mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
<!-- copilot:summary --> ### <samp>🤖 Generated by Copilot at 27084ed</samp> This pull request simplifies and cleans up the code that uses the cuDNN library for convolution, batch normalization, CTC loss, and quantized operations. It removes the unnecessary checks and conditions for older cuDNN versions and the experimental cuDNN v8 API, and ~~replaces them with the stable `cudnn_frontend` API that requires cuDNN v8 or higher. It also adds the dependency and configuration for the `cudnn_frontend` library in the cmake and bazel files.~~ Correction: The v7 API will still be available with this PR, and can still be used, without any changes to the defaults. This change simply always _builds_ the v8 API, and removes the case where _only_ the v7 API is built. This is a re-land of https://github.com/pytorch/pytorch/pull/91527 Pull Request resolved: https://github.com/pytorch/pytorch/pull/95722 Approved by: https://github.com/malfet, https://github.com/atalman
389 lines
14 KiB
C++
389 lines
14 KiB
C++
#pragma once
|
|
|
|
#include <string>
|
|
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <ATen/cuda/Exceptions.h>
|
|
|
|
#include <ATen/cudnn/cudnn-wrapper.h>
|
|
#include <ATen/cudnn/Utils.h>
|
|
#include <ATen/core/Tensor.h>
|
|
#include <ATen/TensorUtils.h>
|
|
#include <ATen/cuda/ATenCUDAGeneral.h>
|
|
#include <cuda.h>
|
|
|
|
#ifndef AT_PER_OPERATOR_HEADERS
|
|
#include <ATen/Functions.h>
|
|
#else
|
|
#include <ATen/ops/empty.h>
|
|
#endif
|
|
|
|
#if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8907
|
|
#define USE_CUDNN_RNN_V8_API
|
|
#endif
|
|
|
|
namespace at { namespace native {
|
|
|
|
std::string cudnnTypeToString(cudnnDataType_t dtype);
|
|
|
|
// TODO: Add constructors for all of the descriptors
|
|
|
|
inline int dataSize(cudnnDataType_t dataType)
|
|
{
|
|
switch (dataType) {
|
|
#if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8200
|
|
case CUDNN_DATA_BFLOAT16:
|
|
#endif
|
|
case CUDNN_DATA_HALF: return 2;
|
|
case CUDNN_DATA_FLOAT: return 4;
|
|
default: return 8;
|
|
}
|
|
}
|
|
|
|
// The stride for a size-1 dimensions is not uniquely determined; in
|
|
// fact, it can be anything you want, because the fact that the
|
|
// tensor is size 1 at this dimension means that you will never actually
|
|
// try advancing your pointer by this stride.
|
|
//
|
|
// However, CuDNN has a much more stringent requirement on strides:
|
|
// if you are passing a contiguous input, it better be the case
|
|
// that the stride for dim i is the product of the sizes of dims
|
|
// i+1 to the end. This stride is indeed uniquely determined. This
|
|
// function modifies 'stride' in place so this invariant holds.
|
|
template <typename T>
|
|
static inline void fixSizeOneDimStride(int dim, const T *size, T *stride, bool nhwc) {
|
|
int64_t z = 1;
|
|
int index = 0;
|
|
std::vector<int> permutation(dim);
|
|
|
|
if (nhwc) {
|
|
permutation[index++] = 1;
|
|
}
|
|
for (int d = dim-1; d > 1; d--) {
|
|
permutation[index++] = d;
|
|
}
|
|
if (!nhwc) {
|
|
permutation[index++] = 1;
|
|
}
|
|
permutation[index++] = 0;
|
|
for (int d : permutation) {
|
|
if (size[d] == 1) {
|
|
stride[d] = z;
|
|
} else {
|
|
z *= size[d];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, cudnnStatus_t (*dtor)(T*)>
|
|
struct DescriptorDeleter {
|
|
void operator()(T* x) {
|
|
if (x != nullptr) {
|
|
AT_CUDNN_CHECK(dtor(x));
|
|
}
|
|
}
|
|
};
|
|
|
|
// A generic class for wrapping cuDNN descriptor types. All you need
|
|
// is to give the underlying type the Descriptor_t points to (usually,
|
|
// if it's cudnnTensorDescriptor_t it points to cudnnTensorStruct),
|
|
// the constructor and the destructor. Subclasses are responsible
|
|
// for defining a set() function to actually set the descriptor.
