mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Per title. See related https://github.com/pytorch/pytorch/pull/34570. In PyTorch 1.7 the plan is for torch.div and Python's division operator to perform "true" division, like Python 3, JAX, and NumPy. To facilitate this change, this PR expands true_divide to be a method so it can cover all of torch.div's use cases. New true_divide tests are added to test_torch.py, test_type_promotion.py, and test_sparse.py. Pull Request resolved: https://github.com/pytorch/pytorch/pull/34794 Differential Revision: D20545507 Pulled By: mruberry fbshipit-source-id: 55286f819716c8823d1930441a69008560ac2bd5
2257 lines
93 KiB
Python
2257 lines
93 KiB
Python
import torch
|
|
|
|
# TODO: remove this global setting
|
|
# Sparse tests use double as the default dtype
|
|
torch.set_default_dtype(torch.double)
|
|
|
|
import itertools
|
|
import functools
|
|
import random
|
|
import sys
|
|
import unittest
|
|
from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \
|
|
do_test_empty_full, load_tests, TEST_NUMPY
|
|
from torch.testing._internal.common_cuda import TEST_CUDA
|
|
from numbers import Number
|
|
from torch.autograd.gradcheck import gradcheck
|
|
|
|
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
|
|
# sharding on sandcastle. This line silences flake warnings
|
|
load_tests = load_tests
|
|
|
|
|
|
def cpu_only(inner):
|
|
@functools.wraps(inner)
|
|
def outer(self, *args, **kwargs):
|
|
if self.is_cuda:
|
|
raise unittest.SkipTest("Test is CPU-only")
|
|
inner(self, *args, **kwargs)
|
|
return outer
|
|
|
|
|
|
def cuda_only(inner):
|
|
@functools.wraps(inner)
|
|
def outer(self, *args, **kwargs):
|
|
if not self.is_cuda:
|
|
raise unittest.SkipTest("Test is GPU-only")
|
|
inner(self, *args, **kwargs)
|
|
return outer
|
|
|
|
|
|
class TestSparse(TestCase):
|
|
|
|
def setUp(self):
|
|
# These parameters control the various ways we can run the test.
|
|
# We will subclass and override this method to implement CUDA
|
|
# tests
|
|
self.is_cuda = False
|
|
self.is_uncoalesced = False
|
|
self.device = 'cpu'
|
|
self.exact_dtype = True
|
|
self.value_dtype = torch.float64
|
|
self.index_tensor = lambda *args: torch.tensor(*args, dtype=torch.int64, device=self.device)
|
|
self.value_empty = lambda *args: torch.empty(*args, dtype=self.value_dtype, device=self.device)
|
|
self.value_tensor = lambda *args: torch.tensor(*args, dtype=self.value_dtype, device=self.device)
|
|
|
|
def sparse_empty_factory(*args, **kwargs):
|
|
kwargs['dtype'] = kwargs.get('dtype', self.value_dtype)
|
|
kwargs['layout'] = kwargs.get('laytout', torch.sparse_coo)
|
|
kwargs['device'] = kwargs.get('device', self.device)
|
|
return torch.empty(*args, **kwargs)
|
|
self.sparse_empty = sparse_empty_factory
|
|
|
|
def sparse_tensor_factory(*args, **kwargs):
|
|
kwargs['dtype'] = kwargs.get('dtype', self.value_dtype)
|
|
kwargs['device'] = kwargs.get('device', self.device)
|
|
return torch.sparse_coo_tensor(*args, **kwargs)
|
|
self.sparse_tensor = sparse_tensor_factory
|
|
self.legacy_sparse_tensor = torch.sparse.DoubleTensor
|
|
super(TestSparse, self).setUp()
|
|
|
|
def _gen_sparse(self, sparse_dim, nnz, with_size):
|
|
if isinstance(with_size, Number):
|
|
with_size = [with_size] * sparse_dim
|
|
|
|
x, i, v = self.genSparseTensor(with_size, sparse_dim, nnz, self.is_uncoalesced, self.device)
|
|
|
|
if self.is_uncoalesced:
|
|
self.assert_uncoalesced(x)
|
|
|
|
return x, i, v
|
|
|
|
def assert_uncoalesced(self, x):
|
|
"""
|
|
Test if a CPU tensor is uncoalesced. This is used to ensure
|
|
correctness of the uncoalesced tensor generation algorithm.
|
|
"""
|
|
assert not x.is_coalesced()
|
|
existing_indices = set()
|
|
for i in range(x._nnz()):
|
|
index = str(x._indices()[:, i])
|
|
if index in existing_indices:
|
|
return True
|
|
else:
|
|
existing_indices.add(index)
|
|
|
|
def randn(self, *args, **kwargs):
|
|
"""
|
|
Variant of torch.randn that also works in the TEST_CUDA case.
|
|
"""
|
|
# TODO: Put this in torch.cuda.randn
|
|
return self.value_empty(*args, **kwargs).normal_()
|
|
|
|
def test_print(self):
|
|
shape_sparse_dim_nnz = [
|
|
((), 0, 2),
|
|
((0,), 0, 10),
|
|
((2,), 0, 3),
|
|
((100, 3), 1, 3),
|
|
((100, 20, 3), 2, 0),
|
|
((10, 0, 3), 0, 3),
|
|
((10, 0, 3), 0, 0),
|
|
]
|
|
|
|
printed = []
|
|
for shape, sparse_dim, nnz in shape_sparse_dim_nnz:
|
|
indices_shape = torch.Size((sparse_dim, nnz))
|
|
values_shape = torch.Size((nnz,) + shape[sparse_dim:])
|
|
printed.append("# shape: {}".format(torch.Size(shape)))
|
|
printed.append("# nnz: {}".format(nnz))
|
|
printed.append("# sparse_dim: {}".format(sparse_dim))
|
|
printed.append("# indices shape: {}".format(indices_shape))
|
|
printed.append("# values shape: {}".format(values_shape))
|
|
|
|
indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype,
|
|
device=self.device).view(indices_shape)
|
|
for d in range(sparse_dim):
|
|
indices[d].clamp_(max=(shape[d] - 1)) # make it valid index
|
|
if self.is_uncoalesced and indices.numel() > 0:
|
|
indices[:, -1] = indices[:, 0] # make it uncoalesced
|
|
values_numel = values_shape.numel()
|
|
values = torch.arange(values_numel, dtype=self.value_dtype,
|
|
device=self.device).view(values_shape).div_(values_numel / 2.)
|
|
sp_tensor = self.sparse_tensor(indices, values, shape)
|
|
|
|
dtypes = [torch.int32]
|
|
if values.dtype == torch.double:
|
|
dtypes.append(torch.float)
|
|
else:
|
|
dtypes.append(torch.double)
|
|
for dtype in dtypes:
|
|
printed.append("########## {} ##########".format(dtype))
|
|
x = sp_tensor.detach().to(dtype)
|
|
printed.append("# sparse tensor")
|
|
printed.append(str(x))
|
|
if x.dtype.is_floating_point:
|
|
printed.append("# after requires_grad_")
|
|
printed.append(str(x.requires_grad_()))
|
|
printed.append("# after addition")
|
|
printed.append(str(x + x))
|
|
printed.append("# _indices")
|
|
printed.append(str(x._indices()))
|
|
printed.append("# _values")
|
|
printed.append(str(x._values()))
|
|
printed.append('')
|
|
self.assertExpected('\n'.join(printed))
|
|
|
|
def test_basic(self):
|
|
def test_shape(sparse_dims, nnz, with_size):
|
|
if isinstance(with_size, Number):
|
|
with_size = [with_size] * sparse_dims
|
|
x, i, v = self._gen_sparse(sparse_dims, nnz, with_size)
|
|
self.assertEqual(i, x._indices())
|
|
self.assertEqual(v, x._values())
|
|
self.assertEqual(x.ndimension(), len(with_size))
|
|
self.assertEqual(self.safeCoalesce(x)._nnz(), nnz)
|
|
self.assertEqual(list(x.size()), with_size)
|
|
|
|
# Test .indices() and .values()
|
|
if self.is_uncoalesced:
|
|
with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"):
|
|
x.indices()
|
|
with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"):
|
|
x.values()
|
|
else:
|
|
self.assertEqual(x.indices(), x._indices())
|
|
self.assertEqual(x.values(), x._values())
|
|
|
|
test_shape(3, 10, 100)
|
|
test_shape(3, 10, [100, 100, 100])
|
|
test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0])
|
|
test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0])
|
|
|
|
# Make sure that coalesce handles duplicate indices correctly
|
|
i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]])
|
|
v = self.value_tensor([[idx**2, idx] for idx in range(i.size(1))])
|
|
x = self.sparse_tensor(i, v, torch.Size([10, 2]))
|
|
self.assertEqual(self.safeCoalesce(x)._nnz(), 9)
|
|
|
|
# Make sure we can access empty indices / values
|
|
x = self.legacy_sparse_tensor()
|
|
self.assertEqual(x._indices().numel(), 0)
|
|
self.assertEqual(x._values().numel(), 0)
|
|
|
|
def test_coalesce(self):
|
|
for empty_i, empty_v, empty_nnz in itertools.product([True, False], repeat=3):
|
|
sparse_size = [] if empty_i else [2, 1]
|
|
dense_size = [1, 0, 2] if empty_v else [1, 2]
|
|
nnz = 0 if empty_nnz else 5
|
|
|
|
t, _, _ = self._gen_sparse(len(sparse_size), nnz, sparse_size + dense_size)
|
|
self.safeCoalesce(t) # this tests correctness
|
|
|
|
def test_ctor_size_checks(self):
|
|
indices = self.index_tensor([
|
|
[0, 0, 0],
|
|
[0, 3, 0],
|
|
[0, 0, 0],
|
|
[0, 0, 0],
|
|
])
|
|
values = self.value_tensor([2, 1, 3, 4])
|
|
|
|
# indices inconsistent with size
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: self.sparse_tensor(indices, values, torch.Size([2, 1, 1])))
|
|
|
|
# values inconsistent with size
|
|
values = self.value_tensor([
|
|
[2, 1, 2, 1],
|
|
[1, 0, 5, 2],
|
|
])
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: self.sparse_tensor(indices, values, torch.Size([2, 4, 2, 1])))
|
|
|
|
def test_to_dense(self):
|
|
def test_tensor(x, res):
|
|
x.to_dense() # Tests triple to_dense for memory corruption
|
|
x.to_dense()
|
|
x.to_dense()
