Files
pytorch/torch/_inductor/compile_fx.py
Sherlock Huang b9dfdc091b [AOTInductor][Reland] Proxy Executor for Extern Fallback kernels (#107279) (#108350)
Summary:

This is a prototype for running extern fallback kernels with a host side proxy executor.

Sample of generated cpp wrapper call:
```
        at::Tensor buf0;  // output buffer
        void* tensor_args_var_0[] = {&arg0_1, &arg0_1, &arg1_1, &arg0_1, &arg1_1, &buf0};
        int64_t int_args_var_1[] = {81, 81, 7, 7, 7, 81};
        proxy_executor->call_function("buf0", int_args_var_1, tensor_args_var_0);
```

- In my current implementation, proxy executor interprets the raw pointers according to the ops schema.
This assumes that custom op MUST have a valid schema registered to Dispatcher. (I would like to validate this assumption)
- I am using callboxed() API of the custom kernels. This is inevitable, as we wish to have a single call_function API for all possible custom kernels.

- These are all the input argument types I have support so far.
       union Argument {
         # Bool value does not matter
         1: bool asNone;
         2: TensorArgument asTensor;
         3: list<TensorArgument> asTensors;
         5: i64 asInt;
         7: list<i64> asInts;
         8: double asFloat;
         9: list<double> asFloats;
         10: string asString;
         10.5: list<string> asStrings;
         11: SymIntArgument asSymInt;
         12: list<SymIntArgument> asSymInts;
         13: ScalarType asScalarType;
         14: MemoryFormat asMemoryFormat;
         15: Layout asLayout;
         16: Device asDevice;
         17: bool asBool;
         18: list<bool> asBools;
       }

- Need a policy for handling unpopulated argument with default values. Here are the options, and it has BC  implications.
1. requires exported fx graph to explicitly populate default values, if users doesn't specify.
2. requires cpp wrapper to explicitly populate default values, if fx graph doesn't specify.
3. Proxy executor look up from opSchema for default values.

For fixing T162112344

Test Plan:
frontend:
buck2 run mode/dev-sand mode/inplace -c fbcode.enable_gpu_sections=True sigmoid/frontend:export_main

test:
 buck2 run mode/dev-sand //deeplearning/aot_inductor/test:test_custom_ops

backend:
buck2 run mode/dev-nosan //deeplearning/aot_inductor/fb:main

buck2 test 'fbcode//mode/opt' fbcode//caffe2/torch/fb/model_transform/experimental/benchmark/test:test_aot_inductor_benchmark -- --exact 'caffe2/torch/fb/model_transform/experimental/benchmark/test:test_aot_inductor_benchmark - test_aot_inductor_benchmark_cmf30x (caffe2.torch.fb.model_transform.experimental.benchmark.test.test_aot_inductor_benchmark.AOTInductorBenchmark)'

Reviewed By: suo

Differential Revision: D48747417

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108350
Approved by: https://github.com/izaitsevfb
2023-09-02 17:14:10 +00:00

