mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Re-land of https://github.com/pytorch/pytorch/pull/125242 Pull Request resolved: https://github.com/pytorch/pytorch/pull/127034 Approved by: https://github.com/malfet
3484 lines
127 KiB
Python
3484 lines
127 KiB
Python
# mypy: allow-untyped-defs
|
|
from __future__ import annotations
|
|
|
|
import base64
|
|
import copyreg
|
|
import dataclasses
|
|
import functools
|
|
import hashlib
|
|
import importlib
|
|
import io
|
|
import json
|
|
import logging
|
|
import os
|
|
import pickle
|
|
import pkgutil
|
|
import platform
|
|
import re
|
|
import shlex
|
|
import shutil
|
|
import struct
|
|
import subprocess
|
|
import sys
|
|
import sysconfig
|
|
import tempfile
|
|
import textwrap
|
|
import threading
|
|
import warnings
|
|
from bisect import bisect_right
|
|
from copy import copy
|
|
from ctypes import c_void_p, CDLL, cdll
|
|
from functools import partial
|
|
from pathlib import Path
|
|
from time import time, time_ns
|
|
from types import ModuleType
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
cast,
|
|
Counter,
|
|
Dict,
|
|
Generator,
|
|
List,
|
|
Optional,
|
|
Sequence,
|
|
Set,
|
|
Tuple,
|
|
TYPE_CHECKING,
|
|
Union,
|
|
)
|
|
from typing_extensions import TypeAlias
|
|
|
|
import torch
|
|
from torch._dynamo.utils import counters, dynamo_timed
|
|
from torch._inductor import config, exc, metrics
|
|
from torch._inductor.codegen.cuda import cuda_env
|
|
from torch._inductor.codegen.rocm.compile_command import (
|
|
rocm_compile_command,
|
|
rocm_compiler,
|
|
)
|
|
|
|
|
|
"""
|
|
codecache.py, cpp_builder.py and cpu_vec_isa.py import rule:
|
|
https://github.com/pytorch/pytorch/issues/124245#issuecomment-2197778902
|
|
"""
|
|
from torch._inductor.cpp_builder import (
|
|
_get_python_include_dirs,
|
|
_set_gpu_runtime_env,
|
|
_transform_cuda_paths,
|
|
CppBuilder,
|
|
CppOptions,
|
|
CppTorchCudaOptions,
|
|
get_compiler_version_info,
|
|
get_cpp_compiler,
|
|
get_name_and_dir_from_output_file_path,
|
|
homebrew_libomp,
|
|
is_apple_clang,
|
|
is_clang,
|
|
is_conda_llvm_openmp_installed,
|
|
normalize_path_separator,
|
|
)
|
|
from torch._inductor.cpu_vec_isa import invalid_vec_isa, pick_vec_isa, VecISA
|
|
from torch._inductor.runtime.compile_tasks import (
|
|
_module_to_triton_kernel,
|
|
_reload_python_module,
|
|
_reload_python_module_in_subproc,
|
|
)
|
|
from torch._inductor.runtime.runtime_utils import cache_dir, default_cache_dir
|
|
from torch._inductor.utils import ALIGN_BYTES, clear_on_fresh_inductor_cache, is_linux
|
|
from torch._logging import trace_structured
|
|
from torch._subclasses.fake_tensor import (
|
|
extract_tensor_metadata,
|
|
FakeTensor,
|
|
TensorMetadata,
|
|
)
|
|
from torch.fx.experimental.symbolic_shapes import has_hint, hint_int, ShapeEnv
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from concurrent.futures import Future
|
|
|
|
from torch._inductor.graph import GraphLowering
|
|
from torch._inductor.ir import ChoiceCaller
|
|
from torch._inductor.runtime.hints import HalideInputSpec, HalideMeta
|
|
|
|
|
|
_HERE = os.path.abspath(__file__)
|
|
_TORCH_PATH = os.path.dirname(os.path.dirname(_HERE))
|
|
_LINKER_SCRIPT = os.path.join(_TORCH_PATH, "_inductor/script.ld")
|
|
|
|
_IS_WINDOWS = sys.platform == "win32"
|
|
|
|
if config.is_fbcode():
|
|
from triton.fb import build_paths
|
|
from triton.fb.build import _run_build_command
|
|
|
|
from torch._inductor.fb.utils import (
|
|
log_global_cache_errors,
|
|
log_global_cache_stats,
|
|
log_global_cache_vals,
|
|
use_global_cache,
|
|
)
|
|
else:
|
|
|
|
def log_global_cache_errors(*args, **kwargs):
|
|
pass
|
|
|
|
def log_global_cache_stats(*args, **kwargs):
|
|
pass
|
|
|
|
def log_global_cache_vals(*args, **kwargs):
|
|
pass
|
|
|
|
def use_global_cache() -> bool:
|
|
return False
|
|
|
|
|
|
output_code_log = torch._logging.getArtifactLogger(__name__, "output_code")
|
|
|
|
LOCK_TIMEOUT = 600
|
|
|
|
_IS_WINDOWS = sys.platform == "win32"
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def cpp_wrapper_cache_dir(name: str) -> str:
|
|
cu_str = (
|
|
"cpu"
|
|
if torch.version.cuda is None
|
|
else f'cu{torch.version.cuda.replace(".", "")}'
|
|
)
|
|
python_version = f"py{sys.version_info.major}{sys.version_info.minor}"
|
|
build_folder = f"{python_version}_{cu_str}"
|
|
|
|
cpp_wrapper_dir = os.path.join(cache_dir(), build_folder)
|
|
cpp_wrapper_build_directory = os.path.join(cpp_wrapper_dir, name)
|
|
os.makedirs(cpp_wrapper_build_directory, exist_ok=True)
|
|
return cpp_wrapper_build_directory
|
|
|
|
|
|
def get_cpp_wrapper_cubin_path_name():
|
|
return "cubin_path" if torch.version.hip is None else "hsaco_path"
|
|
|
|
|
|
class CacheBase:
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def get_system() -> Dict[str, Any]:
|
|
try:
|
|
from triton.compiler.compiler import triton_key
|
|
|
|
# Use triton_key instead of triton.__version__ as the version
|
|
# is not updated with each code change
|
|
triton_version = triton_key()
|
|
except ModuleNotFoundError:
|
|
triton_version = None
|
|
|
|
try:
|
|
system: Dict[str, Any] = {
|
|
"device": {"name": None},
|
|
"version": {
|
|
"triton": triton_version,
|
|
},
|
|
}
|
|
device_properties = torch.cuda.get_device_properties(
|
|
torch.cuda.current_device()
|
|
)
|
|
if torch.version.cuda is not None:
|
|
system["device"]["name"] = device_properties.name
|
|
system["version"]["cuda"] = torch.version.cuda
|
|
else:
|
|
system["device"]["name"] = device_properties.gcnArchName
|
|
system["version"]["hip"] = torch.version.hip
|
|
except (AssertionError, RuntimeError):
|
|
# If cuda is not installed, none of the above config is relevant.
|
|
system = {}
|
|
|
|
system["hash"] = hashlib.sha256(
|
|
json.dumps(system, sort_keys=True).encode("utf-8")
|
|
).hexdigest()
|
|
|
|
return system
|
|
|
|
@staticmethod
|
|
@clear_on_fresh_inductor_cache
|
|
@functools.lru_cache(None)
|
|
def get_local_cache_path() -> Path:
|
|
return Path(os.path.join(cache_dir(), "cache", CacheBase.get_system()["hash"]))
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def get_global_cache_path() -> Optional[Path]:
|
|
return (
|
|
Path(os.path.join(config.global_cache_dir, CacheBase.get_system()["hash"]))
|
|
if config.global_cache_dir is not None
|
|
else None
|
|
)
|
|
|
|
def __init__(self) -> None:
|
|
self.system = CacheBase.get_system()
|
|
|
|
def get_local_cache(self) -> Dict[str, Any]:
|
|
local_cache_path = self.get_local_cache_path()
|
|
if not local_cache_path.is_file():
|
|
return {}
|
|
with open(local_cache_path) as local_cache_fp:
|
|
local_cache = json.load(local_cache_fp)
|
|
return local_cache["cache"]
|
|
|
|
def update_local_cache(self, local_cache: Dict[str, Any]) -> None:
|
|
local_cache_path = self.get_local_cache_path()
|
|
write_atomic(
|
|
str(local_cache_path),
|
|
json.dumps({"system": self.system, "cache": local_cache}, indent=4),
|
|
make_dirs=True,
|
|
)
|
|
|
|
|
|
class LocalCache(CacheBase):
|
|
def lookup(self, *keys: str) -> Optional[Dict[str, Any]]:
|
|
cache = self.get_local_cache()
|
|
|
|
sub_cache = cache
|
|
for key in keys:
|
|
if key in cache:
|
|
sub_cache = cache[key]
|
|
else:
|
|
return None
|
|
|
|
return sub_cache
|
|
|
|
def set_value(self, *keys: str, value: Any) -> None:
|
|
cache = self.get_local_cache()
|
|
|
|
sub_cache = cache
|
|
for key in keys[0:-1]:
|
|
sub_cache.setdefault(key, {})
|
|
sub_cache = sub_cache[key]
|
|
sub_cache[keys[-1]] = value
|
|
|
|
self.update_local_cache(cache)
|
|
|
|
|
|
class PersistentCache(CacheBase):
|
|
@functools.lru_cache(None) # noqa: B019
|
|
def get_global_cache(self):
|
|
global_cache_path = self.get_global_cache_path()
|
|
if global_cache_path is None or not global_cache_path.is_file():
|
|
return {}
|
|
with open(global_cache_path) as global_cache_fp:
|
|
global_cache = json.load(global_cache_fp)
|
|
return global_cache["cache"]
|
|
|
|
def lookup(
|
|
self,
|
|
choices: List[ChoiceCaller],
|
|
op: str,
|
|
inputs: str,
|
|
benchmark: Optional[Callable[[Any], Dict[ChoiceCaller, float]]],
|
|
) -> Dict[ChoiceCaller, float]:
|
|
"""
|
|
Check to see if we have benchmarked the given choice callers. For each
|
|
choice caller:
|
|
|
|
1. Check global_cache[op][inputs][choice][precision], return benchmark if cached.
|
|
2. Check local_cache[op][inputs][choice][precision], return benchmark if cached.
|
|
3. If benchmark is not None:
|
|
a. `max_autotune_gemm=True`: benchmark the choice, update
|
|
local_cache[op][inputs][choice], and return the benchmark.
|
|
b. `max_autotune_gemm=False`: don't benchmark the choice, return nothing.
|
|
"""
|
|
precision = torch.get_float32_matmul_precision()
|
|
|
|
log_stats = partial(log_global_cache_stats, self.system, op, inputs, precision)
|
|
log_vals = partial(log_global_cache_vals, self.system, op, inputs, precision)
|
|
log_errors = partial(
|
|
log_global_cache_errors, self.system, op, inputs, precision
|
|
)
|
|
timings = {}
|
|
|
|
def check_cache(cache, callback=None) -> bool:
|
|
"""Check if `cache` contains data for all the choices"""
|
|
hit = True
|
|
for choice in choices:
|
|
choice_hash = choice.hash_key()
|
|
if choice_hash in cache.get(op, {}).get(inputs, {}).get(precision, {}):
|
|
# cache hit
|
|
timings[choice] = cache[op][inputs][precision][choice_hash]
|
|
else:
|
|
# cache miss
|
|
hit = False
|
|
break
|
|
if callback:
|
|
callback(cached=hit)
|
|
return hit
|
|
|
|
if config.max_autotune or config.max_autotune_gemm:
|
|
local_cache = self.get_local_cache() if config.autotune_local_cache else {}
|
|
# check local cache first since it is data specific to the current machine
|
|
if (
|
|
not check_cache(local_cache)
|
|
and not (
|
|
use_global_cache()
|
|
and check_cache(self.get_global_cache(), callback=log_stats)
|
|
)
|
|
and benchmark is not None
|
|
):
|
|
try:
|
|
# re-benchmark everything to try to get consistent numbers from the same machine
|
|
timings = benchmark(choices)
|
|
assert all(choice in timings for choice in choices)
|
|
local_cache.setdefault(op, {})
|
|
local_cache[op].setdefault(inputs, {}).setdefault(precision, {})
|
|
for choice, timing in timings.items():
|
|
local_cache[op][inputs][precision][choice.hash_key()] = timing
|
|
except RuntimeError as e:
|
|
# catch and log autotuning failures
|
|
log_errors(e)
|
|
raise e
|
|
|
|
self.update_local_cache(local_cache)
|
|
|
|
timings_to_log = {
|
|
choice.hash_key(): timings[choice] for choice in choices
|
|
}
|
|
log_vals(timings_to_log)
|
|
elif use_global_cache():
|
|
# only check global cache, not local one
|
|
check_cache(self.get_global_cache(), callback=log_stats)
|
|
# may have a partial cache hit, where not everything is benchmarked
|
|
|
|
return timings
|
|
|
|
|
|
def get_lock_dir() -> str:
|
|
lock_dir = os.path.join(cache_dir(), "locks")
|
|
if not os.path.exists(lock_dir):
|
|
os.makedirs(lock_dir, exist_ok=True)
|
|
return lock_dir
|
|
|
|
|
|
def sha256_hash(data: bytes) -> str:
|
|
# [:51] to strip off the "Q====" suffix common to every hash value.
|
|
return base64.b32encode(hashlib.sha256(data).digest())[:51].decode("utf-8").lower()
|
|
|
|
|
|
def code_hash(code: Union[str, bytes], extra: str = ""):
|
|
hashing_str = code if isinstance(code, bytes) else code.encode("utf-8")
|
|
if extra != "":
|
|
hashing_str = hashing_str + b"||" + extra.encode("utf-8")
|
|
return "c" + sha256_hash(hashing_str)
|
|
|
|
|
|
def get_path(
|
|
basename: str, extension: str, specified_dir: str = ""
|
|
) -> Tuple[str, str, str]:
|
|
if specified_dir:
|
|
if os.path.isabs(specified_dir):
|
|
subdir = specified_dir
|
|
else:
|
|
subdir = os.path.join(cache_dir(), specified_dir)
|
|
else:
|
|
subdir = os.path.join(cache_dir(), basename[1:3])
|
|
path = os.path.join(subdir, f"{basename}.{extension}")
|
|
return basename, subdir, path
|
|
|
|
|
|
def get_hash(content: Union[str, bytes], extra: str = "", hash_type: str = "code"):
|
|
if hash_type == "code":
|
|
return code_hash(content, extra)
|
|
if hash_type in ["cubin", "hsaco", "spv"]:
|
|
return code_hash(repr(content))
|
|
raise AssertionError(f"Unknown hash type {hash_type}")
|
|
|
|
|
|
def write(
|
|
content: Union[str, bytes],
|
|
extension: str,
|
|
extra: str = "",
|
|
hash_type: str = "code",
|
|
specified_dir: str = "",
|
|
) -> Tuple[str, str]:
|
|
# use striped content to compute hash so we don't end up with different
|
|
# hashes just because the content begins/ends with different number of
|
|
# spaces.
|
|
key: str = get_hash(content.strip(), extra, hash_type)
|
|
basename, subdir, path = get_path(key, extension, specified_dir)
|
|
if not os.path.exists(path):
|
|
write_atomic(path, content, make_dirs=True)
|
|
return basename, path
|
|
|
|
|
|
def write_text(text: str) -> str:
|
|
"""
|
|
Write the `text` to a file and return the path computed based on the hash.
|
|
"""
|
|
return write(text, "txt")[1]
|
|
|
|
|
|
def write_atomic(
|
|
path: str, content: Union[str, bytes], make_dirs: bool = False
|
|
) -> None:
|
|
# Write into temporary file first to avoid conflicts between threads
|
|
# Avoid using a named temporary file, as those have restricted permissions
|
|
assert isinstance(
|
|
content, (str, bytes)
|
|
), "Only strings and byte arrays can be saved in the cache"
|
|
path = Path(path)
|
|
if make_dirs:
|
|
path.parent.mkdir(parents=True, exist_ok=True)
|
|
tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp"
|
|
write_mode = "w" if isinstance(content, str) else "wb"
|
|
with tmp_path.open(write_mode) as f:
|
|
f.write(content)
|
|
tmp_path.rename(path)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TensorMetadataAndValues:
|
|
"""
|
|
TensorMetadata plus the elements as a list of raw values.
|
|
Used for hashing inlined constants.
|
|
"""
|
|
|
|
tensor_metadata: TensorMetadata
|
|
values: List[Any]
|
|
|
|
|
|
def _ident(x: Any) -> Any:
|
|
return x
|
|
|
|
|
|
def extract_tensor_metadata_for_cache_key(device_map, t):
|
|
"""
|
|
Extracts the tensor metadata and removes fields of the TensorMetadata
|
|
that are not needed for caching
|
|
"""
|
|
meta = extract_tensor_metadata(t)
|
|
if not hasattr(t, "_is_inductor_static"):
|
|
meta = dataclasses.replace(meta, storage_offset=0, storage_bytes=None)
|
|
|
|
# The pickle implementation avoids serializing the same object more than once.
|
|
# That behavior means the byte stream we create to hash will vary if, for example,
|
|
# we see two tensor objects with the same device, but the torch.device object is
|
|
# actually the same object vs. merely equivalent. We want to produce the same hash
|
|
# value in either situation, so we memoize the device objects and always reference
|
|
# the same object for a given device. It's possible other metadata fields deserve
|
|
# the same treatment, but so far we've only observed this issue with the device.
|
|
if meta.device not in device_map:
|
|
device_map[meta.device] = meta.device
|
|
meta = dataclasses.replace(meta, device=device_map[meta.device])
|
|
|
|
return meta
|
|
|
|
|
|
def _reduce_fake_tensor(device_map, t):
|
|
"""
|
|
See FxGraphCachePickler. Custom reducer to pickle FakeTensors.