|
|
# We dont have to_dense for half types, so we don't request
|
|
# exact_dtype if res.type is torch.float16.
|
|
dense_x = x.to_dense()
|
|
safe_dense_x = self.safeToDense(x)
|
|
if (res.dtype == torch.float16):
|
|
exact_dtype = False
|
|
else:
|
|
exact_dtype = True
|
|
dense_x = dense_x.to(res.dtype)
|
|
safe_dense_x = safe_dense_x.to(res.dtype)
|
|
self.assertEqual(res, dense_x, exact_dtype=exact_dtype)
|
|
self.assertEqual(res, safe_dense_x, exact_dtype=exact_dtype)
|
|
|
|
def fn(x):
|
|
return x.to_dense()
|
|
x.requires_grad_(True)
|
|
gradcheck(fn, (x,), check_sparse_nnz=True)
|
|
|
|
i = self.index_tensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
# we don't have to_dense for half types on CPU because it is implemented
|
|
# with a slower add_ operation
|
|
for dtype in [torch.float16, torch.float32, torch.float64] if self.device != 'cpu' else [torch.float32, torch.float64]:
|
|
v = self.value_tensor([2, 1, 3, 4]).to(dtype=dtype)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]))
|
|
res = self.value_tensor([
|
|
[[2, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
[[1, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
[[0, 3, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 4]],
|
|
]).to(dtype=dtype)
|
|
|
|
test_tensor(x, res)
|
|
|
|
i = self.index_tensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
v = self.value_empty(4, 0).to(dtype=dtype)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]))
|
|
res = self.value_empty(3, 4, 5, 0).to(dtype=dtype)
|
|
test_tensor(x, res)
|
|
|
|
# half tensors on cpu don't implement to_dense, so need to convert to float
|
|
def _to_dense_half_safe(self, tensor):
|
|
if(tensor.dtype == torch.half and tensor.device.type == 'cpu'):
|
|
return tensor.to(torch.float).to_dense().to(torch.half)
|
|
else:
|
|
return tensor.to_dense()
|
|
|
|
@skipIfRocm
|
|
def test_to_sparse(self):
|
|
shape = [10, 5, 19, 8]
|
|
max_nnz = 1
|
|
for dim, dim_sz in enumerate(shape, 1):
|
|
max_nnz *= dim_sz
|
|
rnnz = torch.randint(2, max_nnz, (1,)).item()
|
|
for nnz in [0, 1, rnnz]:
|
|
for dtype in [torch.float16, torch.float64, torch.int]:
|
|
expected, _, _ = self._gen_sparse(dim, nnz, shape)
|
|
expected = expected.to(dtype)
|
|
|
|
d = self._to_dense_half_safe(expected)
|
|
result = d.to_sparse(dim)
|
|
self.assertEqual(d, self._to_dense_half_safe(result)) # == not implemented for sparse tensors yet
|
|
self.assertEqual(expected.size(), result.size())
|
|
self.assertEqual(dim, result.sparse_dim())
|
|
|
|
sp, _, _ = self._gen_sparse(2, 10, [3, 3, 3])
|
|
self.assertRaises(RuntimeError, lambda: sp.to_sparse())
|
|
|
|
def test_scalar(self):
|
|
# tensor with value
|
|
a = self.sparse_tensor(self.index_tensor([]).unsqueeze(1), 12.3, [])
|
|
self.assertEqual(1, a._values().numel())
|
|
self.assertEqual(a, a.clone())
|
|
a_coalesced = a.coalesce()
|
|
self.assertTrue(a_coalesced.is_coalesced())
|
|
self.assertEqual(self.value_tensor(12.3), a.to_dense())
|
|
self.assertEqual(a, a.to_dense().to_sparse())
|
|
|
|
# tensor with multiple values
|
|
a = self.sparse_tensor(self.index_tensor([]).unsqueeze(1).expand(0, 2), [12.3, 12.3], [])
|
|
self.assertEqual(2, a._values().numel())
|
|
self.assertEqual(a, a.clone())
|
|
a_coalesced = a.coalesce()
|
|
self.assertTrue(a_coalesced.is_coalesced())
|
|
self.assertEqual(self.value_tensor(12.3 * 2), a.to_dense())
|
|
self.assertEqual(a, a.to_dense().to_sparse())
|
|
|
|
# tensor without value
|
|
a = self.sparse_empty(())
|
|
self.assertEqual(0, a._values().numel())
|
|
self.assertEqual(a, a.clone())
|
|
a_coalesced = a.coalesce()
|
|
self.assertTrue(a_coalesced.is_coalesced())
|
|
self.assertEqual(self.value_tensor(0), a.to_dense())
|
|
self.assertEqual(a, a.to_dense().to_sparse())
|
|
|
|
def test_shared(self):
|
|
i = self.index_tensor([[2]])
|
|
v = self.value_tensor([5])
|
|
x = self.sparse_tensor(i, v, torch.Size([3]))
|
|
v[0] = 6
|
|
self.assertEqual(self.value_tensor([0, 0, 6]), self.safeToDense(x))
|
|
i[0][0] = 0
|
|
self.assertEqual(self.value_tensor([6, 0, 0]), self.safeToDense(x))
|
|
|
|
i = self.index_tensor([[2]])
|
|
v = self.value_empty(1, 0)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 0]))
|
|
i[0][0] = 0
|
|
self.assertEqual(self.value_empty(3, 0), self.safeToDense(x))
|
|
|
|
def test_to_dense_hybrid(self):
|
|
def test_tensor(x, res):
|
|
x.to_dense() # Tests double to_dense for memory corruption
|
|
x.to_dense()
|
|
x.to_dense()
|
|
self.assertEqual(res, x.to_dense())
|
|
self.assertEqual(res, self.safeToDense(x))
|
|
|
|
def fn(x):
|
|
return x.to_dense()
|
|
x.requires_grad_(True)
|
|
gradcheck(fn, (x,), check_sparse_nnz=True)
|
|
|
|
i = self.index_tensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
])
|
|
v = self.value_tensor([[2, 3], [1, 2], [3, 4], [4, 5]])
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 2]))
|
|
res = self.value_tensor([
|
|
[[2, 3],
|
|
[0, 0],
|
|
[0, 0],
|
|
[0, 0]],
|
|
[[1, 2],
|
|
[0, 0],
|
|
[0, 0],
|
|
[0, 0]],
|
|
[[3, 4],
|
|
[0, 0],
|
|
[0, 0],
|
|
[4, 5]],
|
|
])
|
|
test_tensor(x, res)
|
|
|
|
i = self.index_tensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
])
|
|
v = self.value_empty(4, 2, 0)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 2, 0]))
|
|
res = self.value_empty(3, 4, 2, 0)
|
|
test_tensor(x, res)
|
|
|
|
def test_contig(self):
|
|
def test_tensor(x, exp_i, exp_v):
|
|
x = self.safeCoalesce(x)
|
|
self.assertEqual(exp_i, x._indices())
|
|
self.assertEqual(exp_v, x._values())
|
|
|
|
i = self.index_tensor([
|
|
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
|
|
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
|
|
])
|
|
v = self.value_tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
|
|
x = self.sparse_tensor(i, v, torch.Size([100, 100]))
|
|
exp_i = self.index_tensor([
|
|
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
|
|
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
|
|
])
|
|
exp_v = self.value_tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7])
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
i = self.index_tensor([
|
|
[2, 0, 2, 1],
|
|
[0, 0, 3, 0],
|
|
[1, 0, 4, 0],
|
|
])
|
|
v = self.value_tensor([3, 2, 4, 1])
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]))
|
|
exp_i = self.index_tensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
exp_v = self.value_tensor([2, 1, 3, 4])
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
i = self.index_tensor([
|
|
[2, 0, 2, 1],
|
|
[0, 0, 3, 0],
|
|
[1, 0, 4, 0],
|
|
])
|
|
v = self.value_empty(4, 0)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]))
|
|
exp_i = self.index_tensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
exp_v = self.value_empty(4, 0)
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
# Duplicate indices
|
|
i = self.index_tensor([
|
|
[0, 0, 2, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 4, 0],
|
|
])
|
|
v = self.value_tensor([3, 2, 4, 1])
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]))
|
|
exp_i = self.index_tensor([
|
|
[0, 2],
|
|
[0, 3],
|
|
[0, 4],
|
|
])
|
|
exp_v = self.value_tensor([6, 4])
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
i = self.index_tensor([
|
|
[0, 0, 2, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 4, 0],
|
|
])
|
|
v = self.value_empty(4, 0)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]))
|
|
exp_i = self.index_tensor([
|
|
[0, 2],
|
|
[0, 3],
|
|
[0, 4],
|
|
])
|
|
exp_v = self.value_empty(2, 0)
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
def test_contig_hybrid(self):
|
|
def test_tensor(x, exp_i, exp_v):
|
|
x = self.safeCoalesce(x)
|
|
self.assertEqual(exp_i, x._indices())
|
|
self.assertEqual(exp_v, x._values())
|
|
|
|
i = self.index_tensor([
|
|
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
|
|
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
|
|
])
|
|
v = self.value_tensor([
|
|
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6],
|
|
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11],
|
|
])
|
|
x = self.sparse_tensor(i, v, torch.Size([100, 100, 2]))
|
|
exp_i = self.index_tensor([
|
|
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
|
|
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
|
|
])
|
|
exp_v = self.value_tensor([
|
|
[2, 3], [1, 2], [6, 7], [4, 5], [10, 11],
|
|
[3, 4], [5, 6], [9, 10], [8, 9], [7, 8],
|
|
])
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
i = self.index_tensor([
|
|
[2, 0, 2, 1],
|
|
[0, 0, 3, 0],
|
|
[1, 0, 4, 0],
|
|
])
|
|
v = self.value_tensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]])
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3]))
|
|
exp_i = self.index_tensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
exp_v = self.value_tensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]])
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
i = self.index_tensor([
|
|
[2, 0, 2, 1],
|
|
[0, 0, 3, 0],
|
|
[1, 0, 4, 0],
|
|
])
|
|
v = self.value_empty(4, 3, 0)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0]))
|
|
exp_i = self.index_tensor([
|
|
[0, 1, 2, 2],
|
|
[0, 0, 0, 3],
|
|
[0, 0, 1, 4],
|
|
])
|
|
exp_v = self.value_empty(4, 3, 0)
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
# Duplicate indices
|
|
i = self.index_tensor([
|
|
[0, 0, 2, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 4, 0],
|
|
])
|
|
v = self.value_tensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]])
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3]))
|
|
exp_i = self.index_tensor([
|
|
[0, 2],
|
|
[0, 3],
|
|
[0, 4],
|
|
])
|
|
exp_v = self.value_tensor([[6, 4, 5], [4, 3, 4]])
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
i = self.index_tensor([
|
|
[0, 0, 2, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 4, 0],
|
|
])
|
|
v = self.value_empty(4, 3, 0)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0]))
|
|
exp_i = self.index_tensor([
|
|
[0, 2],
|
|
[0, 3],
|
|
[0, 4],
|
|
])
|
|
exp_v = self.value_empty(2, 3, 0)
|
|
test_tensor(x, exp_i, exp_v)
|
|
|
|
def test_clone(self):
|
|
def test_shape(sparse_dims, nnz, with_size):
|
|
x = self._gen_sparse(sparse_dims, nnz, with_size)[0]
|
|
if self.is_uncoalesced:
|
|
self.assertFalse(x.is_coalesced())
|
|
y = x.clone()
|
|
self.assertFalse(y.is_coalesced())
|
|
x = x.coalesce()
|
|
self.assertTrue(x.is_coalesced())
|
|
y = x.clone()
|
|
self.assertTrue(y.is_coalesced())
|
|
|
|
test_shape(4, 20, 5)
|
|
test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0])
|
|
test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0])
|
|
|
|
def test_Sparse_to_Sparse_copy_(self):
|
|
# This is for testing torch.copy_(SparseTensor, SparseTensor)
|
|
sparse_dims = 3
|
|
nnz = 10
|
|
sizes = [2, 3, 4, 5] # hybrid sparse
|
|
x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
|
|
x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes)
|
|
|
|
# test copy
|
|
x2_dense = x2.to_dense()
|
|
x1.copy_(x2)
|
|
self.assertEqual(x2_dense, x1.to_dense())
|
|
|
|
# test type conversion (when x1.copy_(x2), x1.dtype should stay the same)
|
|
x1 = x1.to(torch.float32)
|
|
|
|
x2 = x2.to(torch.float16)
|
|
x1_dtype = x1.dtype
|
|
x1.copy_(x2)
|
|
self.assertEqual(x1_dtype, x1.dtype)
|
|
|
|
x2 = x2.to(torch.float64)
|
|
x1_dtype = x1.dtype
|
|
x1.copy_(x2)
|
|
self.assertEqual(x1_dtype, x1.dtype)
|
|
|
|
# test no broadcast
|
|
self.assertRaises(RuntimeError, lambda: x1.copy_(x2.narrow_copy(0, 0, 1)))
|
|
|
|
# test raise error on copy_() between dense and sparse Tensors
|
|
self.assertRaises(RuntimeError, lambda: x1.copy_(torch.randn(5, 5)))
|
|
|
|
# test autograd
|
|
x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
|
|
x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes)
|
|
x2.requires_grad_(True)
|
|
x1.copy_(x2)
|
|
y = x1 * 2
|
|
x2_clone = x2.clone()
|
|
y.backward(x2_clone)
|
|
expected_grad = x2_clone * 2
|
|
self.assertEqual(expected_grad.to_dense(), x2.grad.to_dense())
|
|
self.assertEqual(None, x1.grad)
|
|
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, "no multi-GPU")
|
|
@skipIfRocm
|
|
def test_Sparse_to_Sparse_copy_multi_gpu(self):
|
|
# This is for testing torch.copy_(SparseTensor, SparseTensor) across GPU devices
|
|
sparse_dims = 3
|
|
nnz = 10
|
|
sizes = [2, 3, 4, 5] # hybrid sparse
|
|
x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
|
|
x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes)
|
|
x1 = x1.to('cuda:0')
|
|
|
|
def test_cross_device(x1, x2):
|
|
x1_device = x1.device
|
|
x1.copy_(x2)
|
|
self.assertEqual(x2.to('cuda:0').to_dense(), x1.to_dense())
|
|
self.assertEqual(x1_device, x1.device)
|
|
|
|
test_cross_device(x1, x2.to('cuda:1')) # test across gpu devices
|
|
test_cross_device(x1, x2.to('cpu')) # test between cpu and gpu
|
|
|
|
# test autograd
|
|
x2 = x2.to('cuda:1')
|
|
x2.requires_grad_(True)
|
|
x1.copy_(x2)
|
|
y = x1 * 2
|
|
x2_clone = x2.clone().to('cuda:0')
|
|
y.backward(x2_clone)
|
|
expected_grad = x2_clone * 2
|
|
self.assertEqual(expected_grad.to_dense(), x2.grad.to('cuda:0').to_dense())
|
|
self.assertEqual(None, x1.grad)
|
|
|
|
@cuda_only
|
|
def test_cuda_empty(self):
|
|
def test_tensor(x):
|
|
y = x.cuda(0)
|
|
self.assertEqual(x.sparse_dim(), y.sparse_dim())
|
|
self.assertEqual(x.dense_dim(), y.dense_dim())
|
|
x = y.cpu()
|
|
self.assertEqual(y.sparse_dim(), x.sparse_dim())
|
|
self.assertEqual(y.dense_dim(), x.dense_dim())
|
|
|
|
x = torch.sparse.FloatTensor(2, 3, 4)
|
|
test_tensor(x)
|
|
|
|
x = torch.sparse.HalfTensor(2, 3, 4)
|
|
test_tensor(x)
|
|
|
|
x = torch.cuda.sparse.HalfTensor(2, 3, 4)
|
|
test_tensor(x)
|
|
|
|
x = torch.sparse.FloatTensor(2, 3, 4, 0)
|
|
test_tensor(x)
|
|
|
|
def test_transpose(self):
|
|
def test_shape(sparse_dims, nnz, with_size):
|
|
x = self._gen_sparse(sparse_dims, nnz, with_size)[0]
|
|
y = self.safeToDense(x)
|
|
|
|
for i, j in itertools.combinations(range(4), 2):
|
|
x = x.transpose_(i, j)
|
|
y = y.transpose(i, j)
|
|
self.assertEqual(self.safeToDense(x), y)
|
|
|
|
x = x.transpose(i, j)
|
|
y = y.transpose(i, j)
|
|
self.assertEqual(self.safeToDense(x), y)
|
|
|
|
test_shape(4, 6, 3)
|
|
test_shape(4, 3, [7, 7, 7, 3, 3, 3, 0])
|
|
test_shape(4, 0, [0, 0, 7, 3, 3, 3, 0])
|
|
|
|
@cpu_only
|
|
def test_coalesce_transpose_mm(self):
|
|
def test_shape(di, dj, dk, nnz):
|
|
x, _, _ = self._gen_sparse(2, nnz, [dj, di])
|
|
y = torch.randn(dj, dk)
|
|
|
|
x_coalesced = x.coalesce()
|
|
self.assertTrue(x_coalesced.is_coalesced())
|
|
|
|
x_coalesced_t = x_coalesced.t()