1299 lines
44 KiB
Python

import contextlib
import dataclasses
import functools
import itertools
import logging
import sys
import warnings
from functools import wraps
from typing import Any, Callable, Dict, FrozenSet, List, Optional, Sequence, Union
from unittest import mock
from functorch.compile import min_cut_rematerialization_partition
import torch._functorch.config as functorch_config
import torch.fx
import torch.utils._pytree as pytree
from torch._dynamo import (
compiled_autograd,
logging as dynamo_logging,
utils as dynamo_utils,
)
from torch._dynamo.utils import detect_fake_mode
from torch._functorch.aot_autograd import make_boxed_func
from torch._inductor.codecache import code_hash, CompiledFxGraph
from torch._inductor.debug import save_args_for_compile_fx_inner
from torch._ops import OpOverload
from torch._subclasses.fake_tensor import FakeTensor
from torch.fx.passes.fake_tensor_prop import FakeTensorProp
from .._dynamo.backends.common import aot_autograd
from ..fx.graph import _PyTreeCodeGen
from . import config, metrics
from .debug import DebugContext
from .decomposition import select_decomp_table
from .fx_passes.joint_graph import joint_graph_passes
from .fx_passes.post_grad import post_grad_passes, view_to_reshape
from .fx_passes.pre_grad import pre_grad_passes
from .graph import GraphLowering
from .ir import ExternKernelNode
from .pattern_matcher import clone_graph
from .utils import get_dtype_size, has_incompatible_cudagraph_ops
from .virtualized import V
if config.is_fbcode():
from torch._inductor.fb.utils import time_and_log # type: ignore[import]
else:
# no-op decorator
def time_and_log(attr: str):
def wrap(old_func):
@wraps(old_func)
def newFunction(*args, **kwargs):
return old_func(*args, **kwargs)
return newFunction
return wrap
log = logging.getLogger(__name__)
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
ALIGNMENT = 16
@dataclasses.dataclass
class BoxedBool:
value: bool
def __bool__(self):
return self.value
@staticmethod
def disable(obj):
if isinstance(obj, BoxedBool):
obj.value = False
return obj
return False
@dataclasses.dataclass
class BoxedDeviceIndex:
value: Optional[int]
def set(self, device_idx):
assert device_idx is None or isinstance(device_idx, int)
self.value = device_idx
# copy_ fails when trying to write to tensors with memory overlap,
# for expanded dimensions (a dimension which used to have size 1 -> ?)
# we can select one element from that dimension and write to it
# to achieve writing to all values of that dimension of the input tensor
def get_expanded_dims(t):
if not isinstance(t, torch.Tensor):
return None
return [i for i in range(t.ndim) if t.stride(i) == 0 and t.size(i) != 1]
def index_expanded_dims(t: torch.Tensor, expanded_dims: List[int]) -> torch.Tensor:
for expanded_dim in expanded_dims:
t = torch.ops.aten.slice(t, expanded_dim, 0, 1)
return t
def complex_memory_overlap(t: torch.Tensor) -> bool:
# if torch._debug_has_internal_overlap thinks this tensor potentially has
# memory overlap internally, let's dig deeper to find out whether it's true.
t = index_expanded_dims(t, get_expanded_dims(t))
if torch._debug_has_internal_overlap(t) != 0:
strides = t.stride()
sizes = t.shape
indices = list(range(len(strides)))
indices = [x for _, x in sorted(zip(strides, indices))]
for i in range(len(strides)):
prev_stride = 1 if i == 0 else strides[indices[i - 1]]
prev_size = 1 if i == 0 else sizes[indices[i - 1]]
if strides[indices[i]] < prev_stride * prev_size:
return True
return False
@functools.lru_cache(None)
def _step_logger():
return dynamo_logging.get_step_logger(log)
@functools.lru_cache(None)
def _warn_tf32_disabled():
if (
torch.cuda.is_available()
and not torch.backends.cuda.matmul.allow_tf32
and torch.cuda.get_device_capability() >= (8, 0)
):
warnings.warn(
"TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. "
"Consider setting `torch.set_float32_matmul_precision('high')` for better performance."
)
def is_tf32_warning_applicable(gm: torch.fx.GraphModule):
aten = torch.ops.aten
tf32_ops = {
aten.mm.default,
aten.addmm.default,
aten.bmm.default,
aten.baddbmm.default,
}
for node in gm.graph.nodes:
if (
node.op == "call_function"
and node.target in tf32_ops
and isinstance(node.meta.get("val", None), torch.Tensor)
and node.meta["val"].dtype == torch.float32
and node.meta["val"].device.type == "cuda"
):
return True
return False
@DebugContext.wrap
def count_bytes_inner(
gm: torch.fx.GraphModule,
example_inputs: List[torch.Tensor],
num_fixed: int = 0,
**kwargs,
):
shape_env = _shape_env_from_inputs(example_inputs)
fake_mode = fake_tensor_prop(gm, example_inputs)
with V.set_fake_mode(fake_mode):
post_grad_passes(gm, False)
graph = GraphLowering(gm, shape_env=shape_env, num_static_inputs=num_fixed)
with V.set_graph_handler(graph), V.set_real_inputs(example_inputs): # type: ignore[call-arg]
graph.run(*example_inputs)
num_bytes, nodes_num_elem, node_runtimes = graph.count_bytes()
metrics.num_bytes_accessed += num_bytes
metrics.nodes_num_elem += nodes_num_elem
metrics.node_runtimes += node_runtimes
return make_boxed_func(gm.forward)
def inner_compile_with_cpp_wrapper(inner_compile: Callable[..., Any]):
@functools.wraps(inner_compile)