|
|
"""
|
|
metadata = extract_tensor_metadata_for_cache_key(device_map, t)
|
|
return (_ident, (metadata,))
|
|
|
|
|
|
def _reduce_tensor(device_map, t):
|
|
"""
|
|
See FxGraphCachePickler. Custom reducer to pickle Tensors.
|
|
If we see tensors, we know they're constants stored as attributes on
|
|
the GraphModule. Include the values in the key calculation. Small
|
|
tensors will be inlined, so we can't serve the same cache entry for
|
|
different values anyway. Large constants are treated as parameters,
|
|
so we could conceivably reuse a cache entry. To do that, however,
|
|
PyCodeCache would need more complexity to create a new module from its
|
|
cache, but with the right constants attached as attributes.
|
|
"""
|
|
if t.is_mkldnn:
|
|
# TODO: These tensors don't currently pickle, so we can't cache a
|
|
# compiled graph containing them. Just fail now. If mkldnn tensors
|
|
# get pickling support, we can remove this.
|
|
raise BypassFxGraphCache
|
|
|
|
# Very large tensors could be expensive to copy to cpu and hash. Let's
|
|
# at least report if we find slowness.
|
|
start = time()
|
|
values = t.tolist()
|
|
elapsed = time() - start
|
|
if elapsed > 1.0:
|
|
warnings.warn(
|
|
f"FX graph cache handling of a large constant took {elapsed:.1}s. Please file an issue."
|
|
)
|
|
|
|
metadata = extract_tensor_metadata_for_cache_key(device_map, t)
|
|
return (_ident, (TensorMetadataAndValues(metadata, values),))
|
|
|
|
|
|
def _reduce_symint(s):
|
|
"""
|
|
See FxGraphCachePickler. Custom reducer to pickle SymInts.
|
|
"""
|
|
# For hashing purposes, we only care about the name of the symbol and
|
|
# not the backed value. We evaluate guards stored with a cached graph
|
|
# to ensure a cached entity with SymInt args is safe to reuse.
|
|
return (_ident, (str(s),))
|
|
|
|
|
|
def _reduce_unsupported(s):
|
|
"""
|
|
See FxGraphCachePickler. Custom reducer to handle any objects that we don't
|
|
support and therefore raise to bypass caching.
|
|
"""
|
|
raise BypassFxGraphCache
|
|
|
|
|
|
class FxGraphCachePickler(pickle.Pickler):
|
|
"""
|
|
Custom pickler to customize the pickling of some objects (Tensors), only for the
|
|
purpose of computing a hash for keying into the FxGraphCache. Tensors contain
|
|
objects that don't pickle and/or vary between runs, and we want to capture the
|
|
data that allow us to compute a stable, but safe hash.
|
|
"""
|
|
|
|
# See extract_tensor_metadata_for_cache_key. Whenever we extract metadata during
|
|
# pickling, we make sure devices always reference the same torch.device object.
|
|
_device_map: Dict[torch.device, torch.device] = {}
|
|
|
|
dispatch_table = copyreg.dispatch_table.copy()
|
|
dispatch_table[FakeTensor] = functools.partial(_reduce_fake_tensor, _device_map)
|
|
dispatch_table[torch.Tensor] = functools.partial(_reduce_tensor, _device_map)
|
|
dispatch_table[torch.SymInt] = _reduce_symint
|
|
dispatch_table[
|
|
torch.fx.experimental._backward_state.BackwardState
|
|
] = _reduce_unsupported
|
|
|
|
@classmethod
|
|
def dumps(cls, obj) -> bytes:
|
|
"""
|
|
Pickle an object using the FxGraphCachePickler.
|
|
"""
|
|
with io.BytesIO() as stream:
|
|
pickler = cls(stream)
|
|
# TODO: pickler.fast is technically deprecated. Will this work on new python versions?
|
|
pickler.fast = True # Run with pickler.fast so it doesn't intern strings, making the hash result more predictable
|
|
try:
|
|
pickler.dump(obj)
|
|
except (TypeError, AttributeError) as e:
|
|
# Some configs options are callables, e.g., post_grad_custom_pre_pass,
|
|
# and may not pickle.
|
|
log.warning("Can't pickle", exc_info=True)
|
|
raise BypassFxGraphCache from e
|
|
return stream.getvalue()
|
|
|
|
@classmethod
|
|
def get_hash(cls, obj: Any) -> str:
|
|
"""
|
|
Serialize an object using the FxGraphCachePickler and return a hash
|
|
of the pickled object.
|
|
"""
|
|
serialized_data = cls.dumps(obj)
|
|
return sha256_hash(serialized_data)
|
|
|
|
@classmethod
|
|
def debug_lines(cls, inp: Any) -> List[str]:
|
|
"""
|
|
Get a printable string describing in more detail all the attributes
|
|
comprising an object. Useful for debugging when one graph hashes
|
|
to a different value than another.
|
|
"""
|
|
|
|
def get_str(obj) -> str:
|
|
if isinstance(obj, torch.Tensor):
|
|
return str(extract_tensor_metadata_for_cache_key(cls._device_map, obj))
|
|
elif isinstance(obj, bytes):
|
|
return "<bytes>"
|
|
elif type(obj) in cls.dispatch_table:
|
|
# Run the reducer on the object
|
|
return str(cls.dispatch_table[type(obj)](obj)[1])
|
|
else:
|
|
return str(obj)
|
|
|
|
lines = []
|
|
for attr, obj in vars(inp).items():
|
|
if isinstance(obj, list):
|
|
for ii in range(len(obj)):
|
|
h = cls.get_hash(obj[ii])
|
|
lines.append(f"[{h}] {attr}[{ii}]: {get_str(obj[ii])}")
|
|
elif isinstance(obj, dict):
|
|
for k, v in obj.items():
|
|
h = cls.get_hash(v)
|
|
lines.append(f"[{h}] {attr}[{k}]: {get_str(v)}")
|
|
else:
|
|
h = cls.get_hash(obj)
|
|
lines.append(f"[{h}] {attr}: {get_str(obj)}")
|
|
return lines
|
|
|
|
|
|
def build_code_hash(roots, prefix, hasher):
|
|
for lib in sorted(pkgutil.iter_modules(roots, prefix), key=lambda x: x.name):
|
|
spec = lib.module_finder.find_spec(lib.name, None)
|
|
assert spec is not None
|
|
module = spec.origin
|
|
assert module is not None
|
|
with open(module, "rb") as f:
|
|
hasher.update(spec.name.encode("utf-8"))
|
|
hasher.update(f.read())
|
|
if lib.ispkg:
|
|
# need to also hash submodules
|
|
build_code_hash(spec.submodule_search_locations, f"{spec.name}.", hasher)
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def torch_key():
|
|
"""
|
|
Compute a key that contains relevant information about torch source files
|
|
"""
|
|
if not config.is_fbcode():
|
|
|
|
def get_code_hash(root):
|
|
# This function isn't meant to be used outside of torch_key, just a
|
|
# helper for clarity. Instead, use torch_key() directly when you need
|
|
# a hash representing the state of the source code.
|
|
extra_files = (
|
|
"codegen/aoti_runtime/interface.cpp",
|
|
"codegen/aoti_runtime/implementation.cpp",
|
|
"codegen/cpp_prefix.h",
|
|
"script.ld",
|
|
)
|
|
inductor_root = os.path.dirname(__file__)
|
|
extra_files = [os.path.join(inductor_root, x) for x in extra_files]
|
|
hasher = hashlib.sha256()
|
|
hasher.update(torch.__version__.encode("utf-8"))
|
|
build_code_hash([root], "", hasher)
|
|
for path in extra_files:
|
|
if os.path.exists(path):
|
|
with open(path, "rb") as f:
|
|
hasher.update(f.read())
|
|
return hasher.digest()
|
|
|
|
return get_code_hash(_TORCH_PATH)
|
|
|
|
from libfb.py import parutil
|
|
|
|
return parutil.get_file_contents("torch/src_hash.txt").rstrip()
|
|
|
|
|
|
def get_inductor_root():
|
|
return os.path.dirname(__file__)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class OrderedSetHolder:
|
|
"""
|
|
See FxGraphHashDetails. Holds a sorted list to support stable hashing
|
|
of set kwargs.
|
|
"""
|
|
|
|
items: List[Any]
|
|
|
|
|
|
class BypassFxGraphCache(Exception):
|
|
"""
|
|
Exception to indicate that the FxGraphCache should be bypassed.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
class FxGraphHashDetails:
|
|
"""
|
|
Object to capture all the details for a compiled FX graph relevant to computing
|
|
a safe and stable cache key.
|
|
"""
|
|
|
|
# Excluded kwargs param that are not stable between runs
|
|
EXCLUDED_KWARGS = ["graph_id"]
|
|
|
|
def __init__(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: List[torch.Tensor],
|
|
fx_kwargs: Dict[str, Any],
|
|
inputs_to_check: Sequence[int],
|
|
):
|
|
self.gm = gm
|
|
self.example_inputs = example_inputs
|
|
|
|
# Order kwargs so hashing is stable to changes in kwarg order.
|
|
self.fx_kwargs = {}
|
|
for k in sorted(fx_kwargs):
|
|
if k not in self.EXCLUDED_KWARGS:
|
|
if type(fx_kwargs[k]) is set:
|
|
# Special case to handle set params. Python sets can't be
|
|
# ordered, so sort the elements and store them in a proxy.
|
|
self.fx_kwargs[k] = OrderedSetHolder(sorted(fx_kwargs[k]))
|
|
else:
|
|
self.fx_kwargs[k] = fx_kwargs[k]
|
|
|
|
# Alignment checks
|
|
self.inputs_to_check = inputs_to_check
|
|
|
|
# 'Deterministic algorithms' can affect codegen via lowering to cuda kernels.
|
|
self.deterministic_algorithms_settings = (
|
|
torch.are_deterministic_algorithms_enabled(),
|
|
torch.is_deterministic_algorithms_warn_only_enabled(),
|
|
torch.utils.deterministic.fill_uninitialized_memory, # type: ignore[attr-defined]
|
|
)
|
|
|
|
# Global settings affecting matmul codegen.
|
|
self.cuda_matmul_settings = (
|
|
torch.backends.cuda.matmul.allow_tf32,
|
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction,
|
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction,
|
|
)
|
|
|
|
# Also hash on various system info (including the triton compiler version).
|
|
self.torch_version = torch_key()
|
|
self.system_info = CacheBase.get_system()
|
|
self.inductor_config = config.save_config_portable()
|
|
|
|
def debug_lines(self) -> List[str]:
|
|
"""
|
|
Get a printable string describing in more detail all the attributes
|
|
comprising this object. Useful for debugging when one graph hashes
|
|
to a different value than another.
|
|
"""
|
|
return FxGraphCachePickler.debug_lines(self)
|
|
|
|
|
|
def compiled_fx_graph_hash(
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: List[torch.Tensor],
|
|
fx_kwargs: Dict[str, Any],
|
|
inputs_to_check: Sequence[int],
|
|
) -> Tuple[str, List[str]]:
|
|
"""
|
|
Generate a unique hash of the FX graph for caching.
|
|
"""
|
|
details = FxGraphHashDetails(gm, example_inputs, fx_kwargs, inputs_to_check)
|
|
# The prefix distinguishes among the other kinds of objects we
|
|
# cache in this module.
|
|
key = "f" + FxGraphCachePickler.get_hash(details)
|
|
debug_lines = details.debug_lines()
|
|
debug_str = "\n".join(debug_lines)
|
|
log.debug(f"FX graph cache hash details for key {key}:\n{debug_str}") # noqa: G004
|
|
return key, debug_lines
|
|
|
|
|
|
class FxGraphCache:
|
|
"""
|
|
Supports caching and reusing compiled Fx graphs.
|
|
|
|
The overall strategy is as follows:
|
|
- This cache stores entries on disk. When saving an entry, we can't
|
|
serialize callables (that could be C++, Triton, etc.), so we serialize
|
|
their own disk cache location. We then recreate the compiled artifact
|
|
after fetching from disk.
|
|
- For indexing the cache, we gather the fields relevant to identifying an
|
|
FxGraph (the graph module, graph inputs, system settings etc.) into an
|
|
FxGraphCacheDetails object, pickle it, and compute a hash for the key.
|
|
See FxGraphCachePickler.
|
|
- Among the metadata we store, we also include a guards expression that's
|
|
appropriate for validating any symbols for Tensor arguments that have
|
|
symbolic bounds. On cache lookup then, we evaluate those guards in the
|
|
current context to validate that a cached entry can be served.
|
|
- A given graph could have multiple compiled versions, corresponding to
|
|
different sets of guards. Therefore, we store cache entries in the form:
|
|
<temp dir>/<fx graph hash>/<serialized metatdata>
|
|
- On lookup, we compute the key from the graph details, iterate over all
|
|
leaf files in the corresponding subdirectory, deserialize the entry, and
|
|
evaluate its guards expression. If the evaluation succeeds, we have a
|
|
cache hit. If it fails, we compile the graph and store a new entry.
|
|
- Finally, on a cache hit, we need to make sure any guards that would
|
|
have been created during compilation are added to the current context.
|
|
"""
|
|
|
|
# TODO(masnesral): Investigate whether it's beneficial to store compiled graphs
|
|
# in an in-memory cache after loading from disk.
|
|
@staticmethod
|
|
def _get_tmp_dir() -> str:
|
|
"""
|
|
Get the toplevel temporary directory for storing compiled graphs.
|
|
"""
|
|
return os.path.join(cache_dir(), "fxgraph")
|
|
|
|
@staticmethod
|
|
def _get_tmp_dir_for_key(key: str) -> str:
|
|
"""
|
|
Return the disk location for a given cache key.
|
|
"""
|
|
return os.path.join(FxGraphCache._get_tmp_dir(), key[1:3], key)
|
|
|
|
@staticmethod
|
|
def _filter_backed_symints(inputs: List[Any]) -> List[torch.SymInt]:
|
|
"""
|
|
Get the backed SymInt objects from the input list. Note that we can never
|
|
have guards that depend on unbacked symint.
|
|
"""
|
|
return [s for s in inputs if isinstance(s, torch.SymInt) and has_hint(s)]
|
|
|
|
@staticmethod
|
|
def _get_shape_env() -> Optional[ShapeEnv]:
|
|
"""
|
|
Helper to get the shape env from the tracing context.
|
|
"""
|
|
ctx = torch._guards.TracingContext.try_get()
|
|
if not ctx:
|
|
return None
|
|
return ctx.fake_mode.shape_env
|
|
|
|
@staticmethod
|
|
def _lookup_graph(
|
|
key: str,
|
|
example_inputs: List[torch.Tensor],
|
|
local: bool,
|
|
remote_cache: Optional[Any],
|
|
) -> Optional[CompiledFxGraph]:
|
|
"""
|
|
Lookup a compiled graph in the cache by key. On a hit, return the
|
|
deserialized CompiledFxGraph object. On a miss, return None.