|
|
# Transpose is `colasced`-preserving if the indices tensor is empty.
|
|
self.assertEqual(x_coalesced_t.is_coalesced(), di * nnz == 0)
|
|
|
|
res = torch.mm(x_coalesced_t, y)
|
|
expected = torch.mm(self.safeToDense(x_coalesced_t), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
test_shape(10, 20, 30, 20)
|
|
test_shape(0, 20, 30, 0)
|
|
test_shape(10, 0, 30, 0)
|
|
test_shape(10, 20, 0, 0)
|
|
test_shape(10, 20, 0, 20)
|
|
|
|
def test_t_empty(self):
|
|
def test_in_place(x):
|
|
shape_original = x.shape
|
|
x.t_()
|
|
self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), x.size())
|
|
self.assertEqual(0, x._indices().numel())
|
|
self.assertEqual(0, x._values().numel())
|
|
self.assertEqual(x.sparse_dim(), 2)
|
|
self.assertEqual(x.dense_dim(), 0)
|
|
|
|
def test_not_in_place(x):
|
|
shape_original = x.shape
|
|
y = x.t()
|
|
self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), y.size())
|
|
self.assertEqual(0, y._indices().numel())
|
|
self.assertEqual(0, y._values().numel())
|
|
self.assertEqual(x.sparse_dim(), 2)
|
|
self.assertEqual(x.dense_dim(), 0)
|
|
|
|
x = self.sparse_empty(2, 3)
|
|
test_in_place(x)
|
|
test_not_in_place(x)
|
|
|
|
x = self.sparse_empty(2, 0)
|
|
test_in_place(x)
|
|
test_not_in_place(x)
|
|
|
|
def test_add_zeros(self):
|
|
def test_shape(sparse_dims, nnz, sizes):
|
|
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
|
|
zeros = torch.zeros(sizes, layout=torch.sparse_coo).to(x.device)
|
|
r1 = zeros + x
|
|
r2 = x + zeros
|
|
self.assertEqual(r1, x)
|
|
self.assertEqual(r2, x)
|
|
|
|
test_shape(1, 20, [1])
|
|
test_shape(4, 20, [3, 17, 19, 5])
|
|
test_shape(2, 20, [3, 17, 19, 5])
|
|
test_shape(2, 20, [3, 17, 19, 0])
|
|
|
|
def test_cat(self):
|
|
# shapes: list of tuples (sparse_dims, nnz, sizes)
|
|
def test_shapes(shapes, dim, fail_message=None):
|
|
inputs = [self._gen_sparse(shape[0], shape[1], shape[2])[0]
|
|
for shape in shapes]
|
|
if fail_message:
|
|
with self.assertRaisesRegex(RuntimeError, fail_message):
|
|
torch.cat(inputs, dim)
|
|
else:
|
|
result = torch.cat(inputs, dim)
|
|
dense_result = torch.cat([t.to_dense() for t in inputs], dim)
|
|
self.assertEqual(dense_result, result.to_dense())
|
|
|
|
test_shapes(
|
|
[(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], 1)
|
|
|
|
# mismatched sizes
|
|
test_shapes([(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4])], 0,
|
|
"All tensors must have the same shape: \\[2, 3, 4].*\\[2, 1, 4]")
|
|
# hybrid sparse/dense
|
|
test_shapes(
|
|
[(2, 10, [2, 3, 4]), (2, 10, [2, 1, 4]), (2, 10, [2, 4, 4])], 1)
|
|
# cat along dense dim
|
|
test_shapes([(2, 10, [2, 3, 4]), (2, 10, [2, 3, 7])], 2)
|
|
test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 1)
|
|
test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 2)
|
|
# mismatched dimensions
|
|
test_shapes([(2, 10, [2, 3, 4]), (3, 10, [2, 3, 4])], 0,
|
|
"All tensors must have the same.*2, 1, but tensor at position 1 has 3, 0.")
|
|
# wrapped dimension
|
|
test_shapes(
|
|
[(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], -2)
|
|
|
|
# sparse with dense
|
|
sp = self._gen_sparse(3, 10, [2, 3, 4])[0]
|
|
dn = sp.to_dense()
|
|
with self.assertRaisesRegex(RuntimeError,
|
|
"Concatenating sparse tensors, but a dense tensor was found at position 1."):
|
|
torch.cat((sp, dn))
|
|
|
|
def test_unsqueeze(self):
|
|
def test_shape(sparse_dims, nnz, sizes, unsqueeze_dim, fail_message=None):
|
|
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
|
|
if fail_message:
|
|
with self.assertRaisesRegex(IndexError, fail_message):
|
|
torch.unsqueeze(x, unsqueeze_dim)
|
|
else:
|
|
result = torch.unsqueeze(x, unsqueeze_dim)
|
|
dense_result = torch.unsqueeze(x.to_dense(), unsqueeze_dim)
|
|
self.assertEqual(dense_result, result.to_dense())
|
|
|
|
# basic case
|
|
test_shape(3, 10, [5, 7, 11], 0)
|
|
|
|
# hybrid sparse/dense, unsqueeze along sparse dim
|
|
test_shape(3, 10, [5, 7, 11, 13, 17], 0)
|
|
test_shape(3, 10, [5, 7, 11, 13, 17], 3)
|
|
|
|
# unsqueeze along dense dimensions
|
|
test_shape(3, 10, [5, 7, 11, 13, 17], 4)
|
|
test_shape(3, 10, [5, 7, 11, 13, 17], 5)
|
|
|
|
# wrapped dimensions
|
|
test_shape(3, 10, [5, 7, 11, 13, 17], -1)
|
|
test_shape(3, 10, [5, 7, 11, 13, 17], -6)
|
|
|
|
# bounds
|
|
test_shape(3, 10, [5, 7, 11, 13, 17], -7, "Dimension out of range")
|
|
test_shape(3, 10, [5, 7, 11, 13, 17], 6, "Dimension out of range")
|
|
|
|
def test_select(self):
|
|
def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None):
|
|
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
|
|
if fail_message:
|
|
with self.assertRaisesRegex(IndexError, fail_message):
|
|
torch.select(x, select_dim, select_index)
|
|
else:
|
|
result = torch.select(x, select_dim, select_index)
|
|
if result.is_sparse:
|
|
result = result.to_dense()
|
|
dense_result = torch.select(x.to_dense(), select_dim, select_index)
|
|
self.assertEqual(dense_result, result)
|
|
|
|
|
|
sizes = [5, 7, 11, 13, 17]
|
|
# hybrid sparse/dense, select sparse dim, result is dense
|
|
for i in range(sizes[0]):
|
|
test_shape(1, 10, sizes, 0, i)
|
|
test_shape(1, 10, sizes, 0, sizes[0] + 1, r'select[(][)][:] index \d out of range.*')
|
|
|
|
# hybrid sparse/dense, select sparse dim, result is sparse
|
|
for d in range(3):
|
|
for i in range(sizes[d]):
|
|
test_shape(3, 10, sizes, d, i)
|
|
|
|
# hybrid sparse/dense, select dense dim, result is sparse
|
|
for d in range(1, 3):
|
|
for i in range(sizes[d]):
|
|
test_shape(1, 10, sizes, d, i)
|
|
|
|
|
|
def test_index_select(self):
|
|
def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None):
|
|
if isinstance(select_index, int):
|
|
select_index = [select_index]
|
|
if isinstance(select_index, list):
|
|
select_index = torch.tensor(select_index, device=self.device, dtype=torch.long)
|
|
x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes)
|
|
if fail_message:
|
|
with self.assertRaisesRegex(IndexError, fail_message):
|
|
torch.index_select(x, select_dim, select_index)
|
|
else:
|
|
result = torch.index_select(x, select_dim, select_index)
|
|
if result.is_sparse:
|
|
result = result.to_dense()
|
|
dense_result = torch.index_select(x.to_dense(), select_dim, select_index)
|
|
self.assertEqual(dense_result, result)
|
|
|
|
sizes = [5, 7, 11, 13, 17]
|
|
for d in range(len(sizes)):
|
|
for index in [0, sizes[d] - 1, [0, sizes[d] // 2, sizes[d] - 1]]:
|
|
test_shape(1, 10, sizes, d, index)
|
|
test_shape(len(sizes) // 2, 10, sizes, d, index)
|
|
test_shape(len(sizes), 10, sizes, d, index)
|
|
|
|
@cpu_only
|
|
def test_mm(self):
|
|
def test_shape(di, dj, dk, nnz):
|
|
x, _, _ = self._gen_sparse(2, nnz, [di, dj])
|
|
t = torch.randn(di, dk)
|
|
y = torch.randn(dj, dk)
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
|
|
res = torch.addmm(t, x, y, beta=beta, alpha=alpha)
|
|
expected = torch.addmm(t, self.safeToDense(x), y, beta=beta, alpha=alpha)
|
|
self.assertEqual(res, expected)
|
|
|
|
res = torch.addmm(t, x, y)
|
|
expected = torch.addmm(t, self.safeToDense(x), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
res = torch.mm(x, y)
|
|
expected = torch.mm(self.safeToDense(x), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
test_shape(10, 100, 100, 20)
|
|
test_shape(100, 1000, 200, 20)
|
|
test_shape(64, 10000, 300, 20)
|
|
test_shape(0, 100, 100, 0)
|
|
test_shape(10, 0, 100, 0)
|
|
test_shape(10, 100, 0, 0)
|
|
test_shape(10, 100, 0, 20)
|
|
|
|
@cpu_only
|
|
def test_saddmm(self):
|
|
def test_shape(di, dj, dk, nnz):
|
|
x = self._gen_sparse(2, nnz, [di, dj])[0]
|
|
t = self._gen_sparse(2, nnz, [di, dk])[0]
|
|
y = torch.randn(dj, dk)
|
|
alpha = random.random()
|
|
beta = random.random()
|
|
|
|
res = torch.saddmm(t, x, y, beta=beta, alpha=alpha)
|
|
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y, beta=beta, alpha=alpha)
|
|
self.assertEqual(self.safeToDense(res), expected)
|
|
|
|
res = torch.saddmm(t, x, y)
|
|
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y)
|
|
self.assertEqual(self.safeToDense(res), expected)
|
|
|
|
res = torch.smm(x, y)
|
|
expected = torch.mm(self.safeToDense(x), y)
|
|
self.assertEqual(self.safeToDense(res), expected)
|
|
|
|
test_shape(7, 5, 3, 20)
|
|
test_shape(1000, 100, 100, 20)
|
|
test_shape(3000, 64, 300, 20)
|
|
test_shape(0, 100, 100, 0)
|
|
test_shape(1000, 0, 100, 0)
|
|
test_shape(1000, 100, 0, 0)
|
|
|
|
def test_sparse_addmm(self):
|
|
def test_shape(m, n, p, nnz, broadcast):
|
|
if broadcast:
|
|
D1 = torch.randn((), device=self.device).requires_grad_(True)
|
|
else:
|
|
D1 = torch.randn(n, p, device=self.device).requires_grad_(True)
|
|
D2 = torch.randn(m, p, device=self.device).requires_grad_(True)
|
|
S = self._gen_sparse(2, nnz, [n, m])[0]
|
|
S_dense = S.to_dense().requires_grad_(True)
|
|
S.requires_grad_(True)
|
|