def wrapper(gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor], **kwargs):
"""
Compile into cpp wrapper:
For CPU, this is currently done in one pass.
For GPU, this is done in two passes: JIT-compile the model with python wrapper code
and run it to generate autotuned kernel binaries in the first pass; and then generate
cpp wrapper code and compile it to a dynamic library in the second pass.
"""
devices = (
{t.device.type for t in gm.parameters()}
| {t.device.type for t in gm.buffers()}
| {t.device.type for t in example_inputs if isinstance(t, torch.Tensor)}
)
if "cuda" not in devices:
kwargs_patched = {**kwargs, "cpp_wrapper": True}
return inner_compile(gm, example_inputs, **kwargs_patched)
else:
with config.patch( # type: ignore[attr-defined]
{
"triton.store_cubin": True,
}
):
# first pass with regular python wrapper code
kwargs_patched = {
**kwargs,
"cpp_wrapper": False,
}
# clone_graph(gm) makes sure no graph modification from the first pass will
# leak to the second pass. It does increase memory pressure, but the problem
# can be alleviated once we have parameters as FakeTensor.
compiled = inner_compile(
clone_graph(gm), example_inputs, **kwargs_patched
)
def materialize(x):
if isinstance(x, (torch.SymInt, torch.SymFloat)):
# Need concrete value to run dynamic shapes and tune the result
return x.node.hint
else:
assert not isinstance(x, FakeTensor)
return x
tracing_context = torch._guards.TracingContext.get()
if tracing_context:
if tracing_context.output_strides:
tracing_context.output_strides.clear()
params_flat = [
param
for param in tracing_context.params_flat # type: ignore[union-attr]
if param is not None
]
real_inputs = [
materialize(x) for x in (params_flat + V.real_inputs)
]
else:
real_inputs = [materialize(x) for x in V.real_inputs]
with torch.utils._python_dispatch._disable_current_modes():
compiled(real_inputs)
del real_inputs
# second pass
kwargs_patched = {**kwargs, "cpp_wrapper": True}
return inner_compile(gm, example_inputs, **kwargs_patched)
return wrapper
def fake_tensor_prop(
gm: torch.fx.GraphModule,
example_inputs: List[torch.Tensor],
force_allow_non_fake_inputs: bool = False,
):
"""
If we can not detect fake mode from the context of inputs, create one.
The created fake mode will be returned.
"""
fake_mode = detect_fake_mode(example_inputs)
if not fake_mode:
fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
FakeTensorProp(gm, mode=fake_mode).propagate(*example_inputs)
else:
ctx = (
contextlib.nullcontext()
if not force_allow_non_fake_inputs
else mock.patch.object(fake_mode, "allow_non_fake_inputs", True)
)
with ctx: # type: ignore[attr-defined]
FakeTensorProp(gm, mode=fake_mode).propagate_dont_convert_inputs(
*example_inputs
)
return fake_mode
@DebugContext.wrap
@torch.utils._python_dispatch._disable_current_modes()
@time_and_log(attr="compilation time (in seconds)")
def compile_fx_inner(
gm: torch.fx.GraphModule,
example_inputs: List[torch.Tensor],
cudagraphs: Optional[BoxedBool] = None,
num_fixed: int = 0,
is_backward: bool = False,
graph_id: Optional[int] = None,
cpp_wrapper: bool = False,
aot_mode: bool = False,
is_inference: bool = False,
boxed_forward_device_index: Optional[BoxedDeviceIndex] = None,
user_visible_outputs: FrozenSet[str] = frozenset(),
layout_opt: Optional[bool] = None,
extern_node_serializer: Optional[Callable[[List[ExternKernelNode]], Any]] = None,
):
"""
Inductor API that compiles a single graph.
If you change the argument list for this funtion, make sure you
also update the call to save_args_for_compile_fx_inner below accordingly.
"""
if dynamo_utils.count_calls(gm.graph) == 0:
return make_boxed_func(gm.forward)
if config.save_args:
save_args_for_compile_fx_inner(
gm,
example_inputs,
cudagraphs=cudagraphs,
num_fixed=num_fixed,
is_backward=is_backward,
graph_id=graph_id,
cpp_wrapper=cpp_wrapper,
aot_mode=aot_mode,
is_inference=is_inference,
boxed_forward_device_index=boxed_forward_device_index,
user_visible_outputs=user_visible_outputs,
layout_opt=layout_opt,
)
if cudagraphs is None:
cudagraphs = BoxedBool(config.triton.cudagraphs)
# Inputs to fx_codegen_and_compile
graph_args = [gm, example_inputs]
graph_kwargs = {
"cudagraphs": cudagraphs,
"num_fixed": num_fixed,
"is_backward": is_backward,
"graph_id": graph_id,
"cpp_wrapper": cpp_wrapper,
"aot_mode": aot_mode,
"is_inference": is_inference,
"user_visible_outputs": user_visible_outputs,
"layout_opt": layout_opt,
"extern_node_serializer": extern_node_serializer,
}
compiled_graph: CompiledFxGraph = fx_codegen_and_compile(
*graph_args, **graph_kwargs # type: ignore[arg-type]
)
if aot_mode:
return compiled_graph
if cudagraphs:
# output args are tuple of first argument
output = list(gm.graph.nodes)[-1]
assert len(output.args) == 1
stack_traces = [
(arg.stack_trace if isinstance(arg, torch.fx.node.Node) else None)
for arg in output.args[0]
]
complex_memory_overlap_inputs = any(
complex_memory_overlap(t)
for t in example_inputs
if isinstance(t, torch.Tensor)
)
# doesnt work for non-trees because the warmup run would apply mutation twice
if config.triton.cudagraph_trees:
# checking if mutation is only on paramameters/static inputs
has_mutation = not all(
idx < num_fixed for idx in compiled_graph.mutated_input_idxs