|
|
"""
|
|
shape_env = FxGraphCache._get_shape_env()
|
|
assert shape_env is not None
|
|
|
|
symints = FxGraphCache._filter_backed_symints(example_inputs)
|
|
hints = [hint_int(s) for s in symints]
|
|
|
|
def iterate_over_candidates() -> Generator[CompiledFxGraph, None, None]:
|
|
if local:
|
|
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
|
if os.path.exists(subdir):
|
|
for path in sorted(os.listdir(subdir)):
|
|
try:
|
|
with open(os.path.join(subdir, path), "rb") as f:
|
|
yield pickle.load(f)
|
|
except Exception:
|
|
log.warning(
|
|
"fx graph cache unable to load compiled graph",
|
|
exc_info=True,
|
|
)
|
|
|
|
if remote_cache:
|
|
try:
|
|
if (data := remote_cache.get(key)) is not None:
|
|
yield pickle.loads(data)
|
|
except Exception:
|
|
log.warning(
|
|
"fx graph cache unable to load compiled graph", exc_info=True
|
|
)
|
|
|
|
# Iterate over any entries in the subdir for this key and evaluate
|
|
# their guards to determine whether there's a hit.
|
|
graph = None
|
|
|
|
for candidate in iterate_over_candidates():
|
|
if not candidate.guards_expr:
|
|
# No guards to evaluate, so this is a hit.
|
|
graph = candidate
|
|
break
|
|
|
|
# Evaluate the guard expression in the current context.
|
|
# If there's not a cache hit, we don't want the evaluation to
|
|
# affect the current env, e.g., cause the creation of new guards,
|
|
# so we evaluate with the hints instead of the symbols.
|
|
hit = bool(
|
|
shape_env.evaluate_guards_expression(candidate.guards_expr, hints)
|
|
)
|
|
log.debug(
|
|
"fx graph cache key %s evaluating guards [%s] with values %s => hit=%s",
|
|
key,
|
|
candidate.guards_expr,
|
|
hints,
|
|
hit,
|
|
)
|
|
if hit:
|
|
graph = candidate
|
|
break
|
|
|
|
if graph is None:
|
|
return None
|
|
|
|
# See _save_graph(); we don't store the callable in the cache entry so
|
|
# recreate it here from the PyCodeCache disk cache.
|
|
artifact_path = get_path(graph.cache_key, "py")[2]
|
|
code = graph.source_code
|
|
if not os.path.exists(artifact_path):
|
|
counters["inductor"]["fxgraph_lookup_write_file"] += 1
|
|
Path(os.path.dirname(artifact_path)).mkdir(parents=True, exist_ok=True)
|
|
cpp_pp = cpp_prefix_path()
|
|
if os.path.basename(cpp_pp) in code:
|
|
if cpp_pp in code:
|
|
# Great the name is correct
|
|
pass
|
|
else:
|
|
# Old dir name is included, replace it
|
|
pattern = rf'#include\s*"[^"]+{os.path.basename(cpp_pp)}"'
|
|
code = re.sub(pattern, f'#include "{cpp_pp}"', code)
|
|
|
|
write_atomic(artifact_path, code, make_dirs=True)
|
|
|
|
try:
|
|
graph.current_callable = PyCodeCache.load_by_key_path(
|
|
graph.cache_key,
|
|
artifact_path,
|
|
graph.cache_linemap,
|
|
graph.constants,
|
|
).call
|
|
except OSError:
|
|
# Not expected, but in case the PyCodeCache entry is removed from
|
|
# underneath us, treat it as a cache miss and recompile.
|
|
log.error("Failed to load cached artifact: %s", artifact_path)
|
|
return None
|
|
|
|
# Now re-evaluate with the symints to add any guards to the current env.
|
|
if graph.guards_expr:
|
|
check = bool(
|
|
shape_env.evaluate_guards_expression(graph.guards_expr, symints)
|
|
)
|
|
assert check is True
|
|
log.debug(
|
|
"fx graph cache key %s post-load guards: %s", key, shape_env.guards
|
|
)
|
|
|
|
# Increment the cached metrics/counters by the amounts recorded when the FX
|
|
# graph was compiled for this cache entry. Pretending these counters
|
|
# were incremented normally is useful for testing with the cache enabled.
|
|
metrics.CachedMetricsHelper.apply_deltas(graph.metrics_deltas)
|
|
counters["inductor"] += graph.counter_deltas
|
|
|
|
from .graph import GraphLowering
|
|
|
|
GraphLowering.save_output_code(code)
|
|
output_code_log.debug("Output code: \n%s", code)
|
|
# On cache hit, use artifact path as filename
|
|
trace_structured(
|
|
"inductor_output_code",
|
|
lambda: {"filename": artifact_path},
|
|
payload_fn=lambda: code,
|
|
)
|
|
|
|
return graph
|
|
|
|
@staticmethod
|
|
def _save_graph(
|
|
key: str,
|
|
compiled_graph: CompiledFxGraph,
|
|
example_inputs: List[torch.Tensor],
|
|
time_taken_ns,
|
|
local,
|
|
remote_cache,
|
|
):
|
|
"""
|
|
Store a serialized CompiledFxGraph on disk.
|
|
"""
|
|
disk_compiled_graph = copy(compiled_graph)
|
|
# We can't really serialize callables that may be C++/Triton/etc.,
|
|
# so we serialize their PyCodeCache disk cache location instead.
|
|
# TODO: This could be better if we're ever able to serialize compiled
|
|
# models to disk.
|
|
disk_compiled_graph.current_callable = None
|
|
|
|
# Before serializing, compute the guard expression that will be used to
|
|
# ensure that a CompiledFxGraph is valid when loaded from the cache. It's
|
|
# sufficient to consider only the SymInt args to the fx graph since the
|
|
# Tensor shapes are already captured in the hash for the cache key. Any
|
|
# Tensor arg with a symbolic shape will have a SymInt arg for the graph.
|
|
shape_env = FxGraphCache._get_shape_env()
|
|
assert shape_env is not None
|
|
symints = FxGraphCache._filter_backed_symints(example_inputs)
|
|
guards = shape_env.get_pruned_guards(symints)
|
|
disk_compiled_graph.guards_expr = shape_env.produce_guards_expression(
|
|
placeholders=symints, guards=guards
|
|
)
|
|
|
|
try:
|
|
content = pickle.dumps(disk_compiled_graph)
|
|
except Exception:
|
|
log.warning(
|
|
"fx graph cache unable to serialize compiled graph", exc_info=True
|
|
)
|
|
counters["inductor"]["fxgraph_cache_pickle_error"] += 1
|
|
return
|
|
|
|
try:
|
|
if local:
|
|
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
|
if not os.path.exists(subdir):
|
|
os.makedirs(subdir, exist_ok=True)
|
|
|
|
# Use a hash of the serialized CompiledFxGraph to get a unique file
|
|
# name. The specific name doesn't matter since a lookup involves
|
|
# iterating over all entries in the parent subdir.
|
|
path = os.path.join(subdir, sha256_hash(content))
|
|
write_atomic(path, content, make_dirs=True)
|
|
|
|
if remote_cache:
|
|
cache_data = (
|
|
{
|
|
"data": content,
|
|
"time_taken_ms": time_taken_ns
|
|
// 1000000, # Convert from NS to MS
|
|
}
|
|
if config.is_fbcode()
|
|
else content
|
|
)
|
|
remote_cache.put(key, cache_data)
|
|
except Exception:
|
|
log.warning("fx graph unable to write to cache", exc_info=True)
|
|
counters["inductor"]["fxgraph_cache_write_error"] += 1
|
|
|
|
@staticmethod
|
|
def _check_can_cache(gm: torch.fx.GraphModule):
|
|
"""
|
|
Check some conditions that would preclude caching and raise BypassFxGraphCache
|
|
to bypass in case caching is not possible.
|
|
"""
|
|
# Freezing can embed constants that wouldn't be static across runs.
|
|
if config.freezing or config.aot_inductor.use_runtime_constant_folding:
|
|
raise BypassFxGraphCache
|
|
|
|
# The treatment of guards in the caching implementation requires that
|
|
# we have a shape env.
|
|
if FxGraphCache._get_shape_env() is None:
|
|
log.debug("fx graph cache no shape env")
|
|
raise BypassFxGraphCache
|
|
|
|
# HigherOrderOperators should be handled on a case-by-case basis.
|
|
# Currently, we just skip caching if we have any.
|
|
# We also skip if there are any torchbind objects.
|
|
for node in gm.graph.nodes:
|
|
if isinstance(node.target, torch._ops.HigherOrderOperator):
|
|
raise BypassFxGraphCache
|
|
if node.op == "getattr" and isinstance(
|
|
getattr(gm, node.target), torch._C.ScriptObject
|
|
):
|
|
raise BypassFxGraphCache
|
|
|
|
@staticmethod
|
|
def load(
|
|
compile_fx_fn: Callable[..., Any],
|
|
gm: torch.fx.GraphModule,
|
|
example_inputs: List[torch.Tensor],
|
|
fx_kwargs: Dict[str, Any],
|
|
inputs_to_check: Sequence[int],
|
|
local: bool,
|
|
remote: bool,
|
|
):
|
|
"""
|
|
Load a compiled graph from the cache. If a cached entry does not exist,
|
|
compile the graph and save it to the cache.
|
|
"""
|
|
assert local or remote, "at least one of them needs to be enabled"
|
|
compiled_graph = None
|
|
cache_state = None
|
|
key = None
|
|
debug_lines = None
|
|
try:
|
|
FxGraphCache._check_can_cache(gm)
|
|
key, debug_lines = compiled_fx_graph_hash(
|
|
gm, example_inputs, fx_kwargs, inputs_to_check
|
|
)
|
|
|
|
remote_cache = None
|
|
if remote:
|
|
cache_id = "fx-graph-v1"
|
|
try:
|
|
if config.is_fbcode():
|
|
from torch._inductor.fb.remote_cache import (
|
|
FbRemoteFxGraphCacheBackend,
|
|
)
|
|
|
|
remote_cache = FbRemoteFxGraphCacheBackend(cache_id)
|
|
else:
|
|
from torch._inductor.remote_cache import RedisRemoteCacheBackend
|
|
|
|
remote_cache = RedisRemoteCacheBackend(cache_id)
|
|
except Exception:
|
|
remote_cache = None
|
|
log.warning("Unable to create a remote cache", exc_info=True)
|
|
|
|
compiled_graph = FxGraphCache._lookup_graph(
|
|
key, example_inputs, local, remote_cache
|
|
)
|
|
|
|
if compiled_graph is None:
|
|
log.debug("fx graph cache miss for key %s", key)
|
|
counters["inductor"]["fxgraph_cache_miss"] += 1
|
|
cache_state = "miss"
|
|
start_time = time_ns()
|
|
compiled_graph = compile_fx_fn(gm, example_inputs, **fx_kwargs)
|
|
time_taken_ns = time_ns() - start_time
|
|
FxGraphCache._save_graph(
|
|
key,
|
|
compiled_graph,
|
|
example_inputs,
|
|
time_taken_ns,
|
|
local,
|
|
remote_cache,
|
|
)
|
|
else:
|
|
log.debug("fx graph cache hit for key %s", key)
|
|
counters["inductor"]["fxgraph_cache_hit"] += 1
|
|
cache_state = "hit"
|
|
compiled_graph._fx_graph_cache_key = key
|
|
except BypassFxGraphCache:
|
|
counters["inductor"]["fxgraph_cache_bypass"] += 1
|
|
cache_state = "bypass"
|
|
if not compiled_graph:
|
|
compiled_graph = compile_fx_fn(gm, example_inputs, **fx_kwargs)
|
|
|
|
torch._logging.trace_structured(
|
|
"artifact",
|
|
metadata_fn=lambda: {
|
|
"name": "fx_graph_cache_hash",
|
|
"encoding": "json",
|
|
},
|
|
payload_fn=lambda: json.dumps(
|
|
{"key": key, "cache_state": cache_state, "components": debug_lines}
|
|
),
|
|
)
|
|
|
|
return compiled_graph
|
|
|
|
@staticmethod
|
|
def clear():
|
|
"""
|
|
Clear out the on-disk cache.
|
|
"""
|
|
try:
|
|
shutil.rmtree(FxGraphCache._get_tmp_dir())
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
|
|
_StrideExprStr: TypeAlias = str
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class CompiledFxGraph:
|
|
"""
|
|
Class holding a compiled FX graph. This is the object serialized on disk
|
|
to support FxGraph caching.
|
|
"""
|
|
|
|
current_callable: Optional[Callable[..., Any]]
|
|
cache_key: str
|
|
source_code: str = dataclasses.field(repr=False) # Do not display source_code
|
|
cache_linemap: Optional[List[Tuple[int, str]]]
|
|
device_types: Set[str]
|
|
device_idxs: Set[int]
|
|
mutated_inputs: Set[str]
|
|
mutated_input_idxs: Set[int]
|
|
constants: Dict[str, torch.Tensor]
|
|
torchbind_constants: Dict[str, torch._C.ScriptObject]
|
|
output_strides: Optional[List[Optional[Tuple[_StrideExprStr, ...]]]]
|
|
disabled_cudagraphs_reason: Optional[str]
|
|
metrics_deltas: metrics.CachedMetricsDeltas
|
|
counter_deltas: Counter[str]
|
|
# This is a string representation of an expression we serialize
|
|
# with the object so the guards can be evaluated in a different
|
|
# context in order to verify the validity of serving a cached
|
|
# fx graph. The expression must be generated by:
|
|
# ShapeEnv.produce_guards_expression()
|
|
guards_expr: Optional[str]
|
|
|
|
_boxed_call: Optional[bool] = None
|
|
_fx_graph_cache_key: Optional[str] = None
|
|
|
|
def __init__(
|
|
self,
|
|
current_callable: Optional[Callable[..., Any]],
|
|
graph: GraphLowering,
|
|
output_strides: List[Optional[Tuple[_StrideExprStr, ...]]],
|
|
disabled_cudagraphs_reason: Optional[str],
|
|
metrics_deltas: metrics.CachedMetricsDeltas,
|
|
counter_deltas: Counter[str],
|
|
):
|
|
self.current_callable = current_callable
|
|
self.cache_key = graph.cache_key
|
|
if graph.cache_path:
|
|
with open(graph.cache_path) as f:
|
|
self.source_code = f.read()
|
|
self.cache_linemap = graph.cache_linemap
|
|
self.device_types = graph.device_types
|
|
self.device_idxs = graph.device_idxs
|
|
self.mutated_inputs = graph.mutated_inputs
|
|
self.mutated_input_idxs = set(graph.mutated_input_idxs)
|
|
self.constants = graph.constants
|
|
self.torchbind_constants = graph.torchbind_constants
|
|
self.output_strides = output_strides
|
|
self.disabled_cudagraphs_reason = disabled_cudagraphs_reason
|
|
self.metrics_deltas = metrics_deltas
|
|
self.counter_deltas = counter_deltas
|
|
self.guards_expr = None
|
|
|
|
def __call__(self, inputs: List[Any]) -> Any:
|
|
assert self.current_callable is not None
|
|
return self.current_callable(inputs)
|
|
|
|
|
|
"""
|
|
TODO: will remove old cpp builder when we switch to the new one.
|
|
"""
|
|
|
|
|
|
def get_compile_only(compile_only: bool = True) -> str:
|
|
return "-c" if compile_only else ""
|
|
|
|
|
|
def get_shared(shared: bool = True, compile_only: bool = False) -> str:
|
|
if not shared:
|
|
return ""
|
|
if compile_only:
|
|
return "-fPIC"
|
|
if platform.system() == "Darwin" and "clang" in get_cpp_compiler():
|
|
# This causes undefined symbols to behave the same as linux
|
|
return "-shared -fPIC -undefined dynamic_lookup"
|
|
else:
|
|
return "-shared -fPIC"
|
|
|
|
|
|
def get_warning_all_flag(warning_all: bool = True) -> str:
|
|
return "-Wall" if warning_all else ""
|
|
|
|
|
|
def get_glibcxx_abi_build_flags() -> str:
|
|
return "-D_GLIBCXX_USE_CXX11_ABI=" + str(int(torch._C._GLIBCXX_USE_CXX11_ABI))
|
|
|
|
|
|
def cpp_flags() -> str:
|
|
flags = ["-std=c++17", "-Wno-unused-variable", "-Wno-unknown-pragmas"]
|
|
if is_clang():
|
|
flags.append("-Werror=ignored-optimization-argument")
|
|
return " ".join(flags)
|
|
|
|
|
|
def cpp_wrapper_flags() -> str:
|
|
return "-D TORCH_INDUCTOR_CPP_WRAPPER"
|
|
|
|
|
|
def optimization_flags() -> str:
|
|
base_flags = "-O0 -g" if config.aot_inductor.debug_compile else "-O3 -DNDEBUG"
|
|
base_flags += " -ffast-math -fno-finite-math-only"
|
|
if not config.cpp.enable_unsafe_math_opt_flag:
|
|
base_flags += " -fno-unsafe-math-optimizations"
|
|
if not config.cpp.enable_floating_point_contract_flag:
|
|
base_flags += " -ffp-contract=off"
|
|
|
|
if config.is_fbcode():
|
|
# FIXME: passing `-fopenmp` adds libgomp.so to the generated shared library's dependencies.
|
|
# This causes `ldopen` to fail in fbcode, because libgomp does not exist in the default paths.
|
|
# We will fix it later by exposing the lib path.
|
|
return base_flags
|
|
|
|
if sys.platform == "darwin":
|
|
# Per https://mac.r-project.org/openmp/ right way to pass `openmp` flags to MacOS is via `-Xclang`
|
|
# Also, `-march=native` is unrecognized option on M1
|
|
base_flags += " -Xclang"
|
|
else:
|
|
if platform.machine() == "ppc64le":
|
|
base_flags += " -mcpu=native"
|
|
else:
|
|
base_flags += " -march=native"
|
|
|
|
# Internal cannot find libgomp.so
|
|
if not config.is_fbcode():
|
|
base_flags += " -fopenmp"
|
|
return base_flags
|
|
|
|
|
|
def use_custom_generated_macros() -> str:
|
|
return "-D C10_USING_CUSTOM_GENERATED_MACROS"
|
|
|
|
|
|
def use_fb_internal_macros() -> str:
|
|
if config.is_fbcode():
|
|
# TODO: this is to avoid FC breakage for fbcode. When using newly
|
|
# generated model.so on an older verion of PyTorch, need to use
|
|
# the v1 version for aoti_torch_create_tensor_from_blob
|
|
create_tensor_from_blob_v1 = "-D AOTI_USE_CREATE_TENSOR_FROM_BLOB_V1"
|
|
openmp_lib = build_paths.openmp_lib()
|
|
preprocessor_flags = " ".join(
|
|
(
|
|
"-D C10_USE_GLOG",
|
|
"-D C10_USE_MINIMAL_GLOG",
|
|
"-D C10_DISABLE_TENSORIMPL_EXTENSIBILITY",
|
|
)
|
|
)
|
|
return f"-Wp,-fopenmp {openmp_lib} {preprocessor_flags} {create_tensor_from_blob_v1}"
|
|
else:
|
|
return ""
|
|
|
|
|
|
def use_standard_sys_dir_headers() -> str:
|
|
if config.is_fbcode():
|
|
return "-nostdinc"
|
|
else:
|
|
return ""
|
|
|
|
|
|
def get_include_and_linking_paths(
|
|
include_pytorch: bool = False,
|
|
vec_isa: VecISA = invalid_vec_isa,
|
|
cuda: bool = False,
|
|
aot_mode: bool = False,
|
|
) -> Tuple[List[str], str, str, str, str]:
|
|
_set_gpu_runtime_env()
|
|
from torch.utils import cpp_extension
|
|
|
|
# Remove below in the further
|
|
# macros = "-D {}".format(vec_isa.build_macro()) if vec_isa != invalid_vec_isa else ""
|
|
macros = ""
|
|
if vec_isa != invalid_vec_isa:
|
|
for x in vec_isa.build_macro():
|
|
macros_def = f"-D {x} "
|
|
macros += macros_def
|
|
|
|
build_arch_flags = ""
|
|
if sys.platform == "linux" and (
|
|
include_pytorch
|
|
or vec_isa != invalid_vec_isa
|
|
or cuda
|
|
or config.cpp.enable_kernel_profile
|
|
):