self.assertEqual(torch.sparse.addmm(D1, S, D2), torch.addmm(D1, S_dense, D2))
|
|
|
|
def fn(S, D1, D2):
|
|
return torch.sparse.addmm(D1, S, D2)
|
|
gradcheck(fn, (S, D1, D2), check_sparse_nnz=True)
|
|
|
|
test_shape(7, 8, 9, 20, False)
|
|
test_shape(7, 8, 9, 20, True)
|
|
|
|
def test_sparse_mm(self):
|
|
def test_shape(d1, d2, d3, nnz, transposed):
|
|
if transposed:
|
|
D = torch.randn(d3, d2,
|
|
device=self.device).t_().requires_grad_(True)
|
|
else:
|
|
D = torch.randn(d2, d3, device=self.device).requires_grad_(True)
|
|
S = self._gen_sparse(2, nnz, [d1, d2])[0]
|
|
S_dense = S.to_dense().requires_grad_(True)
|
|
S.requires_grad_(True)
|
|
self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D))
|
|
|
|
def fn(S, D):
|
|
return torch.sparse.mm(S, D)
|
|
gradcheck(fn, (S, D), check_sparse_nnz=True)
|
|
|
|
test_shape(7, 8, 9, 20, False)
|
|
test_shape(7, 8, 9, 20, True)
|
|
|
|
def test_dsmm(self):
|
|
def test_shape(di, dj, dk, nnz):
|
|
x = self._gen_sparse(2, nnz, [di, dj])[0]
|
|
y = self.randn(dj, dk)
|
|
|
|
res = torch.dsmm(x, y)
|
|
expected = torch.mm(self.safeToDense(x), y)
|
|
self.assertEqual(res, expected)
|
|
|
|
test_shape(7, 5, 3, 20)
|
|
test_shape(1000, 100, 100, 20)
|
|
test_shape(3000, 64, 300, 20)
|
|
test_shape(0, 100, 100, 0)
|
|
test_shape(1000, 0, 100, 0)
|
|
test_shape(1000, 100, 0, 0)
|
|
test_shape(1000, 100, 0, 20)
|
|
|
|
@skipIfRocm
|
|
def test_hsmm(self):
|
|
def test_shape(di, dj, dk, nnz):
|
|
x = self._gen_sparse(2, nnz, [di, dj])[0]
|
|
y = self.randn(dj, dk)
|
|
|
|
res = torch.hsmm(x, y)
|
|
expected = torch.mm(self.safeToDense(x), y)
|
|
self.assertEqual(res.to_dense(), expected)
|
|
|
|
test_shape(7, 5, 3, 20)
|
|
test_shape(1000, 100, 100, 20)
|
|
test_shape(3000, 64, 300, 20)
|
|
test_shape(0, 100, 100, 0)
|
|
test_shape(1000, 0, 100, 0)
|
|
test_shape(1000, 100, 0, 0)
|
|
test_shape(1000, 100, 0, 20)
|
|
|
|
def _test_spadd_shape(self, nnz, shape_i, shape_v=None):
|
|
shape = shape_i + (shape_v or [])
|
|
x, _, _ = self._gen_sparse(len(shape_i), nnz, shape)
|
|
y = self.randn(*shape)
|
|
r = random.random()
|
|
|
|
res = torch.add(y, x, alpha=r)
|
|
expected = y + r * self.safeToDense(x)
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
# Non contiguous dense tensor
|
|
s = list(shape)
|
|
s[0] = shape[-1]
|
|
s[-1] = shape[0]
|
|
y = self.randn(*s)
|
|
y.transpose_(0, len(s) - 1)
|
|
r = random.random()
|
|
|
|
res = torch.add(y, x, alpha=r)
|
|
expected = y + r * self.safeToDense(x)
|
|
|
|
self.assertEqual(res, expected)
|
|
|
|
x, i, v = self._gen_sparse(len(shape_i), nnz, shape)
|
|
nnz = i.size(1)
|
|
|
|
# Non contiguous sparse indices tensor
|
|
x_ = self.sparse_tensor(i[:, ::2], v[:int(nnz / 2)], x.shape)
|
|
res = torch.add(y, x_, alpha=r)
|
|
expected = y + r * self.safeToDense(x_)
|
|
self.assertEqual(res, expected)
|
|
|
|
# Non contiguous sparse values tensor
|
|
x_ = self.sparse_tensor(i[:, :int(nnz / 2)], v[::2], x.shape)
|
|
res = torch.add(y, x_, alpha=r)
|
|
expected = y + r * self.safeToDense(x_)
|
|
self.assertEqual(res, expected)
|
|
|
|
# Non contiguous sparse indices and values tensors
|
|
x_ = self.sparse_tensor(i[:, 1::2], v[1::2], x.shape)
|
|
res = torch.add(y, x_, alpha=r)
|
|
expected = y + r * self.safeToDense(x_)
|
|
self.assertEqual(res, expected)
|
|
|
|
def test_spadd(self):
|
|
self._test_spadd_shape(10, [5, 6])
|
|
self._test_spadd_shape(10, [10, 10, 10])
|
|
self._test_spadd_shape(10, [50, 30, 20])
|
|
self._test_spadd_shape(10, [5, 5, 5, 5, 5, 5])
|
|
self._test_spadd_shape(0, [0, 30, 20])
|
|
self._test_spadd_shape(0, [50, 0, 20])
|
|
self._test_spadd_shape(0, [50, 30, 0])
|
|
|
|
def test_spadd_hybrid(self):
|
|
self._test_spadd_shape(10, [5, 6], [2, 3])
|
|
self._test_spadd_shape(10, [10, 10, 10], [3])
|
|
self._test_spadd_shape(10, [50, 30, 20], [2])
|
|
self._test_spadd_shape(10, [5, 5, 5, 5, 5, 5], [2])
|
|
self._test_spadd_shape(0, [0, 30, 20], [2, 0])
|
|
self._test_spadd_shape(0, [50, 0, 20], [2, 0])
|
|
self._test_spadd_shape(0, [50, 30, 0], [2, 0])
|
|
self._test_spadd_shape(10, [50, 30, 20], [2, 0])
|
|
|
|
def test_norm(self):
|
|
def test_shape(sparse_dims, nnz, with_size):
|
|
x, _, _ = self._gen_sparse(sparse_dims, nnz, with_size)
|
|
y = x.coalesce()
|
|
self.assertEqual(x.norm(), y._values().norm())
|
|
|
|
test_shape(3, 10, 100)
|
|
test_shape(4, 10, [100, 100, 100, 5, 5, 5, 0])
|
|
test_shape(4, 0, [0, 0, 100, 5, 5, 5, 0])
|
|
|
|
@skipIfRocm
|
|
def test_sparse_sum(self):
|
|
|
|
def run_tests(S, td=None):
|
|
D = S.coalesce().to_dense().detach().requires_grad_(True)
|
|
mask = (D == 0)
|
|
if td is None:
|
|
S_sum = torch.sparse.sum(S)
|
|
D_sum = D.sum()
|
|
self.assertEqual(S_sum, D_sum)
|
|
|
|
def fn(S):
|
|
res = torch.sparse.sum(S)
|
|
if res.is_sparse:
|
|
res = res.to_dense()
|
|
return res
|
|
gradcheck(fn, (S,), check_sparse_nnz=True)
|
|
|
|
else:
|
|
S_sum = torch.sparse.sum(S, td)
|
|
D_sum = D.sum(td)
|
|
self.assertEqual(S_sum.to_dense() if S_sum.is_sparse else S_sum, D_sum)
|
|
|
|
def fn(S):
|
|
res = torch.sparse.sum(S, td)
|
|
if res.is_sparse:
|
|
res = res.to_dense()
|
|
return res
|
|
gradcheck(fn, (S,), check_sparse_nnz=True)
|
|
|
|
nnz = 10
|
|
sparse_dims = 2
|
|
with_size = [5, 5, 1, 4] # use a dense dim = 1 to test for squeeze
|
|
test_dims = []
|
|
for i in range(1, 5):
|
|
test_dims += itertools.combinations(range(len(with_size)), i)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/16501
|
|
x = torch.tensor([[1., 0., 0., 1.],
|
|
[0., 1., 0., 0.],
|
|
[0., 1., 1., 0.],
|
|
[0., 1., 0., 2.]]).to_sparse()
|
|
self.assertEqual(torch.sparse.sum(x, dim=0), torch.sparse.sum(x, dim=-2))
|
|
self.assertEqual(torch.sum(x.to_dense(), dim=0), torch.sparse.sum(x, dim=0).to_dense())
|
|
|
|
# not support SparseTensor.sum()
|
|
S = self._gen_sparse(sparse_dims, nnz, with_size)[0]
|
|
self.assertRaises(RuntimeError, lambda: S.sum())
|
|
|
|
# dim out of range
|
|
self.assertRaises(IndexError, lambda: torch.sparse.sum(S, 5))
|
|
|
|
# dim 0 appears multiple times in the list of dims
|
|
self.assertRaises(RuntimeError, lambda: torch.sparse.sum(S, [0, 0]))
|
|
|
|
# sum an empty tensor
|
|
empty_S = torch.sparse_coo_tensor(size=with_size)
|
|
self.assertRaises(RuntimeError, lambda: torch.sparse.sum(empty_S, [0]))
|
|
self.assertEqual(torch.sparse.sum(empty_S), torch.tensor(0, dtype=torch.float64))
|
|
empty_S.requires_grad_(True)
|
|
empty_S_sum = torch.sparse.sum(empty_S)
|
|
empty_S_sum.backward()
|
|
self.assertEqual(empty_S.grad.to_dense(), empty_S.clone().detach().to_dense())
|
|
|
|
# test values().sum()
|
|
S = self._gen_sparse(sparse_dims, nnz, with_size)[0]
|
|
run_tests(S.requires_grad_(True))
|
|
|
|
for test_dim in test_dims:
|
|
S = self._gen_sparse(sparse_dims, nnz, with_size)[0]
|
|
run_tests(S.requires_grad_(True), test_dim)
|
|
|
|
def _test_basic_ops_shape(self, nnz_x1, nnz_x2, shape_i, shape_v=None):
|
|
shape = shape_i + (shape_v or [])
|
|
x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape)
|
|
x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape)
|
|
|
|
y1 = x1 + x2
|
|
y2 = x1.clone()
|
|
y2.add_(x2)
|
|
expected = self.safeToDense(x1) + self.safeToDense(x2)
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = x1 - x2
|
|
y2 = x1.clone()
|
|
y2.sub_(x2)
|
|
expected = self.safeToDense(x1) - self.safeToDense(x2)
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = x1 * x2
|
|
y2 = x1.clone()
|
|
y2.mul_(x2)
|
|
expected = self.safeToDense(x1) * self.safeToDense(x2)
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = x1 * 37.5
|
|
y2 = x1.clone()
|
|
y2.mul_(37.5)
|
|
expected = self.safeToDense(x1) * 37.5
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = x1 / 37.5
|
|
y2 = x1.clone()
|
|
y2.div_(37.5)
|
|
expected = self.safeToDense(x1) / 37.5
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = torch.true_divide(x1, 37.5)
|
|
y2 = x1.clone()
|
|
if y2.dtype.is_floating_point or y2.dtype.is_complex:
|
|
y2.true_divide_(37.5)
|
|
expected = torch.true_divide(self.safeToDense(x1), 37.5)
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y1 = x1 // 37.5
|
|
y2 = x1.clone()
|
|
y2.floor_divide_(37.5)
|
|
expected = self.safeToDense(x1) // 37.5
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
# TODO: add back inplace support
|
|
y1 = x1 ** 2
|
|
y2 = x1.clone()
|
|
y2 = y2.pow(2)
|
|
expected = self.safeToDense(x1) ** 2
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
y = x1.clone()
|
|
y.zero_()
|
|
expected = torch.zeros(x1.size())
|
|
self.assertEqual(self.safeToDense(y), expected)
|
|
|
|
self.assertEqual(x1.is_coalesced(), not self.is_uncoalesced)
|
|
y = x1.coalesce()
|
|
z = x1.coalesce()
|
|
self.assertEqual(x1.is_coalesced(), not self.is_uncoalesced)
|
|
self.assertTrue(y.is_coalesced())
|
|
self.assertEqual(x1, y)
|
|
y._values().add_(1)
|
|
if not x1.is_coalesced():