)
else:
has_mutation = len(compiled_graph.mutated_inputs) != 0
cudagraph_tests = [
(set(compiled_graph.device_types) == {"cuda"}, "non-cuda device in graph"),
(not has_mutation, "mutated inputs"),
(not has_incompatible_cudagraph_ops(gm), "incompatible ops"),
(not complex_memory_overlap_inputs, "complex memory overlap"),
(
all(
isinstance(t, (torch.Tensor, torch.SymInt)) for t in example_inputs
),
"non-Tensor inputs",
),
(
(
len(compiled_graph.device_idxs) == 1
or not config.triton.cudagraph_trees
),
"multiple device indices without cudagraph_trees",
),
]
cudagraph_fail_reasons = [s for b, s in cudagraph_tests if not b]
if not cudagraph_fail_reasons:
if not config.triton.cudagraph_trees:
# Force specialize all inputs so that CUDA graphs will work
for t in example_inputs:
if isinstance(t, torch.SymInt):
int(t) # guard
if (
boxed_forward_device_index is not None
and not is_inference
and not is_backward
):
boxed_forward_device_index.set(next(iter(compiled_graph.device_idxs)))
compiled_graph.current_callable = cudagraphify(
compiled_graph.get_current_callable(),
example_inputs,
static_input_idxs=range(num_fixed),
device_index=next(iter(compiled_graph.device_idxs)),
stack_traces=stack_traces,
is_backward=is_backward,
is_inference=is_inference,
)
else:
BoxedBool.disable(cudagraphs)
# See [Backward Generation Handling]
# if cudagraph'd the forward and set the device, we need to let the cudagraph manager
# know we are we running the backward even if we will not run it in cudagraphs
if is_backward and config.triton.cudagraph_trees:
assert boxed_forward_device_index is not None
assert boxed_forward_device_index.value is not None
compiled_graph_callable = compiled_graph.get_current_callable()
manager = torch._inductor.cudagraph_trees.get_manager(
boxed_forward_device_index.value, create_if_none_exists=False
)
# should already exist from forward
assert manager is not None
def compiled_artifact(new_inputs):
manager.set_to_running_backward()
return compiled_graph_callable(new_inputs)
compiled_graph.current_callable = compiled_artifact
if len(set(compiled_graph.device_types)) > 1:
perf_hint_log.warning("skipping cudagraphs due to multiple devices")
elif set(compiled_graph.device_types) == {"cuda"}:
if has_mutation:
perf_hint_log.warning("skipping cudagraphs due to input mutation")
elif complex_memory_overlap_inputs:
perf_hint_log.warning(
"skipping cudagraphs due to complex input striding"
)
elif (
len(compiled_graph.device_idxs) > 1
and config.triton.cudagraph_trees
):
perf_hint_log.warning(
"skipping cudagraphs due to multiple device indexes"
)
else:
perf_hint_log.warning("skipping cudagraphs for unknown reason")
else:
perf_hint_log.warning("skipping cudagraphs for unknown reason")
# cudagraphs does its own aligning of inputs
if not cudagraphs:
new_callable = align_inputs(
compiled_graph.get_current_callable(), example_inputs, range(num_fixed)
)
if new_callable is not compiled_graph.get_current_callable():
compiled_graph.current_callable = new_callable
_step_logger()(
logging.INFO,
"torchinductor done compiling "
f"{'BACKWARDS' if is_backward else 'FORWARDS'} "
f"graph {graph_id}",
)
# aot autograd needs to know to pass in inputs as a list
compiled_graph._boxed_call = True
return compiled_graph
def fx_codegen_and_compile(
gm: torch.fx.GraphModule,
example_inputs: List[torch.Tensor],
cudagraphs: Optional[BoxedBool] = None,
num_fixed: int = 0,
is_backward: bool = False,
graph_id: Optional[int] = None,
cpp_wrapper: bool = False,
aot_mode: bool = False,
is_inference: bool = False,
user_visible_outputs: FrozenSet[str] = frozenset(),
layout_opt: Optional[bool] = None,
extern_node_serializer: Optional[Callable[[List[ExternKernelNode]], Any]] = None,
) -> CompiledFxGraph:
if is_tf32_warning_applicable(gm):
_warn_tf32_disabled()
# lift the maximum depth of the Python interpreter stack
# to adapt large/deep models
sys.setrecursionlimit(max(sys.getrecursionlimit(), 2000))
_step_logger()(
logging.INFO,
"torchinductor compiling "
f"{'BACKWARDS' if is_backward else 'FORWARDS'} "
f"graph {graph_id}",
)
V.debug.fx_graph(gm, example_inputs)
shape_env = _shape_env_from_inputs(example_inputs)
# Convert view to reshape in the graph. This is necessary primarily for
# layout optimization. Do it unconditionally for uniformity.
#
# It's needed because when we do layout optimization, an contiguous tensor
# in eager mode may becomes a channels last tensor. A view op previously
# can be applied to the contiguous tensor may not be able to be applied
# on the channels tensor any more. An error like
# RuntimeError: view size is not compatible with input tensor's size and stride
# (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
# will be printed.
#
# Replace view op to reshape op in this case.
# As an example, timm_resnest/botnet26t_256/convnext_base etc. will fail if we don't do this.
#
# Also this has to be done before FakeTensorProp below to avoid the failed
# .view() call.
view_to_reshape(gm)
fake_mode = fake_tensor_prop(gm, example_inputs)
# pattern matcher passes might not preserve striding information
# on node.meta["val"]. if in the future we rely on these being
# correct we will need to fix.
with V.set_fake_mode(fake_mode): # type: ignore[call-arg]