|
|
//
|
|
// Descriptors default construct to a nullptr, and have a descriptor
|
|
// initialized the first time you call set() or any other initializing
|
|
// function.
|
|
template <typename T, cudnnStatus_t (*ctor)(T**), cudnnStatus_t (*dtor)(T*)>
|
|
class TORCH_CUDA_CPP_API Descriptor {
|
|
public:
|
|
// TODO: Figure out why const-correctness doesn't work here
|
|
|
|
// Use desc() to access the underlying descriptor pointer in
|
|
// a read-only fashion. Most client code should use this.
|
|
// If the descriptor was never initialized, this will return
|
|
// nullptr.
|
|
T* desc() const { return desc_.get(); }
|
|
T* desc() { return desc_.get(); }
|
|
|
|
// Use mut_desc() to access the underlying descriptor pointer
|
|
// if you intend to modify what it points to (e.g., using
|
|
// cudnnSetFooDescriptor). This will ensure that the descriptor
|
|
// is initialized. Code in this file will use this function.
|
|
T* mut_desc() { init(); return desc_.get(); }
|
|
protected:
|
|
void init() {
|
|
if (desc_ == nullptr) {
|
|
T* raw_desc;
|
|
AT_CUDNN_CHECK(ctor(&raw_desc));
|
|
desc_.reset(raw_desc);
|
|
}
|
|
}
|
|
private:
|
|
std::unique_ptr<T, DescriptorDeleter<T, dtor>> desc_;
|
|
};
|
|
|
|
class TORCH_CUDA_CPP_API RNNDataDescriptor : public Descriptor<
|
|
cudnnRNNDataStruct,
|
|
&cudnnCreateRNNDataDescriptor,
|
|
&cudnnDestroyRNNDataDescriptor> {
|
|
public:
|
|
void set(const at::Tensor &t, cudnnRNNDataLayout_t layout, int maxSeqLength, int batchSize, int vectorSize, const int* seqLengthArray);
|
|
private:
|
|
void set(cudnnDataType_t dataType, cudnnRNNDataLayout_t layout, int maxSeqLength, int batchSize, int vectorSize, const int* seqLengthArray) {
|
|
AT_CUDNN_CHECK(cudnnSetRNNDataDescriptor(mut_desc(), dataType, layout, maxSeqLength, batchSize, vectorSize, seqLengthArray, NULL));
|
|
}
|
|
};
|
|
|
|
class TORCH_CUDA_CPP_API TensorDescriptor : public Descriptor<
|
|
cudnnTensorStruct,
|
|
&cudnnCreateTensorDescriptor,
|
|
&cudnnDestroyTensorDescriptor> {
|
|
public:
|
|
TensorDescriptor() = default;
|
|
explicit TensorDescriptor(const at::Tensor &t, size_t pad = 0) {
|
|
set(t, pad);
|
|
}
|
|
|
|
// Note [CuDNN broadcast padding]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// pad specifies the minimum dimensionality of the tensor descriptor
|
|
// we produce (it doesn't have anything to do with, e.g., convolution
|
|
// padding). If 't' is lower-dimensional than 'pad', the remaining
|
|
// dimensions (on the right) are padded with ones. This doesn't
|
|
// affect the underlying data layout. This is particularly useful for
|
|
// dealing with a peculiarity of the CuDNN API, which is that broadcasting in CuDNN is
|
|
// done in two steps: first, the client code is expected to pad out
|
|
// (the dimensions) input tensors to be the same dimension as the
|
|
// target broadcast, and then second, CuDNN takes of actually
|
|
// broadcasting size 1 dimensions.