|
|
# check that coalesce is out of place if the original tensor is not
|
|
# coalesced.
|
|
self.assertEqual(z._values() + 1, y._values())
|
|
else:
|
|
# check that coalesce is in-place if the original tensor is
|
|
# coalesced.
|
|
self.assertEqual(z._values(), y._values())
|
|
|
|
def test_basic_ops(self):
|
|
self._test_basic_ops_shape(9, 12, [5, 6])
|
|
self._test_basic_ops_shape(9, 12, [10, 10, 10])
|
|
self._test_basic_ops_shape(9, 12, [50, 30, 20])
|
|
self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5])
|
|
self._test_basic_ops_shape(0, 12, [10, 10, 10])
|
|
self._test_basic_ops_shape(9, 0, [10, 10, 10])
|
|
self._test_basic_ops_shape(0, 0, [10, 10, 10])
|
|
self._test_basic_ops_shape(0, 0, [10, 10, 0])
|
|
|
|
def test_basic_ops_hybrid(self):
|
|
self._test_basic_ops_shape(9, 12, [5, 6], [2, 3])
|
|
self._test_basic_ops_shape(9, 12, [10, 10, 10], [3])
|
|
self._test_basic_ops_shape(9, 12, [50, 30, 20], [2])
|
|
self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [2])
|
|
self._test_basic_ops_shape(0, 12, [10, 10, 10], [2])
|
|
self._test_basic_ops_shape(9, 0, [10, 10, 10], [2])
|
|
self._test_basic_ops_shape(0, 0, [10, 10, 10], [2])
|
|
self._test_basic_ops_shape(9, 12, [10, 10, 10], [2, 0])
|
|
self._test_basic_ops_shape(0, 12, [10, 10, 10], [2, 0])
|
|
self._test_basic_ops_shape(9, 0, [10, 10, 10], [2, 0])
|
|
self._test_basic_ops_shape(0, 0, [10, 10, 10], [2, 0])
|
|
self._test_basic_ops_shape(0, 0, [10, 10, 0], [2, 0])
|
|
|
|
def test_add_dense_sparse_mismatch(self):
|
|
def test_shape(dense_size, sparse_dims_shape, dense_dims_shape, sparse_size):
|
|
x = torch.zeros(dense_size, dtype=self.value_dtype, device=self.device)
|
|
sparse_y = self.sparse_tensor(torch.zeros(sparse_dims_shape, dtype=torch.int64, device=self.device),
|
|
torch.randn(dense_dims_shape, dtype=self.value_dtype, device=self.device),
|
|
torch.Size(sparse_size))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"add: expected 'self' and 'other' to have same size"):
|
|
x + sparse_y
|
|
|
|
test_shape([3, 4], [1, 4], [4, 4, 4], [3, 4, 4])
|
|
test_shape([3, 4, 0], [1, 4], [4, 4, 4, 0], [3, 4, 4, 0])
|
|
|
|
def test_add_noncontiguous(self):
|
|
indices = self.index_tensor([[1, 2], [0, 2]])
|
|
values = self.value_tensor([1.]).expand(2, 3, 4, 5)
|
|
x = self.sparse_tensor(indices, values)
|
|
assert not x._values().is_contiguous()
|
|
y = x + x
|
|
expected = self.safeToDense(x) + self.safeToDense(x)
|
|
self.assertEqual(self.safeToDense(y), expected)
|
|
|
|
def _test_sparse_mask_shape(self, nnz_x1, nnz_x2, shape_i, shape_v=None):
|
|
shape = shape_i + (shape_v or [])
|
|
x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape)
|
|
x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape)
|
|
|
|
y1 = x1 + x2
|
|
y2 = x1.clone()
|
|
y2.add_(x2)
|
|
expected = self.safeToDense(x1) + self.safeToDense(x2)
|
|
self.assertEqual(self.safeToDense(y1), expected)
|
|
self.assertEqual(self.safeToDense(y2), expected)
|
|
|
|
def _test_sparse_mask_fixed(self):
|
|
i = self.index_tensor([
|
|
[1, 3, 0, 4],
|
|
[2, 1, 2, 3],
|
|
])
|
|
v = self.value_tensor([1, 2, 3, 4])
|
|
x = self.sparse_tensor(i, v, torch.Size([5, 4])).coalesce()
|
|
dense = self.value_tensor([
|
|
[1, 2, 3, 4],
|
|
[5, 6, 7, 8],
|
|
[9, 10, 11, 12],
|
|
[13, 14, 15, 16],
|
|
[17, 18, 19, 20],
|
|
])
|
|
exp_v = self.value_tensor([7, 14, 3, 20])
|
|
res = dense.sparse_mask(x)
|
|
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4]))
|
|
self.assertEqual(res, expected)
|
|
|
|
i = self.index_tensor([
|
|
[1, 3, 0, 4],
|
|
[2, 1, 2, 3],
|
|
])
|
|
v = self.value_empty(4, 0)
|
|
x = self.sparse_tensor(i, v, torch.Size([5, 4, 0])).coalesce()
|
|
dense = self.value_empty(5, 4, 0)
|
|
exp_v = self.value_empty(4, 0)
|
|
res = dense.sparse_mask(x)
|
|
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 0]))
|
|
self.assertEqual(res, expected)
|
|
|
|
def test_sparse_mask(self):
|
|
self._test_sparse_mask_fixed()
|
|
|
|
self._test_sparse_mask_shape(9, 12, [5, 6])
|
|
self._test_sparse_mask_shape(9, 12, [10, 10, 10])
|
|
self._test_sparse_mask_shape(9, 12, [50, 30, 20])
|
|
self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5])
|
|
self._test_sparse_mask_shape(0, 12, [10, 10, 10])
|
|
self._test_sparse_mask_shape(9, 0, [10, 10, 10])
|
|
self._test_sparse_mask_shape(0, 0, [10, 10, 10])
|
|
self._test_sparse_mask_shape(0, 0, [10, 10, 0])
|
|
|
|
def _test_sparse_mask_hybrid_fixed(self):
|
|
i = self.index_tensor([
|
|
[1, 3, 0, 4],
|
|
[2, 1, 2, 3],
|
|
])
|
|
v = self.value_tensor([[1, 2], [2, 3], [3, 4], [4, 5]])