# has some issues with memory in training
post_grad_passes(gm, is_inference=is_inference)
V.debug.fx_graph_transformed(gm, example_inputs)
with V.set_fake_mode(fake_mode): # type: ignore[call-arg]
graph = GraphLowering(
gm,
shape_env=shape_env,
num_static_inputs=num_fixed,
graph_id=graph_id,
cpp_wrapper=cpp_wrapper,
aot_mode=aot_mode,
user_visible_outputs=user_visible_outputs,
extern_node_serializer=extern_node_serializer,
)
with V.set_graph_handler(graph): # type: ignore[call-arg]
graph.run(*example_inputs)
context = torch._guards.TracingContext.get()
if context is not None and context.output_strides is not None:
# Return the output strides to the caller via TracingContext
assert len(context.output_strides) == 0
assert graph.graph_outputs is not None
for out in graph.graph_outputs:
if hasattr(out, "layout"):
context.output_strides.append(
tuple( # type: ignore[arg-type]
V.graph.sizevars.size_hint(s) for s in out.layout.stride
)
)
else:
context.output_strides.append(None)
compiled_fn = graph.compile_to_fn()
if graph.disable_cudagraphs:
BoxedBool.disable(cudagraphs)
compiled_graph = CompiledFxGraph(
compiled_artifact=compiled_fn,
cache_key=graph.cache_key,
artifact_path=graph.cache_path,
cache_linemap=graph.cache_linemap,
device_types=graph.device_types,
device_idxs=graph.device_idxs,
mutated_inputs=graph.mutated_inputs,
mutated_input_idxs=set(graph.mutated_input_idxs),
)
return compiled_graph
def clone_preserve_strides(x: torch.Tensor):
needed_size = (
sum((shape - 1) * stride for shape, stride in zip(x.size(), x.stride())) + 1
)
buffer = torch.as_strided(x, (needed_size,), (1,)).clone()
return torch.as_strided(buffer, x.size(), x.stride())
def copy_misaligned_inputs(
new_inputs: List[torch.Tensor], check_inputs_idxs: Sequence[int]
) -> None:
for i in check_inputs_idxs:
if new_inputs[i].data_ptr() % ALIGNMENT:
new_inputs[i] = clone_preserve_strides(new_inputs[i])
def get_input_idxs_to_check(
inputs: Union[List[torch.Tensor], Sequence[int]],
static_input_idxs: Sequence[int],
) -> Sequence[int]:
def is_aligned(storage_offset, dtype):
return (storage_offset * get_dtype_size(dtype)) % ALIGNMENT == 0
ids_to_check = []
for i, input in enumerate(inputs):
if (
isinstance(input, torch.Tensor)
and (
i not in static_input_idxs
or not is_aligned(input.storage_offset(), input.dtype)
)
and input.device.type == "cuda"
):
ids_to_check.append(i)
return ids_to_check
def align_inputs_from_check_idxs(
model: Callable[[List[torch.Tensor]], Any], inputs_to_check: Sequence[int]
):
if len(inputs_to_check) == 0:
return model
def run(new_inputs):
copy_misaligned_inputs(new_inputs, inputs_to_check)
return model(new_inputs)
return run
def align_inputs(
model: Callable[[List[torch.Tensor]], Any],
inputs: List[torch.Tensor],
static_input_idxs: Sequence[int] = (),
):
inputs_to_check = get_input_idxs_to_check(inputs, static_input_idxs)
return align_inputs_from_check_idxs(model, inputs_to_check)
@dynamo_utils.dynamo_timed
def cudagraphify(
model: torch.fx.GraphModule,
inputs: List[torch.Tensor],
static_input_idxs: Sequence[int] = (),
*,
device_index: int,
stack_traces: List[Optional[str]],
is_backward: bool,
is_inference: bool,
):
from torch._inductor.cudagraph_trees import (
cudagraphify_impl as new_cudagraphify_impl,
)
cudagraphify_fn: Callable[..., Any]
if config.triton.cudagraph_trees:
cudagraphify_fn = functools.partial(
new_cudagraphify_impl,
device_index=device_index,
stack_traces=stack_traces,
is_backward=is_backward,
is_inference=is_inference,
)
else:
cudagraphify_fn = cudagraphify_impl
# if using fake tensors, defer cudagraphs until we get real inputs at runtime
if not any(isinstance(inp, FakeTensor) for inp in inputs):
return cudagraphify_fn(model, inputs, static_input_idxs)
compiled_fn = None
def run(new_inputs):
nonlocal compiled_fn
if compiled_fn is None:
with dynamo_utils.preserve_rng_state():
compiled_fn = cudagraphify_fn(model, new_inputs, static_input_idxs)
return compiled_fn(new_inputs)
return run
def remove_unaligned_input_idxs(
inputs: Union[List[torch.Tensor], Sequence[int]],
static_input_idxs: Sequence[int],
):
"""
We require all inputs to be aligned, so introduce a copy for any
that aren't.
"""
aligned_static_input_idxs = []
for idx, input in zip(static_input_idxs, inputs):
if isinstance(input, torch.Tensor) and (input.data_ptr() % ALIGNMENT) == 0:
aligned_static_input_idxs.append(idx)
if len(aligned_static_input_idxs) != len(static_input_idxs):
return aligned_static_input_idxs
return static_input_idxs
def static_input(x: torch.Tensor):
"""
Copy and input while preserving strides
"""
# TODO(jansel): figure out why this version doesn't work:
# return torch.empty_strided(x.size(), x.stride(), dtype=x.dtype, device=x.device)
needed_size = (
sum((shape - 1) * stride for shape, stride in zip(x.size(), x.stride())) + 1
)
buffer = torch.empty(needed_size, dtype=x.dtype, device=x.device)
return torch.as_strided(buffer, x.size(), x.stride())
def index_expanded_dims_and_copy_(
dst: torch.Tensor,
src: torch.Tensor,
expanded_dims: List[int],
):
"Index into expanded dimensions of both dst and src then copy_"
dst = index_expanded_dims(dst, expanded_dims)