|
|
# Note - We include pytorch only on linux right now. There is more work
|
|
# to do to enable OMP build on darwin where PyTorch is built with IOMP
|
|
# and we need a way to link to what PyTorch links.
|
|
ipaths = cpp_extension.include_paths(cuda) + _get_python_include_dirs()
|
|
lpaths = cpp_extension.library_paths(cuda) + [
|
|
sysconfig.get_config_var("LIBDIR")
|
|
]
|
|
|
|
libs = []
|
|
|
|
# No need to manually specify libraries in fbcode.
|
|
if not config.is_fbcode():
|
|
libs += ["torch", "torch_cpu"]
|
|
libs += ["gomp"]
|
|
if not aot_mode:
|
|
libs += ["torch_python"]
|
|
else:
|
|
# internal remote execution is able to find omp, but not gomp
|
|
libs += ["omp"]
|
|
if aot_mode:
|
|
ipaths += [os.path.dirname(cpp_prefix_path())]
|
|
if cuda and torch.version.hip is None:
|
|
_transform_cuda_paths(lpaths)
|
|
if macros:
|
|
if config.is_fbcode() and vec_isa != invalid_vec_isa:
|
|
cap = str(vec_isa).upper()
|
|
macros = " ".join(
|
|
[
|
|
vec_isa.build_arch_flags(),
|
|
f"-D CPU_CAPABILITY={cap}",
|
|
f"-D CPU_CAPABILITY_{cap}",
|
|
f"-D HAVE_{cap}_CPU_DEFINITION",
|
|
]
|
|
)
|
|
|
|
if cuda:
|
|
if macros is None:
|
|
macros = ""
|
|
macros += " -D USE_ROCM" if torch.version.hip else " -D USE_CUDA"
|
|
|
|
if cuda:
|
|
if torch.version.hip is not None:
|
|
if config.is_fbcode():
|
|
libs += ["amdhip64"]
|
|
else:
|
|
libs += ["c10_hip", "torch_hip"]
|
|
macros += " -D __HIP_PLATFORM_AMD__"
|
|
else:
|
|
if config.is_fbcode():
|
|
libs += ["cuda"]
|
|
else:
|
|
libs += ["c10_cuda", "cuda", "torch_cuda"]
|
|
build_arch_flags = vec_isa.build_arch_flags()
|
|
else:
|
|
# Note - this is effectively a header only inclusion. Usage of some header files may result in
|
|
# symbol not found, if those header files require a library.
|
|
# For those cases, include the lpath and libs command as we do for pytorch above.
|
|
# This approach allows us to only pay for what we use.
|
|
ipaths = cpp_extension.include_paths(cuda) + _get_python_include_dirs()
|
|
if aot_mode:
|
|
ipaths += [os.path.dirname(cpp_prefix_path())]
|
|
lpaths = []
|
|
if sys.platform == "darwin":
|
|
# only Apple builtin compilers (Apple Clang++) require openmp
|
|
omp_available = not is_apple_clang()
|
|
|
|
# check the `OMP_PREFIX` environment first
|
|
if os.getenv("OMP_PREFIX") is not None:
|
|
header_path = os.path.join(os.getenv("OMP_PREFIX"), "include", "omp.h") # type: ignore[arg-type]
|
|
valid_env = os.path.exists(header_path)
|
|
if valid_env:
|
|
ipaths.append(os.path.join(os.getenv("OMP_PREFIX"), "include")) # type: ignore[arg-type]
|
|
lpaths.append(os.path.join(os.getenv("OMP_PREFIX"), "lib")) # type: ignore[arg-type]
|
|
else:
|
|
warnings.warn("environment variable `OMP_PREFIX` is invalid.")
|
|
omp_available = omp_available or valid_env
|
|
|
|
libs = [] if omp_available else ["omp"]
|
|
|
|
# prefer to use openmp from `conda install llvm-openmp`
|
|
if not omp_available and os.getenv("CONDA_PREFIX") is not None:
|
|
omp_available = is_conda_llvm_openmp_installed()
|
|
if omp_available:
|
|
conda_lib_path = os.path.join(os.getenv("CONDA_PREFIX"), "lib") # type: ignore[arg-type]
|
|
ipaths.append(os.path.join(os.getenv("CONDA_PREFIX"), "include")) # type: ignore[arg-type]
|
|
lpaths.append(conda_lib_path)
|
|
# Prefer Intel OpenMP on x86 machine
|
|
if os.uname().machine == "x86_64" and os.path.exists(
|
|
os.path.join(conda_lib_path, "libiomp5.dylib")
|
|
):
|
|
libs = ["iomp5"]
|
|
|
|
# next, try to use openmp from `brew install libomp`
|
|
if not omp_available:
|
|
omp_available, libomp_path = homebrew_libomp()
|
|
if omp_available:
|
|
ipaths.append(os.path.join(libomp_path, "include"))
|
|
lpaths.append(os.path.join(libomp_path, "lib"))
|
|
|
|
# if openmp is still not available, we let the compiler to have a try,
|
|
# and raise error together with instructions at compilation error later
|
|
else:
|
|
libs = ["omp"] if config.is_fbcode() else ["gomp"]
|
|
|
|
# For AOT mode, the produced library relies on torch cpu to set grad mode
|
|
# like aoti_torch_grad_mode_set_enabled
|
|
if aot_mode and sys.platform == "linux" and not config.is_fbcode():
|
|
libs += ["torch", "torch_cpu"]
|
|
|
|
# Unconditionally import c10 for non-abi-compatible mode to use TORCH_CHECK - See PyTorch #108690
|
|
if not config.abi_compatible:
|
|
libs += ["c10"]
|
|
lpaths += [cpp_extension.TORCH_LIB_PATH]
|
|
|
|
# third party libs
|
|
if config.is_fbcode():
|
|
# Note that the order of include paths do matter, as a result
|
|
# we need to have several branches interleaved here
|
|
if torch.version.hip is None:
|
|
ipaths.append(build_paths.sleef())
|
|
ipaths.append(build_paths.openmp())
|
|
ipaths.append(build_paths.python())
|
|
if torch.version.hip is not None:
|
|
ipaths.append(build_paths.clang_include())
|
|
ipaths.append(build_paths.gcc_include())
|
|
ipaths.append(build_paths.gcc_install_tools_include())
|
|
else:
|
|
ipaths.append(build_paths.cc_include())
|
|
ipaths.append(build_paths.libgcc())
|
|
ipaths.append(build_paths.libgcc_arch())
|
|
ipaths.append(build_paths.libgcc_backward())
|
|
ipaths.append(build_paths.glibc())
|
|
ipaths.append(build_paths.linux_kernel())
|
|
if torch.version.hip is not None:
|
|
ipaths.append(build_paths.rocm())
|
|
else:
|
|
ipaths.append(os.path.join(build_paths.cuda(), "include"))
|
|
# We also need to bundle includes with absolute paths into a remote directory
|
|
# (later on, we copy the include paths from cpp_extensions into our remote dir)
|
|
ipaths.append("include")
|
|
|
|
static_link_libs = []
|
|
if aot_mode and cuda and config.is_fbcode():
|
|
# For Meta internal cuda-12, it is recommended to static link cudart
|
|
if torch.version.hip is None:
|
|
static_link_libs = ["-Wl,-Bstatic", "-lcudart_static", "-Wl,-Bdynamic"]
|
|
|
|
lpaths_str = " ".join(["-L" + p for p in lpaths])
|
|
libs_str = " ".join(static_link_libs + ["-l" + p for p in libs])
|
|
return ipaths, lpaths_str, libs_str, macros, build_arch_flags
|
|
|
|
|
|
def cpp_compile_command(
|
|
input: Union[str, List[str]],
|
|
output: str,
|
|
warning_all: bool = True,
|
|
shared: bool = True,
|
|
include_pytorch: bool = False,
|
|
vec_isa: VecISA = invalid_vec_isa,
|
|
cuda: bool = False,
|
|
aot_mode: bool = False,
|
|
compile_only: bool = False,
|
|
use_absolute_path: bool = False,
|
|
use_mmap_weights: bool = False,
|
|
extra_flags: Sequence[str] = (),
|
|
) -> str:
|
|
ipaths, lpaths, libs, macros, build_arch_flags = get_include_and_linking_paths(
|
|
include_pytorch, vec_isa, cuda, aot_mode
|
|
)
|
|
if isinstance(input, str):
|
|
input = [input]
|
|
ipaths_str = " ".join(["-I" + p for p in ipaths])
|
|
clang_flags = ""
|
|
if config.is_fbcode():
|
|
if aot_mode and not use_absolute_path:
|
|
inp_name = input
|
|
out_name = output
|
|
linker_script = _LINKER_SCRIPT
|
|
else:
|
|
# We need to copy any absolute-path torch includes
|
|
inp_name = [os.path.basename(i) for i in input]
|
|
out_name = os.path.basename(output)
|
|
linker_script = os.path.basename(_LINKER_SCRIPT)
|
|
assert is_clang()
|
|
# Use clang runtime instead of libgcc
|
|
clang_flags += " --rtlib=compiler-rt"
|
|
clang_flags += " -fuse-ld=lld"
|
|
clang_flags += f" -Wl,--script={linker_script}"
|
|
linker_paths = "-B" + build_paths.glibc_lib()
|
|
linker_paths += " -L" + build_paths.glibc_lib()
|
|
else:
|
|
inp_name = input
|
|
out_name = output
|
|
linker_paths = "" # let the compiler pick
|
|
if compile_only:
|
|
libs, lpaths = "", ""
|
|
inp_name_str = " ".join(inp_name)
|
|
if use_mmap_weights:
|
|
macros += " -D USE_MMAP_SELF"
|
|
|
|
return re.sub(
|
|
r"[ \n]+",
|
|
" ",
|
|
f"""
|
|
{get_cpp_compiler()} {inp_name_str} {get_shared(shared, compile_only)}
|
|
{get_warning_all_flag(warning_all)} {cpp_flags()}
|
|
{get_glibcxx_abi_build_flags()}
|
|
{ipaths_str} {lpaths} {libs} {build_arch_flags}
|
|
{macros} {linker_paths} {clang_flags}
|
|
{optimization_flags()} {cpp_wrapper_flags()}
|
|
{use_custom_generated_macros()}
|
|
{use_fb_internal_macros()}
|
|
{use_standard_sys_dir_headers()}
|
|
{get_compile_only(compile_only)}
|
|
{' '.join(extra_flags)}
|
|
-o {out_name}
|
|
""",
|
|
).strip()
|
|
|
|
|
|
def run_command_and_check(cmd: str):
|
|
cmd = shlex.split(cmd)
|
|
try:
|
|
subprocess.check_call(cmd)
|
|
except subprocess.CalledProcessError as e:
|
|
raise exc.CppCompileError(cmd, e.output) from e
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def split_aot_inductor_output_path(path: str) -> Tuple[str, str]:
|
|
"""Returns the path where the AOT Inductor compiled kernels are stored."""
|
|
if path.endswith(".so"):
|
|
return os.path.split(path)
|
|
elif path.endswith(".pt2"):
|
|
return os.path.split(path)
|
|
else:
|
|
return path, ""
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CudaKernelParamCache:
|
|
cache: Dict[str, Dict[str, str]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
|
|
@classmethod
|
|
def set(cls, key: str, params: Dict[str, str], cubin: str, bin_type: str) -> None:
|
|
_, path = write(
|
|
cubin,
|
|
bin_type,
|
|
hash_type=bin_type,
|
|
specified_dir=split_aot_inductor_output_path(
|
|
config.aot_inductor.output_path
|
|
)[0],
|
|
)
|
|
|
|
params[get_cpp_wrapper_cubin_path_name()] = path
|
|
|
|
cls.cache[key] = params
|
|
|
|
@classmethod
|
|
def get(cls, key: str) -> Optional[Dict[str, str]]:
|
|
return cls.cache.get(key, None)
|
|
|
|
@classmethod
|
|
def get_keys(cls):
|
|
return cls.cache.keys()
|
|
|
|
|
|
class AotCodeCompiler:
|
|
@classmethod
|
|
def compile(
|
|
cls,
|
|
graph: GraphLowering,
|
|
source_code: str,
|
|
serialized_extern_kernel_nodes: Optional[str],
|
|
cuda: bool,
|
|
) -> str:
|
|
if sys.platform == "win32":
|
|
raise RuntimeError("AotCodeCompiler not yet supported for inductor")
|
|
|
|
_set_gpu_runtime_env() # cpp_extension consults the env
|
|
|
|
picked_vec_isa = pick_vec_isa()
|
|
vec_isa_cmd_gen = CppBuilder(
|
|
name="o",
|
|
sources="i",
|
|
BuildOption=CppTorchCudaOptions(
|
|
vec_isa=picked_vec_isa,
|
|
cuda=cuda,
|
|
aot_mode=graph.aot_mode,
|
|
),
|
|
)
|
|
# write function will calc source_code hash, the same source code with different
|
|
# ISA level should be generate different hash.
|
|
# So we need get a command_line which contains isa related parameter as a part of hash key.
|
|
# And then pass the command_line to below write function as extra parameter to
|
|
# guarantee the source code hash contains ISA difference.
|
|
cpp_command = repr(vec_isa_cmd_gen.get_command_line())
|
|
|
|
fbcode_aot_cpu_re = False
|
|
use_absolute_path = False
|
|
if config.is_fbcode():
|
|
ld_command = build_paths.ld()
|
|
if not cuda and graph.aot_mode: # Meta internal AOTInductor CPU
|
|
objcopy_command = build_paths.objcopy_fallback()
|
|
fbcode_aot_cpu_re = True
|
|
use_absolute_path = True
|
|
else:
|
|
objcopy_command = build_paths.objcopy()
|
|
else:
|
|
ld_command = "ld"
|
|
objcopy_command = "objcopy"
|
|
|
|
(
|
|
specified_output_path,
|
|
specified_so_name,
|
|
) = split_aot_inductor_output_path(config.aot_inductor.output_path)
|
|
key, input_path = write(
|
|
source_code,
|
|
"cpp",
|
|
extra=cpp_command,
|
|
specified_dir=specified_output_path,
|
|
)
|
|
output_code_log.info("Output code written to: %s", input_path)
|
|
trace_structured(
|
|
"graph_dump",
|
|
lambda: {
|
|
"name": "inductor_aot_code",
|
|
"type": "cpp",
|
|
"filename": input_path,
|
|
},
|
|
payload_fn=lambda: source_code,
|
|
)
|
|
|
|
def _compile_consts_linux(consts: bytes) -> str:
|
|
_, consts_path = write(
|
|
consts,
|
|
"bin",
|
|
specified_dir=os.path.split(input_path)[0],
|
|
)
|
|
|
|
consts_o = os.path.splitext(consts_path)[0] + ".o"
|
|
if fbcode_aot_cpu_re:
|
|
cmd = f"{ld_command} -r -b binary -o {os.path.basename(consts_o)} {os.path.basename(consts_path)}"
|
|
compile_file(consts_path, consts_o, cmd.split())
|
|
os.chmod(consts_o, 0o644)
|
|
else:
|
|
cmd = f"{ld_command} -r -b binary -o {consts_o} {consts_path}"
|
|
run_command_and_check(cmd)
|
|
log.debug("aot constant binary command: %s", cmd)
|
|
|
|
if graph.mutated_buffers & set(graph.constants.keys()):
|
|
# .data section is between .text and .bss. When the size of .data is large,
|
|
# during the linking, the relocation of .text against .bss may overflow.
|
|
# Rename it to .ldata so that it won't be in between the .text and .bss section
|
|
if len(consts) > 2_000_000_000:
|
|
raise ValueError(
|
|
"Models with buffer mutation included doesn't support constants greater than 2GB!"