|
|
# TODO: This is also testing that, if coalesce is a no-op,
|
|
# the indices don't get permuted. I don't know if we actually
|
|
# want to give this invariant.
|
|
x = self.sparse_tensor(i, v, torch.Size([5, 4, 2])).coalesce()
|
|
dense = self.value_tensor([
|
|
[[1, 3], [2, 2], [3, 3], [4, 2]],
|
|
[[5, 7], [6, 7], [7, 9], [8, 9]],
|
|
[[9, 2], [10, 4], [11, 1], [12, 3]],
|
|
[[13, 5], [14, 1], [15, 1], [16, 6]],
|
|
[[17, 7], [18, 2], [19, 7], [20, 1]],
|
|
])
|
|
res = dense.sparse_mask(x)
|
|
exp_v = self.value_tensor([[7, 9], [14, 1], [3, 3], [20, 1]])
|
|
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2]))
|
|
self.assertEqual(res, expected)
|
|
|
|
i = self.index_tensor([
|
|
[1, 3, 0, 4],
|
|
[2, 1, 2, 3],
|
|
])
|
|
v = self.value_empty(4, 2, 0)
|
|
x = self.sparse_tensor(i, v, torch.Size([5, 4, 2, 0])).coalesce()
|
|
dense = self.value_empty(5, 4, 2, 0)
|
|
res = dense.sparse_mask(x)
|
|
exp_v = self.value_empty(4, 2, 0)
|
|
expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2, 0]))
|
|
self.assertEqual(res, expected)
|
|
|
|
def test_sparse_mask_hybrid(self):
|
|
self._test_sparse_mask_hybrid_fixed()
|
|
|
|
self._test_sparse_mask_shape(9, 12, [5, 6], [2, 3])
|
|
self._test_sparse_mask_shape(9, 12, [10, 10, 10], [3])
|
|
self._test_sparse_mask_shape(9, 12, [50, 30, 20], [2])
|
|
self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [2])
|
|
self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2])
|
|
self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2])
|
|
self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2])
|
|
self._test_sparse_mask_shape(9, 12, [10, 10, 10], [2, 0])
|
|
self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2, 0])
|
|
self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2, 0])
|
|
self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2, 0])
|
|
self._test_sparse_mask_shape(0, 0, [10, 10, 0], [2, 0])
|
|
|
|
def _test_zeros(self, nnzs, shape, out_shape_i, out_shape_v=None):
|
|
out_shape = out_shape_i + (out_shape_v or [])
|
|
for nnz in nnzs:
|
|
out, _, _ = self._gen_sparse(len(out_shape_i), nnz, out_shape)
|
|
torch.zeros(*shape, out=out)
|
|
self.assertEqual(tuple(out.size()), tuple(shape))
|
|
self.assertTrue(out._indices().numel() == out._values().numel() == 0)
|
|
self.assertEqual(out._nnz(), 0)
|
|
self.assertEqual(out.sparse_dim(), len(shape))
|
|
self.assertEqual(out.dense_dim(), 0)
|
|
|
|
def test_zeros(self):
|
|
def test_shape(i_shapes, v_shapes, shape, nnzs):
|
|
for i_dim in range(1, len(i_shapes) + 1):
|
|
for v_dim in range(len(v_shapes) + 1):
|
|
self._test_zeros(nnzs, shape, i_shapes[:i_dim], v_shapes[:v_dim])
|
|
test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 4], [9, 12])
|
|
test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 4], [0])
|
|
test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 4], [9, 12])
|
|
test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 0], [9, 12])
|
|
test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 0], [0])
|
|
test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 0], [9, 12])
|
|
|
|
def _test_zeros_like(self, nnzs, template_shape_i, template_shape_v=None):
|
|
template_shape_v = template_shape_v or []
|
|
template_shape = template_shape_i + template_shape_v
|
|
for nnz in nnzs:
|
|
t, _, _ = self._gen_sparse(len(template_shape_i), nnz, template_shape)
|
|
res = torch.zeros_like(t)
|
|
self.assertEqual(tuple(res.size()), tuple(template_shape))
|
|
self.assertTrue(res._indices().numel() == res._values().numel() == 0)
|
|
self.assertEqual(res._nnz(), 0)
|
|
self.assertEqual(res.sparse_dim(), len(template_shape_i))
|
|
self.assertEqual(res.dense_dim(), len(template_shape_v))
|
|
|
|
def test_zeros_like(self):
|
|
def test_shape(i_shapes, v_shapes, nnzs):
|
|
for i_dim in range(1, len(i_shapes) + 1):
|
|
for v_dim in range(len(v_shapes) + 1):
|
|
self._test_zeros_like(nnzs, i_shapes[:i_dim], v_shapes[:v_dim])
|
|
test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12])
|
|
test_shape([0, 3, 4], [3, 4, 5, 6], [0])
|
|
test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12])
|
|
test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12])
|
|
test_shape([0, 3, 4], [3, 4, 5, 6], [0])
|
|
test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12])
|
|
|
|
def _test_narrow(self, input, narrow_args):
|
|
expected = input.to_dense().narrow(*narrow_args)
|
|
self.assertEqual(expected, input.narrow_copy(*narrow_args).to_dense())
|
|
|
|
def _all_narrow_combs(self, shape):
|
|
for dim, dim_sz in enumerate(shape):
|
|
for start in range(dim_sz):
|
|
for length in range(dim_sz - start):
|
|
yield [dim, start, length]
|
|
|
|
def test_narrow(self):
|
|
shape = [3, 3, 4, 2]
|
|
input, _, _ = self._gen_sparse(4, 19, shape)
|
|
for narrow_args in self._all_narrow_combs(shape):
|
|
self._test_narrow(input, narrow_args)
|
|
|
|
self.assertRaises(RuntimeError, lambda: input.narrow_copy(-1, 0, 3)) # dim < 0
|
|
self.assertRaises(RuntimeError, lambda: input.narrow_copy(10, 0, 3)) # dim > input.dim()
|
|
self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, shape[0] + 1, 3)) # start > size of dim
|
|
self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, 2, shape[0])) # start+length > size of dim
|
|
|
|
with_dense, _, _ = self._gen_sparse(2, 7, shape)
|
|
for narrow_args in self._all_narrow_combs(shape):
|
|
self._test_narrow(with_dense, narrow_args)
|
|
|
|
self.assertRaises(RuntimeError, lambda: with_dense.narrow_copy(10, 0, 3)) # dim > sparseDim + denseDim
|
|
|
|
def _test_log1p_tensor(self, input, dense_tensor):
|
|
expected_output = dense_tensor.log1p()
|
|
self.assertEqual(expected_output, input.log1p().to_dense())
|
|
self.assertEqual(expected_output, input.coalesce().log1p_().to_dense())
|
|
|
|
# test in-place op on uncoalesced input
|
|
with self.assertRaisesRegex(RuntimeError, "in-place on uncoalesced tensors is not supported yet"):
|
|
input.log1p_()
|
|
|
|
input.requires_grad_()
|
|
self.assertTrue(input.requires_grad)
|
|
|
|
# test autograd
|
|
x = input.clone()
|
|
y = input.log1p()
|
|
with self.assertRaisesRegex(RuntimeError, "log1p of a sparse tensor is made to be non-differentiable"):
|
|
y.backward(x)
|
|
|
|
def test_log1p(self):
|
|
input = torch.sparse_coo_tensor(
|
|
torch.LongTensor([[0], [1], [2]]).transpose(1, 0).clone().detach(),
|
|
torch.FloatTensor([3, 4, 5]),
|
|
torch.Size([3]),
|
|
device=self.device)
|
|
self._test_log1p_tensor(input, torch.as_tensor([3, 4, 5], dtype=torch.float32))
|
|
|
|
# test uncoalesced input
|
|
input_uncoalesced = torch.sparse_coo_tensor(
|
|
torch.LongTensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0).clone().detach(),
|
|
torch.FloatTensor([2, 3, 4, 1, 1, 1]),
|
|
torch.Size([3]),
|
|
device=self.device)
|
|
self._test_log1p_tensor(input_uncoalesced, torch.as_tensor([3, 4, 5], dtype=torch.float32))
|
|
|
|
input = torch.sparse_coo_tensor(
|
|
torch.zeros([2, 0]),
|
|
torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]),
|
|
torch.Size([0, 0, 5, 5, 5, 5, 5, 5, 0]),
|
|
device=self.device)
|
|
self._test_log1p_tensor(input, torch.zeros([0, 0, 5, 5, 5, 5, 5, 5, 0]))
|
|
|
|
input = torch.sparse_coo_tensor(
|
|
torch.zeros([1, 5]),
|
|
torch.zeros([5, 6, 0]),
|
|
torch.Size([5, 6, 0]),
|
|
device=self.device)
|
|
self._test_log1p_tensor(input, torch.zeros([5, 6, 0]))
|
|
|
|
def test_sparse_add_coalesce(self):
|
|
i = self.index_tensor([[1, 2, 1]])
|
|
v = self.value_tensor([3, 4, 5])
|
|
x = self.sparse_tensor(i, v, torch.Size([3]))
|
|
y = self.sparse_tensor(i, v, torch.Size([3]))
|
|
z = x + y
|
|
|
|
self.assertFalse(z._indices().numel() != 2 and z.is_coalesced())
|
|
|
|
i = self.index_tensor([[1, 2, 1]])
|
|
v = self.value_empty(3, 0)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 0]))
|
|
y = self.sparse_tensor(i, v, torch.Size([3, 0]))
|
|
z = x + y
|
|
|
|
self.assertFalse(z._indices().numel() != 2 and z.is_coalesced())
|
|
|
|
@cuda_only
|
|
def test_storage_not_null(self):
|
|
x = torch.cuda.sparse.FloatTensor(2)
|
|
self.assertNotEqual(x.get_device(), -1)
|
|
|
|
x = torch.cuda.sparse.FloatTensor(2, 0)
|
|
self.assertNotEqual(x.get_device(), -1)
|
|
|
|
@cuda_only
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
|
|
def test_same_gpu(self):
|
|
def check_device(x, device_id):
|
|
self.assertEqual(x.get_device(), device_id)
|
|
self.assertEqual(x._values().get_device(), device_id)
|
|
self.assertEqual(x._indices().get_device(), device_id)
|
|
|
|
i = self.index_tensor([[2]]).cuda(1)
|
|
v = self.value_tensor([5]).cuda(1)
|
|
x = self.sparse_tensor(i, v, torch.Size([3]), device=1)
|
|
check_device(x, 1)
|
|
|
|
i = self.index_tensor([[2]]).cuda(1)
|
|
v = self.value_empty(1, 0).cuda(1)
|
|
x = self.sparse_tensor(i, v, torch.Size([3, 0]), device=1)
|
|
check_device(x, 1)
|
|
|
|
x = self.sparse_empty(3, device=1)
|
|
check_device(x, 1)
|
|
|
|
x = self.sparse_empty(3, 0, device=1)
|
|
check_device(x, 1)
|
|
|
|
i = self.index_tensor([[2]]).cuda(1)
|
|
v = self.value_tensor([5]).cuda(0)
|
|
# NB: non-legacy constructor allows this and moves indices
|
|
self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3])))
|
|
|
|
i = self.index_tensor([[2]]).cuda(1)
|
|
v = self.value_empty(1, 0).cuda(0)
|
|
# NB: non-legacy constructor allows this and moves indices
|
|
self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3, 0])))
|
|
|
|
def _test_new_device(self, size, device):
|
|
with torch.cuda.device(device):
|
|
x = torch.cuda.sparse.DoubleTensor(*size)
|
|
self.assertEqual(x.get_device(), device)
|
|
x1 = x.new()
|
|
x2 = x.new(2, 3)
|
|
self.assertEqual(x1.get_device(), device)
|
|
self.assertEqual(x2.get_device(), device)
|
|
|
|
@cuda_only
|
|
def test_new_device_single_gpu(self):
|
|
self._test_new_device((), 0)
|
|
self._test_new_device((30, 20), 0)
|
|
self._test_new_device((30, 20, 10), 0)
|
|
self._test_new_device((30, 20, 10, 0), 0)
|
|
|
|
@cuda_only
|
|
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
|
|
def test_new_device_multi_gpu(self):
|
|
self._test_new_device((), 1)
|
|
self._test_new_device((30, 20), 1)
|
|
self._test_new_device((30, 20, 10), 1)
|
|
self._test_new_device((30, 20, 10, 0), 1)
|
|
|
|
def test_new(self):
|
|
def test_shape(sparse_dims, nnz, with_size):
|
|
x, indices, values = self._gen_sparse(sparse_dims, nnz, with_size)
|
|
if not x.is_cuda:
|
|
# CUDA sparse tensors currently requires the size to be
|
|
# specified if nDimV > 0
|
|
self.assertEqual(x.new(indices, values), x)
|
|
self.assertEqual(x.new(indices, values, x.size()), x)
|
|
|
|
test_shape(3, 10, 100)
|
|
test_shape(3, 0, [100, 100, 0])
|
|
|
|
@cpu_only # not really, but we only really want to run this once
|
|
def test_factory(self):
|
|
for test_empty_tensor in [True, False]:
|
|
if test_empty_tensor:
|
|
default_size = torch.Size([1, 3, 0])
|
|
size = torch.Size([3, 3, 0])
|
|
else:
|
|
default_size = torch.Size([1, 3])
|
|
size = torch.Size([3, 3])
|
|
for include_size in [True, False]:
|
|
for use_tensor_idx in [True, False]:
|
|
for use_tensor_val in [True, False]:
|
|
for use_cuda in ([False] if not torch.cuda.is_available() else [True, False]):
|
|
for dtype in [torch.float64, torch.float16]:
|
|
# have to include size with cuda sparse tensors
|
|
include_size = include_size or use_cuda
|
|
long_dtype = torch.int64
|
|
device = torch.device('cpu') if not use_cuda else \
|
|
torch.device(torch.cuda.device_count() - 1)
|
|
indices = torch.tensor(([0], [2]), dtype=long_dtype) if use_tensor_idx else ([0], [2])
|
|
if test_empty_tensor:
|
|
values = self.value_empty(1, 0).to(dtype)
|
|
else:
|
|
if use_tensor_val:
|
|
values = torch.tensor([1.], dtype=dtype)
|
|
else:
|
|
values = 1.