src = index_expanded_dims(src, expanded_dims)
dst.copy_(src)
def cudagraphify_impl(
model: torch.fx.GraphModule,
inputs: List[torch.Tensor],
static_input_idxs: Sequence[int] = (),
):
"""
Assumes inputs[static_input_idxs[i]] are always the same memory address
"""
check_input_idxs = get_input_idxs_to_check(inputs, static_input_idxs)
static_input_idxs = remove_unaligned_input_idxs(inputs, static_input_idxs)
copy_misaligned_inputs(inputs, check_input_idxs)
assert isinstance(inputs, list)
inps_expanded_dims = [
get_expanded_dims(x) if idx not in static_input_idxs else []
for idx, x in enumerate(inputs)
]
# allocate static tensor inputs
static_inputs = [
x
if not isinstance(x, torch.Tensor)
else static_input(x)
if idx not in static_input_idxs
else x.detach()
for idx, x in enumerate(inputs)
]
# copy over input values for fresh allocations
for idx, (x, expanded_dims) in enumerate(zip(inputs, inps_expanded_dims)):
if isinstance(x, torch.Tensor) and idx not in static_input_idxs:
index_expanded_dims_and_copy_(static_inputs[idx], x, expanded_dims)
# warmup
torch.cuda.synchronize()
stream = torch.cuda.Stream()
stream.wait_stream(torch.cuda.current_stream())
# copy static_inputs because it will be cleared in model
with torch.cuda.stream(stream):
model(list(static_inputs))
stream.synchronize()
torch.cuda.current_stream().wait_stream(stream)
torch.cuda.synchronize()
# record
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, stream=stream, capture_error_mode="thread_local"):
static_outputs = model(list(static_inputs))
if not isinstance(static_outputs, (list, tuple)):
static_outputs = (static_outputs,)
if config.size_asserts:
def run(new_inputs):
assert len(static_inputs) == len(new_inputs)
for idx, (dst, src, expanded_dims) in enumerate(
zip(static_inputs, new_inputs, inps_expanded_dims)
):
if not isinstance(dst, torch.Tensor):
pass
elif idx in static_input_idxs:
assert dst.data_ptr() == src.data_ptr()
else:
# TODO - could make one single op of multiple slices
# and avoid dispatch.
# Could also pre-index the `dst` tensors
index_expanded_dims_and_copy_(dst, src, expanded_dims)
new_inputs.clear()
graph.replay()
return static_outputs
else:
copy_indices = [
idx for idx in range(len(static_inputs)) if idx not in static_input_idxs
]
def run(new_inputs):
for idx in copy_indices:
expanded_dims = inps_expanded_dims[idx]
index_expanded_dims_and_copy_(
static_inputs[idx], new_inputs[idx], expanded_dims
)
new_inputs.clear()
graph.replay()
return static_outputs
return align_inputs_from_check_idxs(run, check_input_idxs)
def count_tangents(fx_g: torch.fx.GraphModule):
"""
Infers which inputs are static for a backwards graph
"""
def is_saved_tensor(x):
return (
"tangents" not in x.name
and "bwd_seed" not in x.name
and "bwd_base_offset" not in x.name
)
arg_count = 0
static_arg_idxs = []
for n in fx_g.graph.nodes:
if n.op == "placeholder":
if is_saved_tensor(n):
static_arg_idxs.append(arg_count)
arg_count += 1
assert static_arg_idxs == list(range(len(static_arg_idxs)))
return len(static_arg_idxs)
_in_aot_compilation = BoxedBool(False)
def compile_fx_aot(
model_: torch.fx.GraphModule,
example_inputs_: List[torch.Tensor],
inner_compile: Callable[..., Any] = compile_fx_inner,
config_patches: Optional[Dict[str, Any]] = None,
):
config_patches = (
{"cpp_wrapper": True}
if config_patches is None
else {**config_patches, "cpp_wrapper": True}
)
if (
"aot_inductor_output_path" not in config_patches
and not config.aot_inductor_output_path
):
config_patches = {
**config_patches,
"aot_inductor_output_path": code_hash(model_.code),
}
extern_node_serializer = config_patches.pop("extern_node_serializer", None)
with mock.patch.object(_in_aot_compilation, "value", True):
return compile_fx(
model_,
example_inputs_,
inner_compile=functools.partial(
inner_compile,
aot_mode=True,
extern_node_serializer=extern_node_serializer,
),
config_patches=config_patches,
)
_graph_counter = itertools.count(0)
def fw_compiler_freezing(
aot_autograd_model: torch.fx.GraphModule,
aot_example_inputs: List[torch.Tensor],
dynamo_model: torch.fx.GraphModule,
num_example_inputs: int,
inner_compile: Callable[..., Any],
cudagraphs: BoxedBool,
graph_id: int,
forward_device: BoxedDeviceIndex,
):
from torch._inductor.freezing import convert_conv_weights_to_channels_last, freeze
# partition_fn won't be called
joint_graph_passes(aot_autograd_model)
layout_opt = GraphLowering.decide_layout_opt(aot_autograd_model)
if layout_opt:
# make sure meta['val'] is properly setup
fake_tensor_prop(aot_autograd_model, aot_example_inputs, True)
convert_conv_weights_to_channels_last(aot_autograd_model)
opt_model, preserved_arg_indices = freeze(
dynamo_model,
aot_autograd_model,
aot_example_inputs, # type: ignore[arg-type]
)
aot_example_inputs = [aot_example_inputs[ind] for ind in preserved_arg_indices]
num_fixed = len(preserved_arg_indices) - num_example_inputs
fake_mode = detect_fake_mode(aot_example_inputs)
# for freezing, all graph outputs should be user visible
*_, model_outputs_node = opt_model.graph.nodes
model_outputs = model_outputs_node.args[0]
user_visible_outputs = [
n.name for n in model_outputs if isinstance(n, torch.fx.Node)
]