|
|
|
|
void set(const at::Tensor &t, size_t pad = 0);
|
|
void set(const at::Tensor &t, at::MemoryFormat memory_format, size_t pad = 0);
|
|
void set(cudnnDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad = 0);
|
|
|
|
void print();
|
|
|
|
private:
|
|
void set(cudnnDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad, bool nhwc);
|
|
|
|
void set(cudnnDataType_t dataType, int dim, int* size, int* stride, bool nhwc) {
|
|
fixSizeOneDimStride<int>(dim, size, stride, nhwc);
|
|
AT_CUDNN_CHECK(cudnnSetTensorNdDescriptor(mut_desc(), dataType, dim, size, stride));
|
|
}
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d);
|
|
|
|
class TORCH_CUDA_CPP_API FilterDescriptor : public Descriptor<
|
|
cudnnFilterStruct,
|
|
&cudnnCreateFilterDescriptor,
|
|
&cudnnDestroyFilterDescriptor> {
|
|
public:
|
|
void set(const at::Tensor &t, int64_t pad = 0) {
|
|
set(t, at::MemoryFormat::Contiguous, pad);
|
|
}
|
|
|
|
void set(const at::Tensor &t, const at::MemoryFormat memory_format, int64_t pad = 0);
|
|
|
|
void print();
|
|
private:
|
|
void set(cudnnDataType_t dataType, int dim, int* size, cudnnTensorFormat_t filter_format) {
|
|
AT_CUDNN_CHECK(cudnnSetFilterNdDescriptor(mut_desc(), dataType, filter_format, dim, size));
|
|
}
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream & out, const FilterDescriptor& d);
|
|
|
|
struct TORCH_CUDA_CPP_API ConvolutionDescriptor
|
|
: public Descriptor<
|
|
cudnnConvolutionStruct,
|
|
&cudnnCreateConvolutionDescriptor,
|
|
&cudnnDestroyConvolutionDescriptor> {
|
|
void set(cudnnDataType_t dataType, int dim, int* pad, int* stride, int * upscale /* aka dilation */, int groups, bool allow_tf32) {
|
|
cudnnDataType_t mathType = dataType;
|
|
if (dataType == CUDNN_DATA_HALF) mathType = CUDNN_DATA_FLOAT;
|
|
AT_CUDNN_CHECK(cudnnSetConvolutionNdDescriptor(mut_desc(), dim, pad, stride, upscale,
|
|
CUDNN_CROSS_CORRELATION, mathType));
|
|
AT_CUDNN_CHECK(cudnnSetConvolutionGroupCount(mut_desc(), groups));
|
|
// See Note [behavior of cudnnFind and cudnnGet]
|
|
AT_CUDNN_CHECK(cudnnSetConvolutionMathType(mut_desc(), CUDNN_DEFAULT_MATH));
|
|
if(dataType == CUDNN_DATA_HALF) {
|
|
AT_CUDNN_CHECK(cudnnSetConvolutionMathType(mut_desc(), CUDNN_TENSOR_OP_MATH));
|
|
} else if (dataType == CUDNN_DATA_FLOAT && !allow_tf32) {
|
|
#if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8000
|
|
AT_CUDNN_CHECK(cudnnSetConvolutionMathType(mut_desc(), CUDNN_FMA_MATH));
|
|
#endif
|
|
}
|
|
}
|
|
};
|
|
|
|
struct TORCH_CUDA_CPP_API SpatialTransformerDescriptor
|
|
: public Descriptor<
|
|
cudnnSpatialTransformerStruct,
|
|
&cudnnCreateSpatialTransformerDescriptor,
|
|
&cudnnDestroySpatialTransformerDescriptor> {
|
|
void set(cudnnDataType_t dataType, int dim, int* size) {
|
|
AT_CUDNN_CHECK(cudnnSetSpatialTransformerNdDescriptor(mut_desc(), CUDNN_SAMPLER_BILINEAR, dataType, dim, size));
|
|
}
|
|
};
|
|
|
|
struct TORCH_CUDA_CPP_API DropoutDescriptor
|
|
: public Descriptor<
|
|
cudnnDropoutStruct,
|
|
&cudnnCreateDropoutDescriptor,
|
|
&cudnnDestroyDropoutDescriptor> {
|
|
at::Tensor state;
|
|
|
|
// Initialize a dropout descriptor's RNG state.