|
|
)
|
|
rename_data = " .data=.ldata"
|
|
else:
|
|
# if no buffer mutation is needed, we could instead set the data region
|
|
# as read-only (i.e. .lrodata) which could accomodate larger size of data
|
|
# to be linked.
|
|
rename_data = " .data=.lrodata,alloc,load,readonly,data,contents"
|
|
|
|
assert (
|
|
ALIGN_BYTES & (ALIGN_BYTES - 1)
|
|
) == 0 and ALIGN_BYTES >= 64, "must be power of 2 and >= 64"
|
|
cmd = (
|
|
f"{objcopy_command} --rename-section"
|
|
f"{rename_data}"
|
|
f" --set-section-alignment .data={ALIGN_BYTES}" # following the gAlignment of CPU in c10/core/alignment.h
|
|
f" {consts_o} {consts_o}"
|
|
)
|
|
log.debug("aot constant rename section command: %s", cmd)
|
|
run_command_and_check(cmd)
|
|
|
|
cmd = f"rm {consts_path}"
|
|
log.debug("aot constant bin removal command: %s", cmd)
|
|
run_command_and_check(cmd)
|
|
|
|
if fbcode_aot_cpu_re:
|
|
body = re.sub(r"[\W]", "_", os.path.basename(consts_path))
|
|
else:
|
|
body = re.sub(r"[\W]", "_", consts_path)
|
|
|
|
symbol_list = []
|
|
symbol_list.append(
|
|
f"{objcopy_command} --redefine-sym _binary_{body}_start=_binary_constants_bin_start {consts_o}"
|
|
)
|
|
symbol_list.append(
|
|
f"{objcopy_command} --redefine-sym _binary_{body}_size=_binary_constants_bin_size {consts_o}"
|
|
)
|
|
symbol_list.append(
|
|
f"{objcopy_command} --redefine-sym _binary_{body}_end=_binary_constants_bin_end {consts_o}"
|
|
)
|
|
log.debug("aot constant binary redefine symbol: %s", " ".join(symbol_list))
|
|
for cmd in symbol_list:
|
|
run_command_and_check(cmd)
|
|
return consts_o
|
|
|
|
def _compile_consts_darwin(consts: bytes) -> str:
|
|
if config.aot_inductor.debug_dump_consts_bin:
|
|
_, _binary_constants_path = write(
|
|
consts,
|
|
"bin",
|
|
specified_dir=os.path.split(input_path)[0],
|
|
)
|
|
log.debug("binary constants path: %s", _binary_constants_path)
|
|
|
|
is_large_consts = len(consts) > 1024
|
|
consts_asm = "\t.section\t__DATA,__data\n"
|
|
consts_asm += "\t.globl\t__binary_constants_bin_start\n"
|
|
consts_asm += "__binary_constants_bin_start:\n"
|
|
if not is_large_consts:
|
|
for c in consts:
|
|
consts_asm += f"\t.byte {c}\n"
|
|
# Add one element even if constants are empty
|
|
# Otherwise assembler will not put them in data section
|
|
if not consts:
|
|
consts_asm += "\t.space 1\n"
|
|
else:
|
|
consts_asm += "\t.quad 0x1234567899abcdef\n"
|
|
consts_asm += f"\t.space {len(consts) - 8}\n"
|
|
consts_asm += ".globl\t__binary_constants_bin_end\n"
|
|
consts_asm += "__binary_constants_bin_end:\n"
|
|
_, consts_path = write(
|
|
consts_asm,
|
|
"S",
|
|
specified_dir=os.path.split(input_path)[0],
|
|
)
|
|
consts_o = os.path.splitext(consts_path)[0] + ".o"
|
|
cmd = f"{get_cpp_compiler()} -c -o {consts_o} {consts_path}"
|
|
run_command_and_check(cmd)
|
|
if is_large_consts:
|
|
with open(consts_o, "r+b") as f:
|
|
f.seek(0)
|
|
hdr = f.read(1024)
|
|
# Search for magic number and write the actual data over it
|
|
start_idx = hdr.find(b"\xef\xcd\xab\x99\x78\x56\x34\x12")
|
|
assert start_idx != -1
|
|
f.seek(start_idx)
|
|
pos = 0
|
|
while pos < len(consts):
|
|
rc = f.write(consts[pos:])
|
|
pos += rc
|
|
return consts_o
|
|
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
# Currently, this only support serializing extern nodes in fbcode
|
|
# Eventually, we should also have a serializer for OSS.
|
|
if serialized_extern_kernel_nodes:
|
|
output_json = os.path.splitext(input_path)[0] + ".json"
|
|
with open(output_json, "w") as f:
|
|
f.write(serialized_extern_kernel_nodes)
|
|
|
|
output_so = (
|
|
config.aot_inductor.output_path
|
|
if specified_so_name
|
|
else os.path.splitext(input_path)[0] + ".so"
|
|
)
|
|
|
|
output_o = os.path.splitext(input_path)[0] + ".o"
|
|
consts_size = sum(
|
|
torch.ops.mkldnn._nbytes(tensor)
|
|
if tensor.is_mkldnn
|
|
else tensor.untyped_storage().nbytes()
|
|
for (name, tensor) in graph.constants.items()
|
|
if name not in graph.folded_constants
|
|
)
|
|
# TODO: Fix mmap weights with cuda
|
|
use_mmap_weights = not config.is_fbcode() and consts_size > 2_000_000_000
|
|
if config.aot_inductor.force_mmap_weights:
|
|
use_mmap_weights = True
|
|
|
|
if config.aot_inductor.package:
|
|
(
|
|
object_output_name,
|
|
object_output_dir,
|
|
) = get_name_and_dir_from_output_file_path(input_path)
|
|
object_build_options = CppTorchCudaOptions(
|
|
vec_isa=picked_vec_isa,
|
|
cuda=cuda,
|
|
aot_mode=graph.aot_mode,
|
|
compile_only=True,
|
|
use_absolute_path=use_absolute_path,
|
|
use_mmap_weights=use_mmap_weights,
|
|
)
|
|
object_builder = CppBuilder(
|
|
name=object_output_name,
|
|
sources=input_path,
|
|
output_dir=object_output_dir,
|
|
BuildOption=object_build_options,
|
|
)
|
|
compile_cmd = object_builder.get_command_line()
|
|
output_o = object_builder.get_target_file_path()
|
|
|
|
compile_flags = os.path.splitext(input_path)[0] + "_compile_flags.json"
|
|
object_build_options.save_flags_to_file(compile_flags)
|
|
|
|
else:
|
|
# TODO: replace this with using the CppBuilder above
|
|
compile_cmd = cpp_compile_command(
|
|
input=input_path,
|
|
output=output_o,
|
|
vec_isa=picked_vec_isa,
|
|
cuda=cuda,
|
|
aot_mode=graph.aot_mode,
|
|
compile_only=True,
|
|
use_absolute_path=use_absolute_path,
|
|
use_mmap_weights=use_mmap_weights,
|
|
)
|
|
|
|
log.debug("aot compilation command: %s", compile_cmd)
|
|
if fbcode_aot_cpu_re:
|
|
compile_file(input_path, output_o, compile_cmd.split())
|
|
os.chmod(output_o, 0o644)
|
|
else:
|
|
run_command_and_check(compile_cmd)
|
|
|
|
def _to_bytes(t: torch.Tensor, all_cuda: bool) -> bytes:
|
|
def _pad_to_alignment(raw_bytes):
|
|
padded_bytes = raw_bytes.ljust(
|
|
(len(raw_bytes) + ALIGN_BYTES - 1) // ALIGN_BYTES * ALIGN_BYTES,
|
|
b"\x00",
|
|
)
|
|
return padded_bytes
|
|
|
|
# This serializes the tensor's untyped_storage to bytes by accessing
|
|
# the raw data of the underlying structure.
|
|
import ctypes
|
|
|
|
if t.numel() == 0:
|
|
return b""
|
|
|
|
if t.is_mkldnn:
|
|
data_ptr = torch.ops.mkldnn.data_ptr(t)
|
|
nbytes = torch.ops.mkldnn._nbytes(t)
|
|
else:
|
|
t_cpu = t.untyped_storage().cpu()
|
|
data_ptr = t_cpu.data_ptr()
|
|
nbytes = t_cpu.nbytes()
|
|
|
|
raw_array = ctypes.cast(
|
|
data_ptr,
|
|
ctypes.POINTER(ctypes.c_ubyte * nbytes),
|
|
)
|
|
raw_bytes = bytes(raw_array.contents)
|
|
return raw_bytes if all_cuda else _pad_to_alignment(raw_bytes)
|
|
|
|
all_cuda = all(
|
|
graph.get_original_value_of_constant(name).is_cuda
|
|
for name in graph.constants.keys()
|
|
if name not in graph.folded_constants
|
|
)
|
|
serialized_weights = b"".join(
|
|
_to_bytes(graph.get_original_value_of_constant(name), all_cuda)
|
|
for name in graph.constants.keys()
|
|
if name not in graph.folded_constants
|
|
)
|
|
if not use_mmap_weights:
|
|
aot_constants = serialized_weights
|
|
magic_number = 0
|
|
else:
|
|
magic_number = cast(
|
|
int, torch.randint(0, torch.iinfo(torch.int64).max, (1,)).item()
|
|
)
|
|
aot_constants = struct.pack("qq", consts_size + 8, magic_number)
|
|
|
|
consts_o = {
|
|
"linux": _compile_consts_linux,
|
|
"darwin": _compile_consts_darwin,
|
|
}[sys.platform](aot_constants)
|
|
|
|
if config.aot_inductor.package:
|
|
output_name, output_dir = get_name_and_dir_from_output_file_path(
|
|
output_so
|
|
)
|
|
so_build_options = CppTorchCudaOptions(
|
|
vec_isa=picked_vec_isa,
|
|
cuda=cuda,
|
|
aot_mode=graph.aot_mode,
|
|
use_absolute_path=use_absolute_path,
|
|
)
|
|
so_builder = CppBuilder(
|
|
name=output_name,
|
|
sources=[output_o, consts_o],
|
|
output_dir=output_dir,
|
|
BuildOption=so_build_options,
|
|
)
|
|
link_cmd = so_builder.get_command_line()
|
|
output_so = so_builder.get_target_file_path()
|
|
|
|
linker_flags = os.path.splitext(input_path)[0] + "_linker_flags.json"
|
|
so_build_options.save_flags_to_file(linker_flags)
|
|
|
|
from torch._inductor.package import package_aoti
|
|
|
|
if use_mmap_weights:
|
|
weight_file = (
|
|
os.path.splitext(input_path)[0] + "_serialized_weights.bin"
|
|
)
|
|
with open(weight_file, "wb") as f_weights:
|
|
f_weights.write(serialized_weights)
|
|
f_weights.write(struct.pack("q", magic_number))
|
|
|
|
archive_path = package_aoti(os.path.split(input_path)[0])
|
|
return archive_path
|
|
|
|
# TODO: replace this with using the CppBuilder above
|
|
link_cmd = cpp_compile_command(
|
|
input=[output_o, consts_o],
|
|
output=output_so,
|
|
vec_isa=picked_vec_isa,
|
|
cuda=cuda,
|
|
aot_mode=graph.aot_mode,
|
|
use_absolute_path=use_absolute_path,
|
|
)
|
|
|
|
log.debug("aot linkage command: %s", link_cmd)
|
|
if fbcode_aot_cpu_re:
|
|
compile_file([output_o, consts_o], output_so, link_cmd.split())
|
|
os.chmod(output_so, 0o755)
|
|
else:
|
|
run_command_and_check(link_cmd)
|
|
|
|
if use_mmap_weights:
|
|
with open(output_so, "a+b") as f_so:
|
|
so_size = f_so.tell()
|
|
# Page align the weights
|
|
f_so.write(b" " * (16384 - so_size % 16384))
|
|
f_so.write(serialized_weights)
|
|
f_so.write(struct.pack("q", magic_number))
|
|
|
|
# Append cmds to the end of codegen-ed wrapper file
|
|
with open(input_path, "a") as f:
|
|
f.write("\n")
|
|
f.write(f"// Compile cmd\n// {compile_cmd}\n")
|
|
f.write(f"// Link cmd\n// {link_cmd}\n")
|
|
|
|
return output_so
|
|
|
|
|
|
# Putting this fn in cpp.py (unfortunately) causes a deadlock, which is why it's in codecache.py.
|
|
# Why? importing from cpp.py invokes codecache.pick_vec_isa(), which takes out a lock.
|
|
# Cycle goes:
|
|
# - CppCodeCache.load()
|
|
# - pick_vec_isa()
|
|
# - valid_vec_isa_list()
|
|
# - VecISA.__bool__() <-- takes out a lock
|
|
# - compile_file() <-- imports cpp_prefix_path from cpp, which causes us to try to take out the same lock.
|
|
@clear_on_fresh_inductor_cache
|
|
@functools.lru_cache
|
|
def cpp_prefix_path() -> str:
|
|
path = Path(__file__).parent / "codegen/cpp_prefix.h"
|
|
with path.open() as f:
|
|
content = f.read()
|
|
_, filename = write(
|
|
content,
|
|
"h",
|
|
)
|
|
return normalize_path_separator(filename)
|
|
|
|
|
|
def cpp_prefix() -> str:
|
|
filename = cpp_prefix_path()
|
|
if config.is_fbcode():
|
|
# We need relative paths, since we bundle up
|
|
# everything that we compile into a folder for remote compilation.
|
|
return f'#include "{os.path.basename(filename)}"'
|
|
else:
|
|
return f'#include "{filename}"'
|
|
|
|
|
|
# Given a path to an input cpp file and an output path,
|
|
# Attempts to compile the file, storing the output in "output_path"
|
|
@dynamo_timed
|
|
def compile_file(
|
|
input_path: Union[str, List[str]], output_path: str, cmd: List[str]
|
|
) -> None:
|
|
input_paths = [input_path] if isinstance(input_path, str) else input_path
|
|
input_files = [
|
|
os.path.basename(ip) if config.is_fbcode() else ip for ip in input_paths
|
|
]
|
|
try:
|
|
if config.is_fbcode():
|
|
# Need to copy our header into the same folder as the sourcecode.
|
|
header_path = cpp_prefix_path()
|
|
header_name = os.path.basename(header_path)
|
|
output_name = os.path.basename(output_path)
|
|
# When we build remotely, we need to make sure to carefully copy any files
|
|
# that are required during the compilation process into our build directly.
|
|
# This is where all of the ATen/c10/Torch includes come from.
|
|
torch_includes_path = os.path.join(_TORCH_PATH, "include")
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
# Copy everything to tmp compilation folder
|
|
shutil.copy(header_path, os.path.join(tmp_dir, header_name))
|
|
shutil.copy(_LINKER_SCRIPT, os.path.join(tmp_dir, "script.ld"))
|
|
for p, f in zip(input_paths, input_files):
|
|
shutil.copy(p, os.path.join(tmp_dir, f))
|
|
dest_include_path = os.path.join(tmp_dir, "include")
|
|
shutil.copytree(torch_includes_path, dest_include_path)
|
|
# Run the build
|
|
output_file_path = _run_build_command(cmd, tmp_dir, output_name)
|
|
# Copy output from the build
|
|
if os.path.exists(output_path):
|
|
os.remove(output_path)
|
|
shutil.copy(output_file_path, output_path)
|
|
else:
|
|
subprocess.check_output(cmd, stderr=subprocess.STDOUT)
|
|
except subprocess.CalledProcessError as e:
|
|
output = e.output.decode("utf-8")
|
|
openmp_problem = "'omp.h' file not found" in output or "libomp" in output
|
|
if openmp_problem and sys.platform == "darwin":
|
|
instruction = (
|
|
"\n\nOpenMP support not found. Please try one of the following solutions:\n"
|
|
"(1) Set the `CXX` environment variable to a compiler other than Apple clang++/g++ "
|
|
"that has builtin OpenMP support;\n"
|
|
"(2) install OpenMP via conda: `conda install llvm-openmp`;\n"
|
|
"(3) install libomp via brew: `brew install libomp`;\n"
|
|
"(4) manually setup OpenMP and set the `OMP_PREFIX` environment variable to point to a path"
|
|
" with `include/omp.h` under it."
|
|
)
|
|
output += instruction
|
|
raise exc.CppCompileError(cmd, output) from e
|
|
|
|
|
|
_libgomp: Optional[CDLL] = None
|
|
|
|
|
|
def custom_op_wrapper(op: str, *args):
|
|
# This function will be called from generated cpp wrapper code in the JIT mode.
|
|
# Because tensors will be passed in as AtenTensorHandle, we need to explicitly convert them.
|
|
def convert_arg(arg):
|
|
if str(type(arg)) == "<class 'PyCapsule'>":
|
|
# No easy way to do isinstance check on PyCapsule
|
|
return torch._C._aoti.alloc_tensor_by_stealing_from_void_ptr(arg)
|
|
elif isinstance(arg, (list, tuple)):
|
|
return type(arg)(convert_arg(a) for a in arg)
|
|
else:
|
|
return arg
|
|
|
|
converted_args = [convert_arg(arg) for arg in args]
|
|
|
|
assert op.startswith("torch.ops."), (
|
|
op + " can not be called through custom_op_wrapper"
|
|
)
|
|
func = None
|
|
for i, s in enumerate(op.split(".")):
|
|
if i == 0:
|
|
func = importlib.import_module(s)
|
|
func = getattr(func, s)
|
|
|
|
assert callable(func), op + " can not be loaded through custom_op_wrapper"
|
|
result = func(*converted_args)
|
|
if isinstance(result, (list, tuple)):
|
|
for r in result:
|
|
assert isinstance(r, torch.Tensor), op + " returns a list of non-tensors"
|
|
return torch._C._aoti.unsafe_alloc_void_ptrs_from_tensors(result) # type: ignore[arg-type]
|
|
else:
|
|
assert isinstance(result, torch.Tensor), op + " returns a non-tensor"
|
|
return torch._C._aoti.unsafe_alloc_void_ptr_from_tensor(result)
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CppCodeCache:
|
|
cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags: Dict[str, Any] = {}
|
|
|
|
@staticmethod
|
|
def _load_library_inner(path: str, key: str) -> Union[CDLL, ModuleType]:
|
|
return cdll.LoadLibrary(path)
|
|
|
|
@classmethod
|
|
def _load_library(cls, path: str, key: str) -> Union[CDLL, ModuleType]:
|
|
try:
|
|
result = cls._load_library_inner(path, key)
|
|
result.key = key # type: ignore[union-attr]
|
|
return result
|
|
except (ImportError, OSError) as e:
|
|
if "gomp" in str(e) and os.path.exists("/usr/lib64/libgomp.so.1"):
|
|
# hacky workaround for fbcode/buck
|
|
global _libgomp
|
|
_libgomp = cdll.LoadLibrary("/usr/lib64/libgomp.so.1")
|
|
result = cls._load_library_inner(path, key)
|
|
result.key = key # type: ignore[union-attr]
|
|
return result
|
|
if "failed to map segment from shared object" in str(e):
|
|
raise OSError(
|
|
f"{e}. The most common reason this may occur is if the {tempfile.gettempdir()} folder "
|
|
"is mounted with noexec (e.g., by default Docker mounts tmp file systems "
|
|
f"as noexec). Please remount {tempfile.gettempdir()} with exec enabled, or set another "
|
|
"temporary directory with TORCHINDUCTOR_CACHE_DIR environment variable."