# constant params will be real tensors, not fake
tracing_context = torch._guards.TracingContext.get()
assert tracing_context is not None
params_flat = tracing_context.params_flat
assert params_flat is not None
for i in range(len(params_flat)):
if i not in preserved_arg_indices:
params_flat[i] = None
with mock.patch.object(fake_mode, "allow_non_fake_inputs", True):
optimized_function = inner_compile(
opt_model,
aot_example_inputs,
num_fixed=num_fixed,
cudagraphs=cudagraphs,
graph_id=graph_id,
is_inference=True,
boxed_forward_device_index=forward_device,
layout_opt=layout_opt,
user_visible_outputs=user_visible_outputs,
)
# aot_inductor codegens a call that takes in just the inputs, so we don't return a wrapper
# that drops constant-ified params
if _in_aot_compilation:
return optimized_function
def wrapper(args):
args_new = [args[i] for i in preserved_arg_indices]
args.clear()
return optimized_function(args_new)
wrapper._boxed_call = True # type: ignore[attr-defined]
return wrapper
def compile_fx(
model_: torch.fx.GraphModule,
example_inputs_: List[torch.Tensor],
inner_compile: Callable[..., Any] = compile_fx_inner,
config_patches: Optional[Dict[str, Any]] = None,
decompositions: Optional[Dict[OpOverload, Callable[..., Any]]] = None,
):
"""Main entrypoint to a compile given FX graph"""
if config_patches:
with config.patch(config_patches): # type: ignore[attr-defined]
return compile_fx(
model_,
example_inputs_,
# need extra layer of patching as backwards is compiled out of scope
inner_compile=config.patch(config_patches)(inner_compile), # type: ignore[attr-defined]
decompositions=decompositions,
)
if config.cpp_wrapper:
with config.patch( # type: ignore[attr-defined]
{
"cpp_wrapper": False,
"triton.autotune_cublasLt": False,
"triton.cudagraphs": False,
# CudaWrapperCodeGen relies on kernel name to find the autotuned cubin file
"triton.unique_kernel_names": True,
}
), V.set_real_inputs(
example_inputs_
): # type: ignore[call-arg]
return compile_fx(
model_,
example_inputs_,
inner_compile=inner_compile_with_cpp_wrapper(inner_compile),
decompositions=decompositions,
)
recursive_compile_fx = functools.partial(
compile_fx,
inner_compile=inner_compile,
decompositions=decompositions,
)
if not graph_returns_tuple(model_):
return make_graph_return_tuple(
model_,
example_inputs_,
recursive_compile_fx,
)
if isinstance(model_, torch.fx.GraphModule):
if isinstance(model_.graph._codegen, _PyTreeCodeGen):
# this graph is the result of dynamo.export()
return handle_dynamo_export_graph(
model_,
example_inputs_,
recursive_compile_fx,
)
# Since handle_dynamo_export_graph will trigger compile_fx again,
# Move these passes after handle_dynamo_export_graph to avoid repeated calls.
model_ = pre_grad_passes(model_, example_inputs_)
if any(isinstance(x, (list, tuple, dict)) for x in example_inputs_):
return flatten_graph_inputs(
model_,
example_inputs_,
recursive_compile_fx,
)
assert not config._raise_error_for_testing
num_example_inputs = len(example_inputs_)
cudagraphs = BoxedBool(config.triton.cudagraphs)
forward_device = BoxedDeviceIndex(None)
graph_id = next(_graph_counter)
decompositions = (
decompositions if decompositions is not None else select_decomp_table()
)
@dynamo_utils.dynamo_timed
def fw_compiler_base(
model: torch.fx.GraphModule,
example_inputs: List[torch.Tensor],
is_inference: bool,
):
if is_inference:
# partition_fn won't be called
joint_graph_passes(model)
num_rng_seed_offset_inputs = 2 if functorch_config.functionalize_rng_ops else 0
fixed = len(example_inputs) - num_example_inputs - num_rng_seed_offset_inputs
user_visible_outputs = set()
if config.keep_output_stride:
*_, model_outputs_node = model.graph.nodes
assert model_outputs_node.op == "output"
model_outputs, _ = pytree.tree_flatten(model_outputs_node.args)
num_model_outputs = len(model_outputs)
context = torch._guards.TracingContext.get()
if context is not None and context.fw_metadata:
original_output_start_index = context.fw_metadata.num_mutated_inputs
else:
original_output_start_index = 0
if isinstance(model_, torch.fx.GraphModule):
*_, orig_model_outputs_node = model_.graph.nodes
assert orig_model_outputs_node.op == "output"
orig_model_outputs, _ = pytree.tree_flatten(
orig_model_outputs_node.args
)
num_orig_model_outputs = len(orig_model_outputs)
else:
num_orig_model_outputs = num_model_outputs
assert num_orig_model_outputs <= num_model_outputs
# We makes the following assumption
# For inference
# len(orig_model_outputs) == len(model_outputs)
# For training
# len(orig_model_outputs) <= len(model_outputs)
# During training, most of the time the model_outputs starts with
# orignal module's outputs followed by saved activations.
# But this can be not true if the model have inplace updated tensors.
# AOTAutograd will make those tensors being returned before the orignal
# module's output.
# To make things safe, we'll use original_output_start_index field
# set by AOTAutograd to decide where the original module outputs start.
user_visible_outputs = {
n.name
for n in model_outputs[
original_output_start_index : original_output_start_index
+ num_orig_model_outputs
]
if isinstance(n, torch.fx.Node)
}
return inner_compile(
model,
example_inputs,
num_fixed=fixed,
cudagraphs=cudagraphs,