|
|
// WARNING: This function is very expensive, avoid calling this function!
|
|
void initialize_rng(cudnnHandle_t handle, float dropout, long long int seed, const TensorOptions& options) {
|
|
TORCH_INTERNAL_ASSERT(dropout > 0, "dropout must be nonzero; otherwise call set_no_dropout");
|
|
size_t state_size;
|
|
AT_CUDNN_CHECK(cudnnDropoutGetStatesSize(handle, &state_size));
|
|
AT_ASSERT(options.device().type() == kCUDA);
|
|
AT_ASSERT(options.dtype() == kByte);
|
|
state = at::empty({static_cast<int64_t>(state_size)}, options);
|
|
AT_CUDNN_CHECK(cudnnSetDropoutDescriptor(mut_desc(), handle, dropout, state.data_ptr(), state_size, seed));
|
|
}
|
|
|
|
// Restore a dropout descriptor given a dropout probability and existing RNG state.
|
|
void set(cudnnHandle_t handle, float dropout, at::Tensor state_) {
|
|
TORCH_INTERNAL_ASSERT(dropout > 0, "dropout must be nonzero; otherwise call set_no_dropout");
|
|
state = state_;
|
|
void *state_ptr = state.data_ptr();
|
|
size_t state_size = state.size(0);
|
|
// NB: The seed doesn't actually matter, so we give a dummy value
|
|
AT_CUDNN_CHECK(cudnnRestoreDropoutDescriptor(mut_desc(), handle, dropout, state_ptr, state_size, 0 /* seed */));
|
|
}
|
|
|
|
// Restore a dropout descriptor corresponding to no dropout
|
|
void set_no_dropout(cudnnHandle_t handle) {
|
|
// NB: seed doesn't matter when dropout = 0, because no random number
|
|
// initialization actually takes place when there is no dropout.
|
|
// NB: Empirically, cudnnSetDropoutDescriptor is cheap when
|
|
// dropout == 0
|
|
AT_CUDNN_CHECK(cudnnSetDropoutDescriptor(mut_desc(), handle, 0 /* dropout */, nullptr, 0 /* state_size */, 0 /* seed */));
|
|
}
|
|
};
|
|
|
|
struct TORCH_CUDA_CPP_API RNNDescriptor : public Descriptor<
|
|
cudnnRNNStruct,
|
|
&cudnnCreateRNNDescriptor,
|
|
&cudnnDestroyRNNDescriptor> {
|
|
DropoutDescriptor dropout_desc_;
|
|
void set(cudnnHandle_t handle,
|
|
#ifdef USE_CUDNN_RNN_V8_API
|
|
int input_size,
|
|
bool packed,
|
|
#endif
|
|
int hidden_size, int proj_size, int num_layers, DropoutDescriptor&& dropout_desc,
|
|
cudnnRNNInputMode_t input_mode, cudnnDirectionMode_t bidirectional,
|
|
cudnnRNNMode_t mode, cudnnDataType_t datatype, cudnnDataType_t input_type, cudnnRNNAlgo_t algo, bool allow_tf32) {
|
|
dropout_desc_ = std::move(dropout_desc);
|
|
#ifndef USE_CUDNN_RNN_V8_API
|
|
AT_CUDNN_CHECK(cudnnSetRNNDescriptor_v6(
|
|
handle,
|
|
mut_desc(),
|
|
hidden_size,
|
|
num_layers,
|
|
dropout_desc_.desc(),
|
|
input_mode,
|
|
bidirectional,
|
|
mode,
|
|
algo,
|
|
datatype));
|
|
if (proj_size != 0) {
|
|
AT_CUDNN_CHECK(cudnnSetRNNProjectionLayers(
|
|
handle,
|
|
/*rnnDesc=*/mut_desc(),
|
|
/*recProjSize=*/proj_size,
|
|
/*outProjSize=*/0));
|
|
}
|
|
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
|
|
if (prop->major >= 7) {
|
|
if (input_type == CUDNN_DATA_HALF) {
|
|
cudnnSetRNNMatrixMathType(mut_desc(), CUDNN_TENSOR_OP_MATH);
|
|
}
|
|
#endif
|
|
#if !defined(USE_CUDNN_RNN_V8_API) && defined(CUDNN_VERSION) && CUDNN_VERSION >= 8000
|
|
else if (input_type == CUDNN_DATA_FLOAT && !allow_tf32) {
|
|
cudnnSetRNNMatrixMathType(mut_desc(), CUDNN_FMA_MATH);
|
|
}
|
|
#endif
|
|
#ifndef USE_CUDNN_RNN_V8_API
|
|
else {
|
|
// Technically, as the default it's not necessary to explicitly
|
|
// set this.