|
|
if include_size:
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, values, size, dtype=dtype,
|
|
device=device, requires_grad=True)
|
|
else:
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=dtype,
|
|
device=device, requires_grad=True)
|
|
self.assertEqual(indices, sparse_tensor._indices())
|
|
self.assertEqual(values, sparse_tensor._values())
|
|
self.assertEqual(size if include_size else default_size, sparse_tensor.size())
|
|
self.assertEqual(dtype, sparse_tensor.dtype)
|
|
if use_cuda:
|
|
self.assertEqual(device, sparse_tensor._values().device)
|
|
self.assertEqual(True, sparse_tensor.requires_grad)
|
|
|
|
def test_factory_size_check(self):
|
|
indices = self.index_tensor([[1, 2],
|
|
[0, 2]])
|
|
values = self.value_tensor([.5, .5])
|
|
sizes = torch.Size([2, 3])
|
|
with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
indices.fill_(-1)
|
|
with self.assertRaisesRegex(RuntimeError, "found negative index"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
indices = self.index_tensor([[1, 2],
|
|
[0, 2]])
|
|
values = self.value_empty(2, 1, 0)
|
|
sizes = torch.Size([2, 3, 1, 0])
|
|
with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
indices = self.index_tensor([[1, 2],
|
|
[0, 2]])
|
|
values = self.value_empty(2, 2, 2)
|
|
sizes = torch.Size([0, 0, 2, 2])
|
|
with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
indices = self.index_tensor([[1, 2],
|
|
[0, 2]])
|
|
values = self.value_tensor([[1, 1, 1], [1, 1, 1]])
|
|
sizes = torch.Size([3, 3, 2])
|
|
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
indices = self.index_tensor([[1, 2],
|
|
[0, 2]])
|
|
values = self.value_empty(2, 1, 0)
|
|
sizes = torch.Size([3, 3, 2, 0])
|
|
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
def test_factory_default(self):
|
|
tensor = self.legacy_sparse_tensor()
|
|
expected_indices = self.index_tensor([[]])
|
|
expected_size = torch.Size([0])
|
|
self.assertEqual(tensor._indices(), expected_indices)
|
|
self.assertEqual(tensor.shape, expected_size)
|
|
|
|
def test_factory_empty_indices(self):
|
|
device = 'cuda' if self.is_cuda else 'cpu'
|
|
tensor = self.legacy_sparse_tensor()
|
|
expected_indices = torch.empty((1, 0), dtype=torch.long, device=device)
|
|
self.assertEqual(tensor._indices(), expected_indices)
|
|
|
|
tensor = torch.sparse_coo_tensor(torch.Size([2, 0]), device=device)
|
|
expected_indices = torch.empty((2, 0), dtype=torch.long, device=device)
|
|
self.assertEqual(tensor._indices(), expected_indices)
|
|
|
|
tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0]), device=device)
|
|
expected_indices = torch.empty((3, 0), dtype=torch.long, device=device)
|
|
self.assertEqual(tensor._indices(), expected_indices)
|
|
|
|
tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0, 0]), device=device)
|
|
expected_indices = torch.empty((4, 0), dtype=torch.long, device=device)
|
|
self.assertEqual(tensor._indices(), expected_indices)
|
|
|
|
def test_factory_nnz(self):
|
|
indices = self.index_tensor([[0]]) # (sparse_dim, nnz): (1, 1)
|
|
values = self.value_tensor([[1, 1], [1, 1]]) # (nnz, ...): (2, 2)
|
|
sizes = torch.Size([2, 2])
|
|
with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
indices = self.index_tensor([[0]]) # (sparse_dim, nnz): (1, 1)
|
|
values = self.value_empty(2, 0) # (nnz, ...): (2, 0)
|
|
sizes = torch.Size([2, 0])
|
|
with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
def test_factory_nnz_zero(self):
|
|
def test_shape(i_shape, v_shape, size, expected_size):
|
|
device = 'cuda' if self.is_cuda else 'cpu'
|
|
if size:
|
|
t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), torch.Size(size), device=device)
|
|
else:
|
|
t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), device=device)
|
|
expected_indices = torch.empty(i_shape, device=device, dtype=torch.int64)
|
|
expected_values = torch.empty(v_shape, device=device, dtype=torch.float64)
|
|
expected_size = torch.Size(expected_size)
|
|
self.assertEqual(t._indices(), expected_indices)
|
|
self.assertEqual(t._values(), expected_values)
|
|
self.assertEqual(t.size(), expected_size)
|
|
|
|
test_shape([1, 0], [0, 2, 4, 0], None, [0, 2, 4, 0])
|
|
test_shape([3, 0], [0, 2, 4, 0], None, [0, 0, 0, 2, 4, 0])
|
|
test_shape([1, 0], [0, 2, 4, 0], [0, 2, 4, 0], [0, 2, 4, 0])
|
|
test_shape([3, 0], [0, 2, 4, 0], [0, 0, 0, 2, 4, 0], [0, 0, 0, 2, 4, 0])
|
|
test_shape([3, 0], [0, 2, 4, 0], [1, 2, 3, 2, 4, 0], [1, 2, 3, 2, 4, 0])
|
|
|
|
def test_factory_dense_dim(self):
|
|
indices = self.index_tensor([[0]])
|
|
values = self.value_tensor([[[1, 1, 1], [1, 1, 1]]])
|
|
sizes = torch.Size([1, 3, 4])
|
|
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
indices = self.index_tensor([[0]])
|
|
values = self.value_empty(1, 2, 3, 0)
|
|
sizes = torch.Size([1, 3, 4, 0])
|
|
with self.assertRaisesRegex(RuntimeError, "values has incorrect size"):
|
|
torch.sparse_coo_tensor(indices, values, sizes)
|
|
|
|
@cpu_only
|
|
def test_factory_type_inference(self):
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float16))
|
|
self.assertEqual(torch.float16, t.dtype)
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float32))
|
|
self.assertEqual(torch.float32, t.dtype)
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float64))
|
|
self.assertEqual(torch.float64, t.dtype)
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1]))
|
|
self.assertEqual(torch.int64, t.dtype)
|
|
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.HalfTensor(1, 0))
|
|
self.assertEqual(torch.float16, t.dtype)
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.FloatTensor(1, 0))
|
|
self.assertEqual(torch.float32, t.dtype)
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.DoubleTensor(1, 0))
|
|
self.assertEqual(torch.float64, t.dtype)
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.LongTensor(1, 0))
|
|
self.assertEqual(torch.int64, t.dtype)
|
|
|
|
@cuda_only
|
|
def test_factory_device_type_inference(self):
|
|
# both indices/values are CUDA
|
|
shape = (1, 3)
|
|
for indices_device in ['cuda', 'cpu']:
|
|
for values_device in ['cuda', 'cpu']:
|
|
for sparse_device in ['cuda', 'cpu', None]:
|
|
for test_empty_tensor in [True, False]:
|
|
if test_empty_tensor:
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2]), device=indices_device),
|
|
self.value_empty(1, 0).to(values_device),
|
|
(1, 3, 0), device=sparse_device)
|
|
else:
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0], [2]), device=indices_device),
|
|
torch.tensor([1.], device=values_device),
|
|
(1, 3), device=sparse_device)
|
|
should_be_cuda = sparse_device == 'cuda' or (sparse_device is None and values_device == 'cuda')
|
|
self.assertEqual(should_be_cuda, t.is_cuda)
|
|
|
|
@cpu_only
|
|
def test_factory_copy(self):
|
|
def test_tensor(indices, values, indices_equal, values_equal):
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
|
|
if indices_equal:
|
|
self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
|
|
else:
|
|
self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
|
|
if values_equal:
|
|
self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
|
|
else:
|
|
self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
|
|
|
|
# both correct
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int64)
|
|
values = torch.tensor([1.], dtype=torch.float64)
|
|
test_tensor(indices, values, True, True)
|
|
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int64)
|
|
values = torch.DoubleTensor(1, 0)
|
|
test_tensor(indices, values, True, True)
|
|
|
|
# only indices correct
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int64)
|
|
values = torch.tensor([1.], dtype=torch.float32)
|
|
test_tensor(indices, values, True, False)
|
|
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int64)
|
|
values = torch.tensor([1.], dtype=torch.float16)
|
|
test_tensor(indices, values, True, False)
|
|
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int64)
|
|
values = torch.FloatTensor(1, 0)
|
|
test_tensor(indices, values, True, True) # An empty tensor's data_ptr is always equal to 0
|
|
|
|
# only values correct
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int32)
|
|
values = torch.tensor([1.], dtype=torch.float64)
|
|
test_tensor(indices, values, False, True)
|
|
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int32)
|
|
values = torch.DoubleTensor(1, 0)
|
|
test_tensor(indices, values, False, True)
|
|
|
|
# neither correct
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int32)
|
|
values = torch.tensor([1.], dtype=torch.float32)
|
|
test_tensor(indices, values, False, False)
|
|
|
|
indices = torch.tensor(([0], [2]), dtype=torch.int32)
|
|
values = torch.FloatTensor(1, 0)
|
|
test_tensor(indices, values, False, True) # An empty tensor's data_ptr is always equal to 0
|
|
|
|
@cpu_only # just run once, we test both cpu and cuda
|
|
def test_constructor_device_legacy(self):
|
|
i = torch.tensor([[0, 1, 1], [2, 0, 2]])
|
|
v = torch.tensor([3., 4., 5.])
|
|
size = torch.Size([2, 3])
|
|
|
|
self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, size, device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cuda'))
|
|
|
|
x = torch.sparse_coo_tensor(i, v, size, device='cpu')
|
|
self.assertRaises(RuntimeError, lambda: x.new(device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cuda'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda'))
|
|
|
|
if torch.cuda.is_available():
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, size, device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cpu'))
|
|
|
|
x = torch.sparse_coo_tensor(i, v, size, device='cuda')
|
|
self.assertRaises(RuntimeError, lambda: x.new(device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cpu'))
|
|
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
|
|
|
|
def test_legacy_constructor(self):
|
|
i = torch.tensor([[0, 1, 1], [2, 0, 2]])
|
|
v = torch.tensor([3., 4., 5.])
|
|
size = torch.Size([2, 3])
|
|
|
|
self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor(v.storage()))
|
|
self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor(v))
|
|
self.assertEqual(torch.sparse_coo, torch.sparse.FloatTensor(torch.Size([2, 3])).layout)
|
|
self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor([6]))
|
|
|
|
def test_legacy_new(self):
|
|
i = torch.tensor([[0, 1, 1], [2, 0, 2]])
|
|
v = torch.tensor([3., 4., 5.])
|
|
size = torch.Size([2, 3])
|
|
s = torch.sparse_coo_tensor(i, v, size)
|
|
|
|
self.assertEqual(torch.sparse_coo, s.new(device='cpu').layout)
|
|
self.assertRaises(TypeError, lambda: s.new(v.storage()))
|
|
self.assertRaises(TypeError, lambda: s.new(v))
|
|
self.assertEqual(torch.sparse_coo, s.new(torch.Size([2, 3])).layout)
|
|
self.assertRaises(TypeError, lambda: s.new([6]))
|
|
|
|
@cpu_only # not really, but we only really want to run this once
|
|
def test_dtypes(self):
|
|
all_sparse_dtypes = torch.testing.get_all_dtypes()
|
|
do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
|
|
if torch.cuda.is_available():
|
|
do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
|
|
|
|
@cpu_only # not really, but we only really want to run this once
|
|
def test_empty_full(self):
|
|
all_sparse_dtypes = torch.testing.get_all_dtypes()
|
|
do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
|
|
if torch.cuda.device_count() > 0:
|
|
do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, None)
|
|
do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
|
|
|
|
def test_is_sparse(self):
|
|
x = torch.randn(3, 3)
|
|
self.assertFalse(x.is_sparse)
|
|
|
|
x = torch.randn(3, 3, 0)
|
|
self.assertFalse(x.is_sparse)
|
|
|
|
x = self.legacy_sparse_tensor()
|
|
self.assertTrue(x.is_sparse)
|
|
|
|
x = self.sparse_empty(1, 0)
|
|
self.assertTrue(x.is_sparse)
|
|
|
|
def test_resize_as(self):
|
|
def do_test(t):
|
|
y = t.new().resize_as_(t).zero_()
|
|
self.assertEqual(y.shape, t.shape)