|
|
) from e
|
|
raise
|
|
|
|
@classmethod
|
|
def load_async(cls, source_code: str, cuda=False, submit_fn=None, extra_flags=()):
|
|
compile_command = {
|
|
**cls.cpp_compile_command_flags,
|
|
"cuda": cuda,
|
|
"vec_isa": pick_vec_isa(),
|
|
"extra_flags": extra_flags,
|
|
}
|
|
|
|
_set_gpu_runtime_env() # cpp_extension consults the env
|
|
|
|
command_gen = CppBuilder(
|
|
name="o", sources="i", BuildOption=CppTorchCudaOptions(**compile_command)
|
|
)
|
|
# write function will calc source_code hash, the same source code with different
|
|
# ISA level should be generate different hash.
|
|
# So we need get a command_line which contains isa related parameter as a part of hash key.
|
|
# And then pass the command_line to below write function as extra parameter to
|
|
# guarantee the source code hash contains ISA difference.
|
|
vec_isa_cmd = repr(command_gen.get_command_line())
|
|
key, input_path = write(source_code, "cpp", extra=vec_isa_cmd)
|
|
|
|
if key not in cls.cache:
|
|
from filelock import FileLock
|
|
|
|
lock_path = os.path.join(get_lock_dir(), key + ".lock")
|
|
output_name, output_dir = get_name_and_dir_from_output_file_path(input_path)
|
|
"""
|
|
If `fb_code` env, it need to be dispatched to original `compile_file` function.
|
|
So, we still need to prepare parameters for the function: `input_path` and `fb_output_path`.
|
|
"""
|
|
fb_output_path = input_path[:-3] + "so"
|
|
future: Optional[Future[Any]] = None
|
|
lib = None
|
|
|
|
cpp_build_option = CppTorchCudaOptions(**compile_command)
|
|
cpp_builder = CppBuilder(
|
|
name=output_name,
|
|
sources=input_path,
|
|
output_dir=output_dir,
|
|
BuildOption=cpp_build_option,
|
|
)
|
|
|
|
worker_fn = functools.partial(
|
|
_worker_compile_cpp,
|
|
lock_path,
|
|
cpp_builder,
|
|
input_path,
|
|
fb_output_path,
|
|
)
|
|
|
|
binary_path = normalize_path_separator(
|
|
fb_output_path
|
|
if config.is_fbcode()
|
|
else cpp_builder.get_target_file_path()
|
|
)
|
|
|
|
def load_fn():
|
|
nonlocal lib
|
|
if lib is None:
|
|
if future is not None:
|
|
future.result()
|
|
result = worker_fn()
|
|
assert result is None
|
|
lib = cls._load_library(binary_path, key)
|
|
assert lib is not None
|
|
return lib
|
|
|
|
if submit_fn is not None:
|
|
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
|
|
if not os.path.exists(binary_path):
|
|
future = submit_fn(worker_fn)
|
|
|
|
cls.cache[key] = load_fn
|
|
|
|
return cls.cache[key]
|
|
|
|
@classmethod
|
|
def load(cls, source_code: str, cuda: bool = False):
|
|
return cls.load_async(source_code, cuda)()
|
|
|
|
|
|
def _worker_compile_cpp(
|
|
lock_path,
|
|
cpp_builder: CppBuilder,
|
|
fb_input_path: str,
|
|
fb_output_path: str,
|
|
):
|
|
from filelock import FileLock
|
|
|
|
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
|
|
binary_path = (
|
|
fb_output_path if config.is_fbcode() else cpp_builder.get_target_file_path()
|
|
)
|
|
if not os.path.exists(binary_path):
|
|
if config.is_fbcode():
|
|
compile_file(
|
|
fb_input_path,
|
|
fb_output_path,
|
|
shlex.split(cpp_builder.get_command_line()),
|
|
)
|
|
else:
|
|
cpp_builder.build()
|
|
|
|
|
|
# Customized Python binding for cpp kernels
|
|
@clear_on_fresh_inductor_cache
|
|
class CppPythonBindingsCodeCache(CppCodeCache):
|
|
cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags = {
|
|
# kernels have no dependency on libtorch
|
|
"include_pytorch": False,
|
|
"shared": True,
|
|
}
|
|
entry_function = "kernel"
|
|
call_entry_function = "kernel(%s);Py_RETURN_NONE;"
|
|
extra_parse_arg = ""
|
|
suffix_template = textwrap.dedent(
|
|
"""
|
|
// Python bindings to call %s():
|
|
#define PY_SSIZE_T_CLEAN
|
|
#include <Python.h>
|
|
#include <sstream>
|
|
#include <cstdlib>
|
|
|
|
#ifndef _MSC_VER
|
|
#if __cplusplus < 202002L
|
|
// C++20 (earlier) code
|
|
// https://en.cppreference.com/w/cpp/language/attributes/likely
|
|
#define likely(x) __builtin_expect(!!(x), 1)
|
|
#define unlikely(x) __builtin_expect(!!(x), 0)
|
|
#endif
|
|
#else
|
|
#define likely(x) (x)
|
|
#define unlikely(x) (x)
|
|
#endif
|
|
|
|
// This is defined in guards.cpp so we don't need to import PyTorch headers that are slooow.
|
|
// We manually link it below to workaround issues with fbcode build.
|
|
static void* (*_torchinductor_pyobject_tensor_data_ptr)(PyObject* obj);
|
|
|
|
template <typename T> static inline T parse_arg(PyObject* args, size_t n) {
|
|
static_assert(std::is_pointer<T>::value, "arg type must be pointer or long");
|
|
return static_cast<T>(_torchinductor_pyobject_tensor_data_ptr(PyTuple_GET_ITEM(args, n)));
|
|
}
|
|
template <> inline long parse_arg<long>(PyObject* args, size_t n) {
|
|
auto result = PyLong_AsSsize_t(PyTuple_GET_ITEM(args, n));
|
|
if(result == -1 && PyErr_Occurred())
|
|
[[unlikely]] throw std::runtime_error("expected int arg");
|
|
return result;
|
|
}
|
|
template <> inline uintptr_t parse_arg<uintptr_t>(PyObject* args, size_t n) {
|
|
auto result = PyLong_AsVoidPtr(PyTuple_GET_ITEM(args, n));
|
|
if(result == reinterpret_cast<void*>(-1) && PyErr_Occurred())
|
|
[[unlikely]] throw std::runtime_error("expected int arg");
|
|
return reinterpret_cast<uintptr_t>(result);
|
|
}
|
|
|
|
%s
|
|
|
|
static PyObject* %s_py(PyObject* self, PyObject* args) {
|
|
try {
|
|
if(!PyTuple_CheckExact(args))
|
|
[[unlikely]] throw std::runtime_error("tuple args required");
|
|
if(PyTuple_GET_SIZE(args) != %s)
|
|
[[unlikely]] throw std::runtime_error("requires %s args");
|
|
%s
|
|
} catch(std::exception const& e) {
|
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
|
return nullptr;
|
|
} catch(...) {
|
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static PyMethodDef py_methods[] = {
|
|
{"%s", %s_py, METH_VARARGS, ""},
|
|
{NULL, NULL, 0, NULL}};
|
|
|
|
static struct PyModuleDef py_module =
|
|
{PyModuleDef_HEAD_INIT, "%s", NULL, -1, py_methods};
|
|
|
|
PyMODINIT_FUNC PyInit_%s(void) {
|
|
const char* str_addr = std::getenv("_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR");
|
|
if(!str_addr) {
|
|
PyErr_SetString(PyExc_RuntimeError, "_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR must be set");
|
|
return nullptr;
|
|
}
|
|
std::istringstream iss(str_addr);
|
|
uintptr_t addr = 0;
|
|
iss >> addr;
|
|
_torchinductor_pyobject_tensor_data_ptr =
|
|
reinterpret_cast<decltype(_torchinductor_pyobject_tensor_data_ptr)>(addr);
|
|
return PyModule_Create(&py_module);
|
|
}
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _load_library_inner(cls, path: str, key: str) -> ModuleType:
|
|
os.environ["_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR"] = str(
|
|
torch._C._dynamo.guards._torchinductor_pyobject_tensor_data_ptr # type: ignore[attr-defined]
|
|
)
|
|
module_name = f"{key}.{cls.entry_function}"
|
|
try:
|
|
return sys.modules[module_name]
|
|
except KeyError:
|
|
pass
|
|
spec = importlib.util.spec_from_file_location(module_name, path)
|
|
assert spec is not None
|
|
module = importlib.util.module_from_spec(spec)
|
|
sys.modules[module_name] = module
|
|
spec.loader.exec_module(module) # type: ignore[union-attr]
|
|
return module
|
|
|
|
@classmethod
|
|
def load_pybinding_async(
|
|
cls,
|
|
argtypes: List[str],
|
|
source_code: str,
|
|
cuda: bool = False,
|
|
num_outputs: int = -1,
|
|
submit_fn=None,
|
|
extra_flags=(),
|
|
) -> Any:
|
|
"""
|
|
Wrap a C++ function in fast Python bindings.
|
|
|
|
Args:
|
|
argtypes: The types of args to ENTRY_FUNCTION(), e.g. ["float*", "long"]
|
|
source_code: C++ source code containing a ENTRY_FUNCTION() function
|
|
|
|
Returns:
|
|
A python version of ENTRY_FUNCTION()
|
|
"""
|
|
parseargs = ", ".join(
|
|
f"parse_arg<{argtype.replace('const ', '')}>(args, {n})"
|
|
for n, argtype in enumerate(argtypes)
|
|
)
|
|
suffix = cls.suffix_template % (
|
|
cls.entry_function,
|
|
cls.extra_parse_arg % num_outputs if cls.extra_parse_arg else "",
|
|
cls.entry_function,
|
|
len(argtypes),
|
|
len(argtypes),
|
|
cls.call_entry_function % parseargs,
|
|
cls.entry_function,
|
|
cls.entry_function,
|
|
cls.entry_function,
|
|
cls.entry_function,
|
|
)
|
|
get_result = cls.load_async(
|
|
source_code + suffix, cuda, submit_fn=submit_fn, extra_flags=extra_flags
|
|
)
|
|
result = None
|
|
|
|
def future():
|
|
nonlocal result
|
|
if result is None:
|
|
result = get_result()
|
|
assert isinstance(result, ModuleType)
|
|
return getattr(result, cls.entry_function)
|
|
|
|
return future
|
|
|
|
@classmethod
|
|
def load_pybinding(cls, *args, **kwargs) -> Any:
|
|
return cls.load_pybinding_async(*args, **kwargs)()
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CppWrapperCodeCache(CppPythonBindingsCodeCache):
|
|
cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
cpp_compile_command_flags = {
|
|
"include_pytorch": True,
|
|
"shared": True,
|
|
}
|
|
entry_function = "inductor_entry_cpp"
|
|
call_entry_function = "return inductor_entry_cpp(%s);"
|
|
extra_parse_arg = textwrap.dedent(
|
|
"""
|
|
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
|
|
|
|
static inline std::vector<AtenTensorHandle> unpack_tensor_handle_list(PyObject* pyvec) {
|
|
std::vector<AtenTensorHandle> result;
|
|
size_t result_len = PyList_GET_SIZE(pyvec);
|
|
result.reserve(result_len);
|
|
for (size_t i = 0; i < result_len; i++) {
|
|
// AtenTensorHandle is essentially a pointer
|
|
void* elem = PyCapsule_GetPointer(PyList_GET_ITEM(pyvec, i), NULL);
|
|
result.push_back(reinterpret_cast<AtenTensorHandle>(elem));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static inline PyObject* pack_tensor_handle_list(const std::vector<AtenTensorHandle>& cppvec) {
|
|
size_t result_len = cppvec.size();
|
|
PyObject* result = PyList_New(static_cast<Py_ssize_t>(result_len));
|
|
for (size_t i = 0; i < result_len; i++) {
|
|
PyObject *elem =
|
|
cppvec[i] == nullptr
|
|
? Py_None
|
|
// Store AtenTensorHandle as PyCapsulate
|
|
: PyCapsule_New(reinterpret_cast<void*>(cppvec[i]), NULL, NULL);
|
|
PyList_SET_ITEM(result, i, elem);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <> inline std::vector<AtenTensorHandle> parse_arg<std::vector<AtenTensorHandle>>(PyObject* args, size_t n) {
|
|
return unpack_tensor_handle_list(PyTuple_GET_ITEM(args, n));
|
|
}
|
|
|
|
PyObject* inductor_entry_cpp(std::vector<AtenTensorHandle>&& input_handles) {
|
|
// For outputs, we only allocate a vector to hold returned tensor handles,
|
|
// not allocating the actual output tensor storage here
|
|
std::vector<AtenTensorHandle> output_handles(%s);
|
|
try {
|
|
inductor_entry_impl(input_handles.data(), output_handles.data());
|
|
return pack_tensor_handle_list(output_handles);
|
|
} catch(std::exception const& e) {
|
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
|
return {};
|
|
} catch(...) {
|
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
|
return {};
|
|
}
|
|
}
|
|
"""
|
|
)
|
|
|
|
|
|
# TODO: Will remove the temp code after switch to new cpp_builder
|
|
def _temp_validate_new_and_old_command(new_cmd: List[str], old_cmd: List[str]):
|
|
new_diff: List[str] = [x for x in new_cmd if x not in old_cmd]
|
|
old_diff: List[str] = [y for y in old_cmd if y not in new_cmd]
|
|
|
|
if new_diff or old_diff:
|
|
print("!!! new_cmd: ", new_cmd)
|
|
print("!!! old_cmd: ", old_cmd)
|
|
print("!!! new_diff: ", new_diff)
|
|
print("!!! old_diff: ", old_diff)
|
|
raise RuntimeError("Error in new and old command different.")