|
|
cudnnSetRNNMatrixMathType(mut_desc(), CUDNN_DEFAULT_MATH);
|
|
}
|
|
}
|
|
#else
|
|
AT_CUDNN_CHECK(cudnnSetRNNDescriptor_v8(
|
|
mut_desc(),
|
|
algo,
|
|
mode,
|
|
CUDNN_RNN_DOUBLE_BIAS,
|
|
bidirectional,
|
|
input_mode,
|
|
input_type,
|
|
datatype,
|
|
allow_tf32 ? CUDNN_DEFAULT_MATH : CUDNN_FMA_MATH,
|
|
input_size,
|
|
hidden_size,
|
|
proj_size ? proj_size : hidden_size,
|
|
num_layers,
|
|
dropout_desc_.desc(),
|
|
packed ? CUDNN_RNN_PADDED_IO_DISABLED : CUDNN_RNN_PADDED_IO_ENABLED));
|
|
#endif
|
|
}
|
|
};
|
|
|
|
struct TORCH_CUDA_CPP_API CTCLossDescriptor
|
|
: public Descriptor<
|
|
cudnnCTCLossStruct,
|
|
&cudnnCreateCTCLossDescriptor,
|
|
&cudnnDestroyCTCLossDescriptor> {
|
|
void set(cudnnDataType_t datatype) {
|
|
AT_CUDNN_CHECK(cudnnSetCTCLossDescriptor(mut_desc(), datatype));
|
|
}
|
|
void setEx(
|
|
cudnnDataType_t datatype,
|
|
cudnnLossNormalizationMode_t normMode,
|
|
cudnnNanPropagation_t gradMode) {
|
|
AT_CUDNN_CHECK(
|
|
cudnnSetCTCLossDescriptorEx(mut_desc(), datatype, normMode, gradMode));
|
|
}
|
|
};
|
|
|
|
struct TORCH_CUDA_CPP_API ActivationDescriptor
|
|
: public Descriptor<
|
|
cudnnActivationStruct,
|
|
&cudnnCreateActivationDescriptor,
|
|
&cudnnDestroyActivationDescriptor> {
|
|
void set(cudnnActivationMode_t mode) {
|
|
AT_ASSERT(
|
|
mode == CUDNN_ACTIVATION_RELU,
|
|
"TODO: support more cuDNN activation modes");
|
|
AT_CUDNN_CHECK(cudnnSetActivationDescriptor(
|
|
mut_desc(),
|
|
mode,
|
|
cudnnNanPropagation_t::CUDNN_NOT_PROPAGATE_NAN,
|
|
std::numeric_limits<double>::max()));
|
|
}
|
|
};
|
|
|
|
union Constant
|
|
{
|
|
float f;
|
|
double d;
|
|
Constant(cudnnDataType_t dataType, double value) {
|
|
if (dataType == CUDNN_DATA_HALF || dataType == CUDNN_DATA_FLOAT) {
|
|
f = static_cast<float>(value);
|
|
} else {
|
|
d = value;
|
|
}
|
|
}
|
|
};
|
|
|
|
}} // namespace
|