graph_id=graph_id,
is_inference=is_inference,
boxed_forward_device_index=forward_device,
user_visible_outputs=user_visible_outputs,
)
fw_compiler = functools.partial(fw_compiler_base, is_inference=False)
if config.freezing and not torch.is_grad_enabled():
inference_compiler = functools.partial(
fw_compiler_freezing,
dynamo_model=model_,
num_example_inputs=num_example_inputs,
inner_compile=inner_compile,
cudagraphs=cudagraphs,
graph_id=graph_id,
forward_device=forward_device,
)
else:
inference_compiler = functools.partial(fw_compiler_base, is_inference=True)
def partition_fn(graph, joint_inputs, **kwargs):
joint_graph_passes(graph)
return min_cut_rematerialization_partition(
graph, joint_inputs, **kwargs, compiler="inductor"
)
@dynamo_utils.dynamo_timed
def bw_compiler(model: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
fixed = count_tangents(model)
return inner_compile(
model,
example_inputs,
num_fixed=fixed,
cudagraphs=cudagraphs,
is_backward=True,
graph_id=graph_id,
boxed_forward_device_index=forward_device,
)
# TODO: can add logging before/after the call to create_aot_dispatcher_function
# in torch._functorch/aot_autograd.py::aot_module_simplified::aot_function_simplified::new_func
# once torchdynamo is merged into pytorch
fake_mode = detect_fake_mode(example_inputs_) or torch._subclasses.FakeTensorMode(
allow_non_fake_inputs=True
)
tracing_context = (
torch._guards.TracingContext.get() or torch._guards.TracingContext(fake_mode)
)
with V.set_fake_mode(fake_mode), torch._guards.tracing( # type: ignore[call-arg]
tracing_context
), compiled_autograd.disable():
return aot_autograd(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
inference_compiler=inference_compiler,
decompositions=decompositions,
partition_fn=partition_fn,
keep_inference_input_mutations=True,
)(model_, example_inputs_)
# pass config dict back to user
def get_patched_config_dict(config_patches=None):
with config.patch(config_patches): # type: ignore[attr-defined]
return config.get_config_copy() # type: ignore[attr-defined]
def _shape_env_from_inputs(inputs: List[torch.Tensor]):
shape_env = None
fake_mode = detect_fake_mode(inputs)
# TODO(voz): It would be nice to enable this assert, but there are lots of tests that
# pass in real inputs for now.
# if len(inputs) > 0:
# assert fake_mode is not None, breakpoint()
if fake_mode is not None:
return fake_mode.shape_env
# When there are no tensor inputs, get shape_env from the first SymInt.
for input in inputs:
if isinstance(input, torch.SymInt):
return input.node.shape_env
# TODO(voz): Should we always have one anyway?
return None
def output_node(gm: torch.fx.GraphModule):
"""Get the output node from an FX graph"""
last_node = next(iter(reversed(gm.graph.nodes)))
assert last_node.op == "output"
return last_node
def graph_returns_tuple(gm: torch.fx.GraphModule):
"""True if a FX graph returns a tuple"""
if not isinstance(gm, torch.fx.GraphModule):
return True # can't check this, assume true
(rv,) = output_node(gm).args
if isinstance(rv, (list, tuple)):
return True
if (
isinstance(rv, torch.fx.node.Node)
and hasattr(rv.target, "_schema")
and len(rv.target._schema.returns) > 1
and all(str(ret.type) == "Tensor" for ret in rv.target._schema.returns)
):
# for graphs whose result is one node with multiple outputs
return True
return False
def make_graph_return_tuple(
gm: torch.fx.GraphModule,
inputs: List[torch.Tensor],
compile_gm: Callable[..., Any],
):
"""
Mutate gm so it returns a tuple. This is only needed for graphs
not created by torchdynamo that return non-tuples.
"""
node = output_node(gm)
(rv,) = node.args
rv, spec = pytree.tree_flatten(rv)
with gm.graph.inserting_before(node):
gm.graph.output(rv)
gm.graph.erase_node(node)
assert graph_returns_tuple(gm)
compiled_fn = compile_gm(gm, inputs)
@functools.wraps(compiled_fn)
def wrapper(*args, **kwargs):
return pytree.tree_unflatten(compiled_fn(*args, **kwargs), spec)
return wrapper
def flatten_graph_inputs(gm: torch.fx.GraphModule, inputs, compile_gm):
"""
Mutate inputs so that they are flat and wrap gm such that it
accepts those inputs. This is only needed for graphs not created
by torchdynamo that take bumpy inputs.
"""
inputs, spec = pytree.tree_flatten(inputs)
class GmWrapper(torch.nn.Module):
def __init__(self):
super().__init__()
self.gm = gm
def forward(self, *args):
args: List[Any] = list(args)
return self.gm(*pytree.tree_unflatten(args, spec))
compiled_fn = compile_gm(GmWrapper(), inputs)
@functools.wraps(compiled_fn)
def wrapper(*args):
# note this doesn't check the spec, assuming it is the same
return compiled_fn(*pytree.tree_flatten(args)[0])
return wrapper
def handle_dynamo_export_graph(
gm: torch.fx.GraphModule,
inputs: List[torch.Tensor],
compile_gm: Callable[..., Any],
):
"""
`torch._dynamo.export` embeds pytrees in the FX graph codegen object,
convert that to a normal FX graph so inductor can compile it.
"""
codegen = gm.graph._codegen
gm.graph._codegen = torch.fx.graph.CodeGen()
gm.recompile()
compiled_fn = compile_gm(gm, codegen.process_inputs(*inputs))
@functools.wraps(compiled_fn)
def wrapper(*args):
return codegen.process_outputs(compiled_fn(*codegen.process_inputs(*args)))
return wrapper