|
|
|
|
|
|
def _do_validate_cpp_commands(
|
|
include_pytorch: bool,
|
|
cuda: bool,
|
|
compile_only: bool,
|
|
mmap_weights: bool,
|
|
use_absolute_path: bool,
|
|
aot_mode: bool,
|
|
):
|
|
# PreCI will failed if test machine can't run cuda.
|
|
temp_dir = tempfile.TemporaryDirectory()
|
|
test_dir_path = temp_dir.name
|
|
test_cuda = torch.cuda.is_available() and cuda
|
|
input_path = os.path.join(test_dir_path, "dummy_file.cpp")
|
|
output_path = os.path.join(test_dir_path, "dummy_file.so")
|
|
extra_flags = ["-D TEST_EXTRA_FLAGS"]
|
|
if compile_only:
|
|
output_path = os.path.join(test_dir_path, "dummy_file.o")
|
|
picked_isa = pick_vec_isa()
|
|
|
|
# Simulate fb_code env:
|
|
if not (aot_mode and not use_absolute_path):
|
|
input_path = os.path.basename(input_path)
|
|
output_path = os.path.basename(output_path)
|
|
|
|
# Fix test_new_cpp_build_logical failed on MacOS
|
|
if sys.platform != "linux":
|
|
aot_mode = False
|
|
|
|
old_cmd = cpp_compile_command(
|
|
input=input_path,
|
|
output=output_path,
|
|
include_pytorch=include_pytorch,
|
|
vec_isa=picked_isa,
|
|
cuda=test_cuda,
|
|
aot_mode=aot_mode,
|
|
compile_only=compile_only,
|
|
use_absolute_path=use_absolute_path,
|
|
use_mmap_weights=mmap_weights,
|
|
extra_flags=extra_flags,
|
|
).split(" ")
|
|
|
|
name, dir = get_name_and_dir_from_output_file_path(input_path)
|
|
|
|
dummy_build_option = CppTorchCudaOptions(
|
|
vec_isa=picked_isa,
|
|
include_pytorch=include_pytorch,
|
|
cuda=test_cuda,
|
|
aot_mode=aot_mode,
|
|
compile_only=compile_only,
|
|
use_absolute_path=use_absolute_path,
|
|
use_mmap_weights=mmap_weights,
|
|
extra_flags=extra_flags,
|
|
)
|
|
|
|
dummy_builder = CppBuilder(
|
|
name=name,
|
|
sources=input_path,
|
|
output_dir=dir,
|
|
BuildOption=dummy_build_option,
|
|
)
|
|
new_cmd = dummy_builder.get_command_line().split(" ")
|
|
|
|
_temp_validate_new_and_old_command(new_cmd, old_cmd)
|
|
|
|
temp_dir.cleanup()
|
|
|
|
|
|
# TODO: Will remove the temp code after switch to new cpp_builder
|
|
# It could help on sync new cpp_builder generate same command line as the old one.
|
|
def validate_new_cpp_commands():
|
|
cuda = [True, False]
|
|
use_mmap_weights = [True, False]
|
|
compile_only = [True, False]
|
|
include_pytorch = [True, False]
|
|
use_absolute_path = [True, False]
|
|
aot_mode = [False, True]
|
|
|
|
# Try to pass it in fb_code.
|
|
if config.is_fbcode():
|
|
return
|
|
|
|
for x in cuda:
|
|
for y in use_mmap_weights:
|
|
for z in compile_only:
|
|
for m in include_pytorch:
|
|
for n in use_absolute_path:
|
|
for o in aot_mode:
|
|
print(
|
|
f"!!! cuda:{x}, use_mmap_weights:{y}, compile_only:{z}, include_pytorch:{m},"
|
|
f" use_absolute_path:{n}, aot_mode:{o}"
|
|
)
|
|
_do_validate_cpp_commands(
|
|
include_pytorch=m,
|
|
cuda=x,
|
|
mmap_weights=y,
|
|
compile_only=z,
|
|
use_absolute_path=n,
|
|
aot_mode=o,
|
|
)
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class HalideCodeCache(CppPythonBindingsCodeCache):
|
|
cache: Dict[str, Callable[[], Union[ModuleType, CDLL]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
_standalone_runtime_path: Optional[str] = None
|
|
prefix = textwrap.dedent(
|
|
"""
|
|
#include "{halideruntime_h}"
|
|
#include "{headerfile}"
|
|
#include <stdexcept>
|
|
#include <cmath>
|
|
|
|
namespace c10 {{
|
|
inline long div_floor_integer(long a, long b) {{
|
|
if ((a<0) != (b<0)) {{
|
|
const auto quot = a / b;
|
|
const auto rem = a % b;
|
|
return rem ? quot - 1 : quot;
|
|
}}
|
|
return a / b;
|
|
}}
|
|
}}
|
|
"""
|
|
)
|
|
glue_template_cpp = prefix + textwrap.dedent(
|
|
"""
|
|
void kernel({argdefs}) {{
|
|
{buffers}
|
|
int err = halide_kernel({buffer_names});
|
|
if(err != 0) throw std::runtime_error("halide_kernel failed");
|
|
}}
|
|
"""
|
|
)
|
|
glue_template_cuda = prefix + textwrap.dedent(
|
|
"""
|
|
#include <cuda.h>
|
|
static const halide_device_interface_t* cuda_interface = halide_cuda_device_interface();
|
|
|
|
void kernel({argdefs}, uintptr_t stream) {{
|
|
{buffers}
|
|
int err = halide_kernel(reinterpret_cast<void*>(stream), {buffer_names});
|
|
if(err != 0) throw std::runtime_error("halide_kernel failed");
|
|
}}
|
|
"""
|
|
)
|
|
standalone_runtime_cuda_init = textwrap.dedent(
|
|
"""
|
|
#include "{}"
|
|
#include <cuda.h>
|
|
|
|
static int acquire_context(void* user_context,
|
|
void** cuda_context_out,
|
|
bool create) {{
|
|
return cuCtxGetCurrent(reinterpret_cast<CUcontext*>(cuda_context_out));
|
|
}}
|
|
|
|
static int release_context(void* user_context) {{
|
|
return 0;
|
|
}}
|
|
|
|
static int get_stream(void* user_context,
|
|
void* cuda_context,
|
|
void** stream_out) {{
|
|
*stream_out = user_context;
|
|
return 0;
|
|
}}
|
|
|
|
static int register_halide_hooks() {{
|
|
halide_set_cuda_acquire_context(&acquire_context);
|
|
halide_set_cuda_release_context(&release_context);
|
|
halide_set_cuda_get_stream(&get_stream);
|
|
return 0;
|
|
}}
|
|
|
|
int inductor_register_halide_hooks_result = register_halide_hooks();
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _codegen_buffer(cls, name: str, arg: HalideInputSpec, cuda: bool):
|
|
assert arg.shape is not None
|
|
assert arg.stride is not None and len(arg.shape) == len(arg.stride)
|
|
assert arg.offset is not None
|
|
data_ptr = f"{arg.alias_of or arg.name} + {arg.offset}"
|
|
if cuda:
|
|
device = f"reinterpret_cast<uint64_t>({data_ptr})"
|
|
device_interface = "cuda_interface"
|
|
host = "nullptr"
|
|
flags = "halide_buffer_flag_device_dirty"
|
|
else:
|
|
device = "0"
|
|
device_interface = "nullptr"
|
|
host = f"reinterpret_cast<uint8_t*>({data_ptr})"
|
|
flags = "halide_buffer_flag_host_dirty"
|
|
|
|
dims = []
|
|
for size, stride in zip(arg.shape, arg.stride):
|
|
dims.append(f"halide_dimension_t(0, {size}, {stride})")
|
|
|
|
return [
|
|
f"halide_buffer_t {name};",
|
|
f"halide_dimension_t {name}_dims[] = {{{', '.join(dims)}}};",
|
|
f"{name}.device = {device};",
|
|
f"{name}.device_interface = {device_interface};",
|
|
f"{name}.host = {host};",
|
|
f"{name}.flags = {flags};",
|
|
f"{name}.type = {arg.halide_type()};",
|
|
f"{name}.dimensions = {len(dims)};",
|
|
f"{name}.dim = {name}_dims;",
|
|
f"{name}.padding = nullptr;",
|
|
]
|
|
|
|
@classmethod
|
|
def _codegen_glue(cls, meta, headerfile):
|
|
is_cuda = meta.is_cuda()
|
|
assert is_cuda is ("user_context" in meta.target)
|
|
assert "no_runtime" in meta.target
|
|
buffers = []
|
|
buffer_names = []
|
|
for i, arg in enumerate(meta.argtypes):
|
|
if arg.is_buffer():
|
|
buffer_names.append(f"&hl_buf_{i}")
|
|
buffers.extend(cls._codegen_buffer(f"hl_buf_{i}", arg, is_cuda))
|
|
else:
|
|
assert "*" not in arg.ctype
|
|
buffer_names.append(arg.name)
|
|
buffers = "\n".join([f" {line}" for line in buffers]).lstrip()
|
|
|
|
glue_template = cls.glue_template_cuda if is_cuda else cls.glue_template_cpp
|
|
glue_code = glue_template.format(
|
|
halideruntime_h=cls.find_header(
|
|
"HalideRuntimeCuda.h" if is_cuda else "HalideRuntime.h"
|
|
),
|
|
headerfile=headerfile,
|
|
argdefs=", ".join(
|
|
f"{a.bindings_type()} {a.name}"
|
|
for a in meta.argtypes
|
|
if a.alias_of is None
|
|
),
|
|
buffers=buffers,
|
|
buffer_names=", ".join(buffer_names),
|
|
)
|
|
return glue_code
|
|
|
|
@classmethod
|
|
@functools.lru_cache(None)
|
|
def config_hash(cls):
|
|
command_gen = CppBuilder(
|
|
name="O",
|
|
sources="I",
|
|
BuildOption=CppOptions(),
|
|
)
|
|
command_line = command_gen.get_command_line()
|
|
return sha256_hash(
|
|
"\n".join(
|
|
[
|
|
cls.glue_template_cpp,
|
|
cls.glue_template_cuda,
|
|
cls.standalone_runtime_cuda_init,
|
|
command_line,
|
|
]
|
|
).encode("utf-8")
|
|
)
|
|
|
|
@staticmethod
|
|
def _search_for_file(suffix, errmsg):
|
|
spec = importlib.machinery.PathFinder.find_spec("halide")
|
|
if spec is None or not spec.submodule_search_locations:
|
|
raise RuntimeError("halide python bindings not installed")
|
|
try:
|
|
search = spec.submodule_search_locations[0]
|
|
for file in os.listdir(search):
|
|
if file.endswith(".so"):
|
|
try:
|
|
out = subprocess.check_output(
|
|
["ldd", os.path.join(search, file)]
|
|
)
|
|
except subprocess.SubprocessError:
|
|
continue
|
|
m = re.search(r"(/.*)/libHalide.so", out.decode("utf-8"))
|
|
if m:
|
|
path = os.path.join(os.path.abspath(m.group(1)), suffix)
|
|
if os.path.exists(path):
|
|
return os.path.abspath(path)
|
|
except Exception as e:
|
|
raise RuntimeError(errmsg) from e
|
|
raise RuntimeError(errmsg)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def find_libautoschedule(name):
|
|
sofile = f"libautoschedule_{name.lower()}.so"
|
|
if "HALIDE_LIB" in os.environ:
|
|
path = os.path.join(os.environ["HALIDE_LIB"], sofile)
|
|
if os.path.exists(path):
|
|
return path
|
|
errmsg = (
|
|
f"Can't find {sofile}, set env HALIDE_LIB to the directory containing it"
|
|
)
|
|
return HalideCodeCache._search_for_file(sofile, errmsg)
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def find_header(name):
|
|
if "HALIDE_INCLUDE" in os.environ:
|
|
path = os.path.join(os.environ["HALIDE_INCLUDE"], name)
|
|
if os.path.exists(path):
|
|
return path
|
|
if "HALIDE_LIB" in os.environ:
|
|
path = os.path.abspath(
|
|
os.path.join(os.environ["HALIDE_LIB"], f"../include/{name}")
|
|
)
|
|
if os.path.exists(path):
|
|
return path
|
|
errmsg = (
|
|
f"Can't find {name}, set env HALIDE_INCLUDE to the directory containing it"
|
|
)
|
|
return HalideCodeCache._search_for_file(f"../include/{name}", errmsg)
|
|
|
|
@classmethod
|
|
def generate_halide_async(cls, meta: HalideMeta, source_code: str, submit_fn=None):
|
|
dirpath = Path(
|
|
get_path(
|
|
code_hash(
|
|
source_code,
|
|
extra=repr((cls.config_hash(), meta)),
|
|
),
|
|
"halide",
|
|
)[2]
|
|
)
|
|
os.makedirs(dirpath, exist_ok=True)
|
|
wait_for_compile = None
|
|
genfile = str(dirpath / "generate_kernel.py")
|
|
libfile = str(dirpath / "halide_kernel.a")
|
|
headerfile = str(dirpath / "halide_kernel.h")
|
|
donefile = str(dirpath / "done")
|
|
lockfile = str(dirpath / "lock")
|
|
need_compile = not os.path.exists(donefile)
|
|
jobs = []
|
|
if need_compile:
|
|
write_atomic(genfile, source_code)
|
|
cmd = [
|
|
sys.executable,
|
|
genfile,
|
|
"-g",
|
|
"kernel",
|
|
"-o",
|
|
f"{dirpath}",
|
|
"-f",
|
|
"halide_kernel",
|
|
"-e",
|
|
"static_library,h,schedule",
|
|
]
|
|
if meta.scheduler:
|
|
cmd.extend(["-p", cls.find_libautoschedule(meta.scheduler)])
|
|
cmd.extend(meta.args())
|
|
jobs.append(functools.partial(subprocess.check_call, cmd))
|
|
|
|
binding_types = [
|
|
arg.bindings_type() for arg in meta.argtypes if arg.alias_of is None
|
|
]
|
|
if meta.is_cuda():
|
|
binding_types.append("uintptr_t") # stream
|
|
bindings_future = cls.load_pybinding_async(
|
|
binding_types,
|
|
cls._codegen_glue(meta, headerfile),
|
|
extra_flags=(libfile, cls.build_standalone_runtime()),
|
|
submit_fn=jobs.append if need_compile else None,
|
|
cuda=meta.is_cuda(),
|
|
)
|
|
|
|
if need_compile:
|
|
jobs.append(functools.partial(touch, donefile))
|
|
task = functools.partial(_worker_task_halide, lockfile, jobs)
|
|
if submit_fn:
|
|
wait_for_compile = submit_fn(task).result
|
|
else:
|
|
task()
|
|
|
|
def load():
|
|
if wait_for_compile:
|
|
wait_for_compile()
|
|
return bindings_future()
|
|
|
|
return load
|
|
|
|
@classmethod
|
|
def generate_halide(cls, *args, **kwargs):
|
|
return cls.generate_halide_async(*args, **kwargs)()
|
|
|
|
@classmethod
|
|
def build_standalone_runtime(cls):
|
|
if cls._standalone_runtime_path and os.path.exists(
|
|
cls._standalone_runtime_path
|
|
):
|
|
return cls._standalone_runtime_path
|
|
is_cuda = torch.cuda.is_available()
|
|
libname = "libStandaloneHalideRuntime.so"
|
|
target = "host-cuda" if is_cuda else "host"
|
|
if cls._standalone_runtime_path:
|
|
assert not os.path.exists(cls._standalone_runtime_path)
|
|
# We hit this case in unittests when we run with fresh_inductor_cache()
|
|
# Generating a fresh runtime over and over causes errors because we initialize
|
|
# cuda hundreds of times in the same process and run out of file descriptors.
|
|
# Workaround by jail breaking the current fresh_inductor_cache().
|
|
base = default_cache_dir()
|
|
else:
|
|
base = cache_dir()
|
|
dirpath = Path(base) / f"halide-runtime-{target}-{cls.config_hash()}"
|
|
os.makedirs(dirpath, exist_ok=True)
|
|
donefile = str(dirpath / "done")
|
|
lockfile = str(dirpath / "lock")
|
|
hookfile = str(dirpath / "hooks.cpp")
|
|
afile = str(dirpath / "standalone_halide_runtime.a")
|
|
sofile = str(dirpath / libname)
|
|
if not os.path.exists(donefile):
|
|
import filelock
|
|
import halide as hl # type: ignore[import-untyped,import-not-found]
|
|
|
|
with filelock.FileLock(lockfile, LOCK_TIMEOUT):
|
|
if not os.path.exists(donefile):
|
|
with open(hookfile, "w") as f:
|
|
if is_cuda:
|
|
f.write(
|
|
cls.standalone_runtime_cuda_init.format(
|
|
cls.find_header("HalideRuntimeCuda.h")
|
|
)
|
|
)
|
|
hl.compile_standalone_runtime(afile, hl.Target(target))
|
|
|
|
name, output_dir = get_name_and_dir_from_output_file_path(sofile)
|
|
halide_cmd_gen = CppBuilder(
|
|
name=name,
|
|
sources=[hookfile, afile],
|
|
output_dir=output_dir,
|
|
BuildOption=CppTorchCudaOptions(
|
|
cuda=is_cuda,
|
|
),
|
|
)
|
|
|
|
subprocess.check_call(
|
|
shlex.split(halide_cmd_gen.get_command_line())
|
|
)
|
|
touch(donefile)
|
|
assert os.path.exists(sofile)
|
|
cls._standalone_runtime_path = sofile
|
|
return sofile
|
|
|
|
|
|
def _worker_task_halide(lockfile, jobs):
|
|
from filelock import FileLock
|
|
|
|
try:
|
|
with FileLock(lockfile, LOCK_TIMEOUT):
|
|
for job in jobs:
|
|
job()
|
|
except subprocess.SubprocessError as e:
|
|
if os.environ.get("HALIDE_REPRO") == "1":
|
|
python, script, *cmd = getattr(e, "cmd", ("", "", ""))
|
|
if os.path.basename(python).startswith("python"):
|
|
code = open(script).read()
|
|
main = " hl.main()"
|
|
assert code.count(main) == 1
|
|
|
|
class Out:
|
|
def __repr__(self):
|
|
return "out"
|
|
|
|
cmd[cmd.index("-o") + 1] = Out() # type: ignore[call-overload]
|
|
repl = textwrap.indent(
|
|
textwrap.dedent(
|
|
f"""\
|
|
import sys, tempfile
|
|
with tempfile.TemporaryDirectory() as out:
|
|
sys.argv = {["repro.py", *cmd]!r}
|
|
hl.main()
|
|
"""
|
|
),
|
|
" ",
|
|
)
|
|
code = code.replace(main, repl)
|
|
with open("repro.py", "w") as fd:
|
|
fd.write(code.lstrip())
|
|
raise RuntimeError(f"wrote repro.py: {e}") from e
|
|
raise
|
|
|
|
|
|
def touch(filename):
|
|
open(filename, "a").close()
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class PyCodeCache:
|
|
cache: Dict[str, ModuleType] = {}
|
|
linemaps: Dict[str, List[Tuple[Any, ...]]] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
|
|
@classmethod
|
|
def write(cls, source_code: str, extra: str = "") -> Tuple[str, str]:
|
|
return write(source_code, "py", extra=extra)
|
|
|
|
@classmethod
|
|
def load(
|
|
cls,
|
|
source_code: str,
|
|
extra: str = "",
|
|
linemap: Optional[List[Tuple[int, str]]] = None,
|
|
attrs: Optional[Dict[str, Any]] = None,
|
|
) -> ModuleType:
|
|
key, path = write(source_code, "py", extra=extra)
|
|
return cls.load_by_key_path(key, path, linemap, attrs)
|
|
|
|
@classmethod
|
|
def load_by_key_path(
|
|
cls,
|
|
key: str,
|
|
path: str,
|
|
linemap: Optional[List[Tuple[int, str]]] = None,
|
|
attrs: Optional[Dict[str, Any]] = None,
|
|
) -> ModuleType:
|
|
if linemap is None:
|
|
linemap = []
|
|
if key not in cls.cache:
|
|
mod = _reload_python_module(key, path)
|
|
|
|
# another thread might set this first
|
|
cls.cache.setdefault(key, mod)
|
|
# unzip into separate lines/nodes lists
|
|
cls.linemaps[path] = list(zip(*linemap))
|
|
|
|
if attrs is not None:
|
|
for k, v in attrs.items():
|
|
setattr(mod, k, v)
|
|
|
|
if not (linemap or attrs):
|
|
mod._reload_in_subproc = functools.partial( # type: ignore[attr-defined]
|
|
_reload_python_module_in_subproc, key, path
|
|
)
|
|
|
|
return cls.cache[key]
|
|
|
|
@classmethod
|
|
@functools.lru_cache(None)
|
|
def stack_frames_for_code(
|
|
cls, path: str, lineno: int
|
|
) -> Optional[List[Dict[str, Any]]]:
|
|
if path not in cls.linemaps:
|
|
return None
|
|
# [(starting_line, <fx node>), ...]
|
|
lines, nodes = cls.linemaps[path]
|
|
p = bisect_right(lines, lineno)
|
|
if p == 0:
|
|
return None
|
|
entry = nodes[p - 1]
|
|
if not entry:
|
|
return None
|
|
|
|
def parse_stack_trace(stack_trace: str) -> List[Dict[str, Any]]:
|
|
# ideally fx stores stack traces as data rather than a string
|
|
# but this is not along a performance critical path
|
|
regex = r'File "(.+)", line (\d+), in (.+)\n'
|
|
matches = re.findall(regex, stack_trace)
|
|
return [
|
|
{"filename": f, "line": int(l), "name": n}
|
|
for f, l, n in reversed(matches)
|
|
]
|
|
|
|
return parse_stack_trace(entry)
|
|
|
|
|
|
class TritonCodeCache:
|
|
@classmethod
|
|
def load(cls, kernel_name: str, source_code: str) -> ModuleType:
|
|
return _module_to_triton_kernel(PyCodeCache.load(source_code), kernel_name)
|
|
|
|
|
|
def _cuda_compiler() -> Optional[str]:
|
|
if cuda_env.nvcc_exist(config.cuda.cuda_cxx):
|
|
return config.cuda.cuda_cxx
|
|
if config.is_fbcode():
|
|
return os.path.join(build_paths.cuda(), "bin", "nvcc")
|
|
if cuda_env.nvcc_exist(os.getenv("CUDACXX")):
|
|
return os.getenv("CUDACXX", "")
|
|
if cuda_env.nvcc_exist(os.getenv("CUDA_HOME")):
|
|
return os.path.realpath(os.path.join(os.getenv("CUDA_HOME", ""), "bin/nvcc"))
|
|
return "nvcc"
|
|
|
|
|
|
def _cutlass_include_paths() -> List[str]:
|
|
if config.is_fbcode():
|
|
from libfb.py import parutil
|
|
|
|
cutlass_path = parutil.get_dir_path("cutlass-3-headers")
|
|
else:
|
|
cutlass_path = config.cuda.cutlass_dir
|
|
return [
|
|
# Use realpath to get canonical absolute paths, in order not to mess up cache keys
|
|
os.path.realpath(os.path.join(cutlass_path, "include")),
|
|
os.path.realpath(os.path.join(cutlass_path, "tools/library/include")),
|
|
os.path.realpath(os.path.join(cutlass_path, "tools/library/src")),
|
|
os.path.realpath(os.path.join(cutlass_path, "tools/util/include")),
|
|
]
|
|
|
|
|
|
def _cuda_lib_options() -> List[str]:
|
|
_set_gpu_runtime_env() # cpp_extension consults the env
|
|
from torch.utils import cpp_extension
|
|
|
|
lpaths = cpp_extension.library_paths(cuda=True) + [
|
|
sysconfig.get_config_var("LIBDIR")
|
|
]
|
|
extra_ldflags: List[str] = []
|
|
if is_linux():
|
|
_transform_cuda_paths(lpaths)
|
|
for path in lpaths:
|
|
# -rpath ensures the DLL can find its dependencies when loaded, even
|
|
# if the library path is non-standard.
|
|
extra_ldflags.extend([f"-L{path}", "-Xlinker", f"-rpath={path}"])
|
|
extra_ldflags.append("-lcuda")
|
|
extra_ldflags.append("-lcudart")
|
|
else:
|
|
raise NotImplementedError(
|
|
"Unsupported env, failed to find cuda libs! Currently only Linux is supported."
|
|
)
|
|
return extra_ldflags
|
|
|
|
|
|
def _nvcc_host_compiler_options() -> List[str]:
|
|
return [
|
|
"-fPIC",
|
|
"-fno-strict-aliasing",
|
|
"-fvisibility=hidden",
|
|
"-Wconversion",
|
|
]
|
|
|
|
|
|
def _nvcc_compiler_options() -> List[str]:
|
|
arch = cuda_env.get_cuda_arch()
|
|
if arch == "90":
|
|
# Required by cutlass compilation.
|
|
arch = "90a"
|
|
code = [f"sm_{arch}", f"compute_{arch}"]
|
|
if config.cuda.enable_cuda_lto:
|
|
code += [f"lto_{arch}"]
|
|
options = [
|
|
"-t=0",
|
|
"-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1",
|
|
"-w",
|
|
f"-gencode=arch=compute_{arch},code=[{','.join(code)}]",
|
|
config.cuda.compile_opt_level,
|
|
"-std=c++17",
|
|
"--expt-relaxed-constexpr",
|
|
"-DNDEBUG",
|
|
]
|
|
if config.is_fbcode():
|
|
options.extend(["-ccbin", os.path.dirname(build_paths.gcc())])
|
|
if config.cuda.enable_debug_info:
|
|
options.extend(["-lineinfo", "-g", "-DCUTLASS_DEBUG_TRACE_LEVEL=1"])
|
|
if config.cuda.enable_ptxas_info:
|
|
options.extend(
|
|
[
|
|
"--keep", # Keep the intermediate files for debugging (including ptx, sass, cubin etc.)
|
|
"--ptxas-options=--warn-on-local-memory-usage", # warn us if local memory is used in CUDA Kernels
|
|
"--ptxas-options=--warn-on-spills", # warn us if register spilling happens in CUDA Kernels
|
|
"--resource-usage", # Report on CUDA resource usage (shared mem, registers etc.)
|
|
"--source-in-ptx",
|
|
]
|
|
) # Annotate the ptx file with source information
|
|
if config.cuda.use_fast_math:
|
|
options.extend(
|
|
[
|
|
"--use_fast_math",
|
|
"-DCUTLASS_USE_TANH_FOR_SIGMOID=1",
|
|
]
|
|
)
|
|
return options
|
|
|
|
|
|
def cuda_compile_command(
|
|
src_files: List[str],
|
|
dst_file: str,
|
|
dst_file_ext: str,
|
|
extra_args: Optional[List[str]] = None,
|
|
) -> str:
|
|
if extra_args is None:
|
|
extra_args = []
|
|
include_paths = _cutlass_include_paths()
|
|
cuda_lib_options = _cuda_lib_options()
|
|
nvcc_host_compiler_options = _nvcc_host_compiler_options()
|
|
nvcc_compiler_options = _nvcc_compiler_options()
|
|
options = (
|
|
nvcc_compiler_options
|
|
+ extra_args
|
|
+ [
|
|
f"-Xcompiler {opt}" if "=" in opt else f"-Xcompiler={opt}"
|
|
for opt in nvcc_host_compiler_options
|
|
]
|
|
+ ["-I" + path for path in include_paths]
|
|
+ cuda_lib_options
|
|
)
|
|
src_file = " ".join(src_files)
|
|
res = ""
|
|
if dst_file_ext == "o":
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -c -o {dst_file} {src_file}"
|
|
elif dst_file_ext == "so":
|
|
options.append("-shared")
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
|
elif dst_file_ext == "exe":
|
|
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
|
else:
|
|
raise NotImplementedError(f"Unsupported output file suffix {dst_file_ext}!")
|
|
log.debug("CUDA command: %s", res)
|
|
return res
|
|
|
|
|
|
class DLLWrapper:
|
|
"""A wrapper for a dynamic library."""
|
|
|
|
def __init__(
|
|
self,
|
|
lib_path: str,
|
|
):
|
|
self.lib_path = lib_path
|
|
self.is_open = False
|
|
self.DLL = cdll.LoadLibrary(lib_path)
|
|
self.is_open = True
|
|
|
|
def close(self):
|
|
if self.is_open:
|
|
self._dlclose()
|
|
self.is_open = False
|
|
|
|
def _dlclose(self):
|
|
f_dlclose = None
|
|
|
|
if is_linux():
|
|
syms = CDLL(None)
|
|
if not hasattr(syms, "dlclose"):
|
|
# Apline Linux
|
|
syms = CDLL("libc.so")
|
|
|
|
if hasattr(syms, "dlclose"):
|
|
f_dlclose = syms.dlclose
|
|
else:
|
|
raise NotImplementedError("Unsupported env, failed to do dlclose!")
|
|
|
|
if f_dlclose is not None:
|
|
f_dlclose.argtypes = [c_void_p]
|
|
f_dlclose(self.DLL._handle)
|
|
else:
|
|
log.warning(
|
|
"dll unloading function was not found, library may not be unloaded properly!"
|
|
)
|
|
|
|
def __getattr__(self, name):
|
|
if not self.is_open:
|
|
raise RuntimeError(f"Cannot use closed DLL library: {self.lib_path}")
|
|
|
|
method = getattr(self.DLL, name)
|
|
|
|
def _wrapped_func(*args):
|
|
err = method(*args)
|
|
if err:
|
|
raise RuntimeError(f"Error in function: {method.__name__}")
|
|
|
|
return _wrapped_func
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.close()
|
|
|
|
def __del__(self):
|
|
self.close()
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class CUDACodeCache:
|
|
@dataclasses.dataclass
|
|
class CacheEntry:
|
|
input_path: str
|
|
output_path: str
|
|
|
|
cache: Dict[str, CacheEntry] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
_SOURCE_CODE_SUFFIX = "cu"
|
|
|
|
@classmethod
|
|
def write(cls, source_code, dst_file_ext) -> Tuple[str, str]:
|
|
"""
|
|
Writes source code into a file with dst_file_ext as the file extension.
|
|
Returns the hash key of source code, and the path to the file.
|
|
"""
|
|
|
|
cuda_command = repr(
|
|
cuda_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
|
|
)
|
|
key, input_path = write(
|
|
source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command
|
|
)
|
|
return key, input_path
|
|
|
|
@classmethod
|
|
def compile(
|
|
cls, source_code, dst_file_ext, extra_args: Optional[List[str]] = None
|
|
) -> Tuple[str, str, str]:
|
|
"""
|
|
Compiles CUDA source_code into a file with dst_file_ext extension.
|
|
Returns a tuple of dst_file_path, hash_key, source_code_path
|
|
"""
|
|
key, input_path = cls.write(source_code, dst_file_ext)
|
|
if key not in cls.cache:
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
|
|
if not os.path.exists(output_path):
|
|
cmd = cuda_compile_command(
|
|
[input_path], output_path, dst_file_ext, extra_args
|
|
)
|
|
start_time = time()
|
|
log.debug("CUDA Compilation: %s", cmd)
|
|
cmd_parts = cmd.split(" ")
|
|
try:
|
|
subprocess.check_output(
|
|
cmd_parts, stderr=subprocess.STDOUT, env=os.environ
|
|
)
|
|
except subprocess.CalledProcessError as error:
|
|
raise exc.CUDACompileError(cmd_parts, error.output) from error
|
|
end_time = time()
|
|
log_duration_msg = f"CUDA Compilation took {end_time-start_time} seconds. Compile command: {cmd}"
|
|
log.info(log_duration_msg)
|
|
else:
|
|
log.debug(
|
|
"CUDA Compilation skipped: %s since output already exists",
|
|
input_path,
|
|
)
|
|
cls.cache[key] = CUDACodeCache.CacheEntry(input_path, output_path)
|
|
|
|
return (cls.cache[key].output_path, key, input_path)
|
|
|
|
@classmethod
|
|
def load(cls, source_code, dst_file_ext) -> Tuple[DLLWrapper, str, str]:
|
|
"""
|
|
Compiles source code and loads the generated .so file.
|
|
Returns a tuple of DLLWrapper, hash_key, source_code_path
|
|
"""
|
|
|
|
if dst_file_ext != "so":
|
|
raise RuntimeError(
|
|
f"Only support loading a .so file for now. "
|
|
f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
|
|
)
|
|
dst_file_path, hash_key, source_code_path = cls.compile(
|
|
source_code, dst_file_ext
|
|
)
|
|
return (DLLWrapper(dst_file_path), hash_key, source_code_path)
|
|
|
|
|
|
@clear_on_fresh_inductor_cache
|
|
class ROCmCodeCache:
|
|
@dataclasses.dataclass
|
|
class CacheEntry:
|
|
input_path: str
|
|
output_path: str
|
|
|
|
cache: Dict[str, CacheEntry] = {}
|
|
cache_clear = staticmethod(cache.clear)
|
|
_SOURCE_CODE_SUFFIX = "cpp"
|
|
_logged_compiler_version = False
|
|
|
|
@classmethod
|
|
def write(cls, source_code, dst_file_ext) -> Tuple[str, str]:
|
|
"""
|
|
Writes source code into a file with dst_file_ext as the file extension.
|
|
Returns the hash key of source code, and the path to the file.
|
|
"""
|
|
|
|
cuda_command = repr(
|
|
rocm_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
|
|
)
|
|
key, input_path = write(
|
|
source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command
|
|
)
|
|
return key, input_path
|
|
|
|
@classmethod
|
|
def compile(
|
|
cls, source_code, dst_file_ext, extra_args: Optional[List[str]] = None
|
|
) -> Tuple[str, str, str]:
|
|
"""
|
|
Compiles source_code into a file with dst_file_ext extension,
|
|
using the compile command specific for the ROCm platform.
|
|
Returns a tuple of dst_file_path, hash_key, source_code_path
|
|
"""
|
|
if not cls._logged_compiler_version:
|
|
cls._logged_compiler_version = True
|
|
log.debug(get_compiler_version_info(str(rocm_compiler())))
|
|
|
|
key, input_path = cls.write(source_code, dst_file_ext)
|
|
if key not in cls.cache:
|
|
from filelock import FileLock
|
|
|
|
lock_dir = get_lock_dir()
|
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
|
with lock:
|
|
output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
|
|
if not os.path.exists(output_path):
|
|
cmd = rocm_compile_command(
|
|
[input_path], output_path, dst_file_ext, extra_args
|
|
)
|
|
start_time = time()
|
|
cmd_parts = cmd.split(" ")
|
|
try:
|
|
output = subprocess.check_output(
|
|
cmd_parts,
|
|
stderr=subprocess.STDOUT,
|
|
text=True,
|
|
env=os.environ,
|
|
)
|
|
log.debug("Compilation output: %s", output)
|
|
except subprocess.CalledProcessError as error:
|
|
raise exc.CUDACompileError(cmd_parts, error.output) from error
|
|
end_time = time()
|
|
log_duration_msg = f"Compilation took {end_time-start_time} seconds. Compile command: {cmd}"
|
|
log.info(log_duration_msg)
|
|
else:
|
|
log.debug(
|
|
"Compilation skipped: %s since output already exists",
|
|
input_path,
|
|
)
|
|
cls.cache[key] = ROCmCodeCache.CacheEntry(input_path, output_path)
|
|
|
|
return (cls.cache[key].output_path, key, input_path)
|
|
|
|
@classmethod
|
|
def load(cls, source_code, dst_file_ext) -> Tuple[DLLWrapper, str, str]:
|
|
"""
|
|
Compiles source code and loads the generated .so file.
|
|
Returns a tuple of DLLWrapper, hash_key, source_code_path
|
|
"""
|
|
|
|
if dst_file_ext != "so":
|
|
raise RuntimeError(
|
|
f"Only support loading a .so file for now. "
|
|
f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
|
|
)
|
|
dst_file_path, hash_key, source_code_path = cls.compile(
|
|
source_code, dst_file_ext
|
|
)
|
|
return (DLLWrapper(dst_file_path), hash_key, source_code_path)
|
|
|
|
|
|
class CodeCacheFuture:
|
|
def result(self):
|
|
raise NotImplementedError
|
|
|
|
|
|
class TritonFuture(CodeCacheFuture):
|
|
kernel: ModuleType
|
|
|
|
def __init__(
|
|
self,
|
|
kernel: Any,
|
|
future: Optional[Future[Any]],
|
|
) -> None:
|
|
self.kernel = kernel
|
|
self.future = future
|
|
|
|
# @dynamo_utils.dynamo_timed
|
|
def result(self) -> ModuleType:
|
|
if self.future is not None:
|
|
# If the worker failed this will throw an exception.
|
|
result = self.future.result()
|
|
assert result is None
|
|
self.future = None
|
|
self.kernel.precompile()
|
|
return self.kernel
|
|
|
|
|
|
class LambdaFuture(CodeCacheFuture):
|
|
def __init__(self, result_fn):
|
|
self.result_fn = result_fn
|
|
|
|
def result(self):
|
|
return self.result_fn()
|