|
|
# Check that y can be added to t. Currently, this requires that
|
|
# sparse_dim and dense_dim match.
|
|
self.assertEqual(t, t + y)
|
|
|
|
do_test(self.legacy_sparse_tensor())
|
|
do_test(self.sparse_empty(3, 0))
|
|
do_test(self.sparse_empty(3, 3))
|
|
|
|
def _test_resize_shape(self, x_i, x_v, x_size, y_i, y_v, y_size):
|
|
x_v_numel = torch.zeros(x_v).numel()
|
|
y_v_numel = torch.zeros(y_v).numel()
|
|
x = torch.sparse_coo_tensor(torch.zeros(x_i),
|
|
torch.arange(x_v_numel).resize_(x_v).to(torch.float),
|
|
torch.Size(x_size))
|
|
x_dense = x.to_dense()
|
|
y = torch.sparse_coo_tensor(torch.zeros(y_i),
|
|
torch.ones(y_v).to(torch.float),
|
|
torch.Size(y_size))
|
|
y_dense = y.to_dense()
|
|
x.resize_as_(y)
|
|
x_dense.resize_as_(y_dense)
|
|
self.assertEqual(x.shape, y.shape)
|
|
self.assertEqual(x.sparse_dim(), y.sparse_dim())
|
|
self.assertEqual(x.dense_dim(), y.dense_dim())
|
|
self.assertEqual(x.shape, x_dense.shape)
|
|
self.assertEqual(y.shape, y_dense.shape)
|
|
# Here we make sure that the original data are preserved after resizing
|
|
self.assertEqual(x.to_dense().view(-1)[0:x_v_numel].view(x_v),
|
|
x_dense.view(-1)[0:x_v_numel].view(x_v))
|
|
|
|
def test_resize(self):
|
|
# 1. Expand the size of some dense dimensions [Supported]
|
|
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
|
|
[1, 1], [1, 2, 4], [2, 2, 4])
|
|
|
|
self._test_resize_shape([1, 1], [1, 2, 0], [2, 2, 0],
|
|
[1, 1], [1, 2, 4], [2, 2, 4])
|
|
|
|
# 2. Expand the size of some sparse dimensions [Supported]
|
|
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
|
|
[1, 1], [1, 2, 3], [4, 2, 3])
|
|
|
|
# 3. Change the shapes of both sparse and dense dimensions when nnz is zero [Supported]
|
|
self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3],
|
|
[2, 0], [0, 2, 4, 5], [1, 1, 2, 4, 5])
|
|
|
|
self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3],
|
|
[2, 0], [0, 2, 4, 0], [1, 1, 2, 4, 0])
|
|
|
|
# 4. Add dims to dense dimensions [Not Supported]
|
|
with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"):
|
|
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
|
|
[1, 1], [1, 2, 3, 4], [2, 2, 3, 4])
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"):
|
|
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
|
|
[1, 1], [1, 2, 3, 0], [2, 2, 3, 0])
|
|
|
|
# 5. Remove dims from dense dimensions [Not Supported]
|
|
with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"):
|
|
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
|
|
[1, 1], [1, 2], [2, 2])
|
|
|
|
# 6. Change the number of sparse dimensions on a non-empty sparse tensor [Not Supported]
|
|
with self.assertRaisesRegex(RuntimeError, "changing the number of sparse dimensions"):
|
|
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
|
|
[2, 1], [1, 2, 3], [1, 2, 2, 3])
|
|
|
|
# 7. Shrink the size of some sparse dimensions on a non-empty sparse tensor [Not Supported]
|
|
with self.assertRaisesRegex(RuntimeError, "shrinking the size of sparse dimensions"):
|
|
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
|
|
[1, 1], [1, 2, 3], [1, 2, 3])
|
|
|
|
# 8. Shrink the size of some dense dimensions on a non-empty sparse tensor [Not Supported]
|
|
with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"):
|
|
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
|
|
[1, 1], [1, 2, 2], [2, 2, 2])
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"):
|
|
self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3],
|
|
[1, 1], [1, 2, 0], [2, 2, 0])
|
|
|
|
def test_is_nonzero(self):
|
|
self.assertTrue(torch.sparse_coo_tensor(([0],), 1., (1,)).is_nonzero())
|
|
self.assertFalse(torch.sparse_coo_tensor(([0],), 0., (1,)).is_nonzero())
|
|
self.assertFalse(torch.sparse_coo_tensor(([0], [0]), 0., (1, 1)).is_nonzero())
|
|
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (0., 0.), (1,)).is_nonzero())
|
|
self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (-1., 1.), (1,)).is_nonzero())
|
|
self.assertTrue(torch.sparse_coo_tensor(torch.zeros(0, 1), 12.3, []).is_nonzero()) # scalar sparse tensor
|
|
with self.assertRaisesRegex(RuntimeError, "bool value of Tensor with no values is ambiguous"):
|
|
torch.sparse_coo_tensor(([0, 1],), self.value_empty(2, 0), (4, 0)).is_nonzero()
|
|
|
|
def test_allow_tensor_metadata_change(self):
|
|
def do_test(t):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"raw_resize_ is not allowed on a Tensor created from .data or .detach()"):
|
|
t.transpose_(0, 1)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"resize_ is not allowed on a Tensor created from .data or .detach()"):
|
|
t.resize_as_(self.sparse_empty(3, 3))
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"resize_and_clear_ is not allowed on a Tensor created from .data or .detach()"):
|
|
t.mul_(t)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"set_coalesced is not allowed on a Tensor created from .data or .detach()"):
|
|
t._coalesced_(True)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"set_indices_and_values_unsafe is not allowed on a Tensor created from .data or .detach()"):
|
|
a = self.sparse_tensor(torch.tensor([[0, 1, 1], [2, 0, 2]]), torch.tensor([3., 4., 5.])).data
|
|
a.add_(a)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"resize_and_clear_ is not allowed on a Tensor created from .data or .detach()"):
|
|
a.zero_()
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"resize_ is not allowed on a Tensor created from .data or .detach()"):
|
|
a.copy_(self.sparse_empty(3, 3))
|
|
|
|
do_test(self.sparse_empty(3, 0).data)
|
|
do_test(self.sparse_empty(3, 0).detach())
|
|
|
|
def test_change_tensor_metadata(self):
|
|
i = self.index_tensor([[0], [1]])
|
|
v = self.value_tensor([[3, 4, 5]])
|
|
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
|
|
i.resize_(2, 3)
|
|
v.resize_(4, 5)
|
|
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
|
|
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
|
|
|
|
i = self.index_tensor([[0], [1]])
|
|
v = self.value_tensor([[3, 4, 5]])
|
|
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
|
|
i.resize_as_(self.index_tensor([0, 1]))
|
|
v.resize_as_(self.value_tensor([3, 4, 5]))
|
|
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
|
|
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
|
|
|
|
i = self.index_tensor([[0], [1]])
|
|
v = self.value_tensor([[3, 4, 5]])
|
|
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
|
|
i.as_strided_((2, 1), (1, 1))
|
|
v.as_strided_((1, 3), (1, 1))
|
|
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
|
|
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
|
|
|
|
i = self.index_tensor([[0], [1]])
|
|
v = self.value_tensor([[3, 4, 5]])
|
|
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
|
|
i.set_(self.index_tensor([0, 1]))
|
|
v.set_(self.value_tensor([3, 4, 5]))
|
|
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
|
|
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
|
|
|
|
i = self.index_tensor([[0], [1]])
|
|
v = self.value_tensor([[3, 4, 5]])
|
|
t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]))
|
|
i.transpose_(0, 1)
|
|
v.transpose_(0, 1)
|
|
self.assertEqual(list(t.coalesce().indices().size()), [2, 1])
|
|
self.assertEqual(list(t.coalesce().values().size()), [1, 3])
|
|
|
|
def test_pickle(self):
|
|
if sys.version_info[0] == 2:
|
|
import cPickle as pickle
|
|
else:
|
|
import pickle
|
|
|
|
shape_sparse_dim_nnz = [
|
|
((), 0, 2),
|
|
((0,), 0, 10),
|
|
((2,), 0, 3),
|
|
((100, 3), 1, 3),
|
|
((100, 20, 3), 2, 0),
|
|
((10, 0, 3), 0, 3),
|
|
((10, 0, 3), 0, 0),
|
|
]
|
|
|
|
for shape, sparse_dim, nnz in shape_sparse_dim_nnz:
|
|
indices_shape = torch.Size((sparse_dim, nnz))
|
|
values_shape = torch.Size((nnz,) + shape[sparse_dim:])
|
|
indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype,
|
|
device=self.device).view(indices_shape)
|
|
for d in range(sparse_dim):
|
|
indices[d].clamp_(max=(shape[d] - 1)) # make it valid index
|
|
if self.is_uncoalesced and indices.numel() > 0:
|
|
indices[:, -1] = indices[:, 0] # make it uncoalesced
|
|
values_numel = values_shape.numel()
|
|
values = torch.arange(values_numel, dtype=self.value_dtype,
|
|
device=self.device).view(values_shape).div_(values_numel / 2.)
|
|
sp_tensor = self.sparse_tensor(indices, values, shape)
|
|
serialized = pickle.dumps(sp_tensor)
|
|
sp_tensor_loaded = pickle.loads(serialized)
|
|
self.assertEqual(sp_tensor, sp_tensor_loaded)
|
|
|
|
def test_any(self):
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([False, False]))
|
|
t_any = torch.tensor(False)
|
|
self.assertEqual(torch.any(t), t_any)
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([True, False]))
|
|
t_any = torch.tensor(True)
|
|
self.assertEqual(torch.any(t), t_any)
|
|
|
|
def test_isnan(self):
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([1, 4]))
|
|
t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([False, False]))
|
|
self.assertEqual(torch.isnan(t).int(), t_nan.int())
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([1, float("nan")]))
|
|
t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([False, True]))
|
|
self.assertEqual(torch.isnan(t).int(), t_nan.int())
|
|
|
|
def test_div_by_sparse_error(self):
|
|
self.assertRaisesRegex(RuntimeError, 'Sparse division requires',
|
|
lambda: torch.tensor(1., device=self.device).to_sparse()
|
|
/ torch.tensor(1., device=self.device).to_sparse())
|
|
|
|
def test_true_divide_by_sparse_error(self):
|
|
def fn():
|
|
x = torch.tensor(1., device=self.device).to_sparse()
|
|
y = torch.tensor(1., device=self.device).to_sparse()
|
|
torch.true_divide(x, y)
|
|
|
|
self.assertRaisesRegex(RuntimeError, 'Sparse true division requires',
|
|
fn)
|
|
|
|
def test_floor_divide_by_sparse_error(self):
|
|
self.assertRaisesRegex(RuntimeError, 'Sparse floor division requires',
|
|
lambda: torch.tensor(1., device=self.device).to_sparse()
|
|
// torch.tensor(1., device=self.device).to_sparse())
|
|
|
|
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
|
|
def test_sparse_to_numpy(self):
|
|
t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([1, 4]))
|
|
self.assertRaises(TypeError, lambda: t.numpy())
|
|
|
|
|
|
class TestUncoalescedSparse(TestSparse):
|
|
def setUp(self):
|
|
super(TestUncoalescedSparse, self).setUp()
|
|
self.is_uncoalesced = True
|
|
|
|
|
|
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
|
|
class TestCudaSparse(TestSparse):
|
|
def setUp(self):
|
|
super(TestCudaSparse, self).setUp()
|
|
self.is_cuda = True
|
|
self.device = 'cuda'
|
|
self.legacy_sparse_tensor = torch.cuda.sparse.DoubleTensor
|
|
|
|
|
|
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
|
|
class TestCudaUncoalescedSparse(TestCudaSparse):
|
|
def setUp(self):
|
|
super(TestCudaUncoalescedSparse, self).setUp()
|
|
self.is_uncoalesced = True
|
|
|
|
|
|
class TestSparseOneOff(TestCase):
|
|
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
|
|
def test_cuda_from_cpu(self):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"backend of indices \\(CUDA\\) must match backend of values \\(CPU\\)"):
|
|
torch.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(),
|
|
torch.randn(4, 4, 4),
|
|
[3, 4, 4])
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"backend of indices \\(CUDA\\) must match backend of values \\(CPU\\)"):
|
|
torch.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(),
|
|
torch.randn(4, 4, 4, 0),
|
|
[3, 4, 4, 0])
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"backend of indices \\(CUDA\\) must match backend of values \\(CPU\\)"):
|
|
torch.sparse.FloatTensor(torch.LongTensor(1, 0).cuda(),
|
|
torch.randn(0, 4, 4, 0),
|
|
[0, 4, 4, 0])
|
|
|
|
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
|
|
def test_cuda_sparse_cpu_dense_add(self):
|
|
x = torch.zeros(3, 4, 4)
|
|
sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(),
|
|
torch.randn(4, 4, 4).cuda(),
|
|
[3, 4, 4])
|
|
with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"):
|
|
x + sparse_y
|
|
|
|
x = torch.zeros(3, 4, 4, 0)
|
|
sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(),
|
|
torch.randn(4, 4, 4, 0).cuda(),
|
|
[3, 4, 4, 0])
|
|
with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"):
|
|
x + sparse_y
|
|
|
|
x = torch.zeros(0, 4, 4, 0)
|
|
sparse_y = torch.cuda.sparse.FloatTensor(torch.LongTensor(1, 0).cuda(),
|
|
torch.randn(0, 4, 4, 0).cuda(),
|
|
[0, 4, 4, 0])
|
|
with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"):
|
|
x + sparse_y
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|