullptr},
{"_cuda_getAllocatorBackend",
THCPModule_getAllocatorBackend,
METH_NOARGS,
nullptr},
{"_cuda_synchronize", THCPModule_cudaSynchronize, METH_NOARGS, nullptr},
{"_cuda_ipc_collect", THCPModule_cudaIPCCollect, METH_NOARGS, nullptr},
{"_cuda_sleep", THCPModule_cudaSleep, METH_O, nullptr},
{"_cuda_lock_mutex", THCPModule_cudaLockMutex, METH_NOARGS, nullptr},
{"_cuda_unlock_mutex", THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr},
{"_cuda_set_sync_debug_mode",
THCPModule_cudaSetSyncDebugMode,
METH_O,
nullptr},
{"_cuda_get_sync_debug_mode",
THCPModule_cudaGetSyncDebugMode,
METH_NOARGS,
nullptr},
{"_cuda_jiterator_compile_and_launch_kernel",
THCPModule_cudaJiteratorCompileAndLaunchKernel,
METH_VARARGS,
nullptr},
{"_cuda_get_cudnn_benchmark_limit",
THCPModule_benchmarkLimitCuDNN,
METH_NOARGS,
nullptr},
{"_cuda_set_cudnn_benchmark_limit",
THCPModule_setBenchmarkLimitCuDNN,
METH_O,
nullptr},
#ifdef USE_NCCL
{"_nccl_version", THCPModule_nccl_version, METH_NOARGS, nullptr},
{"_nccl_version_suffix",
THCPModule_nccl_version_suffix,
METH_NOARGS,
nullptr},
{"_nccl_unique_id", THCPModule_nccl_unique_id, METH_NOARGS, nullptr},
{"_nccl_init_rank", THCPModule_nccl_init_rank, METH_VARARGS, nullptr},
{"_nccl_reduce", THCPModule_nccl_reduce, METH_VARARGS, nullptr},
{"_nccl_all_reduce", THCPModule_nccl_all_reduce, METH_VARARGS, nullptr},
{"_nccl_broadcast", THCPModule_nccl_broadcast, METH_VARARGS, nullptr},
{"_nccl_all_gather", THCPModule_nccl_all_gather, METH_VARARGS, nullptr},
{"_nccl_reduce_scatter",
THCPModule_nccl_reduce_scatter,
METH_VARARGS,
nullptr},
#endif
{"_rocm_is_backward_pass",
THCPModule_rocm_is_backward_pass,
METH_NOARGS,
nullptr},
{nullptr}};
PyMethodDef* THCPModule_methods() {
return _THCPModule_methods;
}
namespace torch::cuda {
namespace shared {
void initCudartBindings(PyObject* module);
void initNvtxBindings(PyObject* module);
#if defined(USE_CUDNN) || defined(USE_ROCM)
void initCudnnBindings(PyObject* module);
#endif
} // namespace shared
void initModule(PyObject* module) {
python::initCommMethods(module);
// As weird as it seems, this file is also compiled for ROCm,
// so this condition might not always be true...
shared::initCudartBindings(module);
shared::initNvtxBindings(module);
#if defined(USE_CUDNN) || defined(USE_ROCM)
shared::initCudnnBindings(module);
#endif
registerCudaDeviceProperties(module);
registerCudaPluggableAllocator(module);
}
} // namespace torch::cuda