Files
pytorch/tools/lite_interpreter/gen_selected_mobile_ops_header.py
Chen Lai b7b481bd07 [PyTorch] Enable template build at aten operator level (#53801)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53801

## Summary

Enable partial explicit Aten level sources list for lite interpreter. More aten level source list will be added.

1. Use `gen_selected_mobile_ops_header.py ` to generate `selected_mobile_ops.h`. Currently, it only includes selected operators, and dtypes is all.
2. Add a custom target includes only `seleteted_mobile_ops.h`, and add it to `torch_cpu` dependency, when `BUILD_LITE_INTERPRETER` is enabled.

As a note, the current input yaml file is slightly different than the one use in internal. Will align these two yaml as next step.

**Android**
x86:
`SELECTED_OP_LIST=/Users/chenlai/Documents/pytorch/experiemnt/deeplabv3_scripted.yaml BUILD_LITE_INTERPRETER=1 ./scripts/build_pytorch_android.sh x86`

libpytorch_jni_lite.so -- 3.4 MB

armeabi-v7a
`SELECTED_OP_LIST=/Users/chenlai/Documents/pytorch/experiemnt/deeplabv3_scripted.yaml BUILD_LITE_INTERPRETER=1 ./scripts/build_pytorch_android.sh armeabi-v7a`
libpytorch_jni_lite.so -- 2.5 MB

**iOS:**
```
(base) chenlai@chenlai-mp install % du -sh *
 15M	include
 57M	lib
2.8M	share
```

```
(base) chenlai@chenlai-mp lib % ls -lh
total 117296
-rw-r--r--  1 chenlai  staff   3.2M Mar 15 22:03 libXNNPACK.a
-rw-r--r--  1 chenlai  staff   913K Mar 15 22:03 libc10.a
-rw-r--r--  1 chenlai  staff   4.6K Mar 15 22:03 libclog.a
-rw-r--r--  1 chenlai  staff    42K Mar 15 22:03 libcpuinfo.a
-rw-r--r--  1 chenlai  staff   1.5M Mar 15 22:03 libeigen_blas.a
-rw-r--r--  1 chenlai  staff    44K Mar 15 22:03 libpthreadpool.a
-rw-r--r--  1 chenlai  staff   166K Mar 15 22:03 libpytorch_qnnpack.a
-rw-r--r--  1 chenlai  staff   384B Mar 15 22:03 libtorch.a
-rw-r--r--  1 chenlai  staff    51M Mar 15 22:03 libtorch_cpu.a
```

### **Master (Baseline):**

**Android**
x86:
`SELECTED_OP_LIST=/Users/chenlai/Documents/pytorch/experiemnt/deeplabv3_scripted.yaml BUILD_LITE_INTERPRETER=1 ./scripts/build_pytorch_android.sh x86`

libpytorch_jni_lite.so -- 3.8 MB

armeabi-v7a
`SELECTED_OP_LIST=/Users/chenlai/Documents/pytorch/experiemnt/deeplabv3_scripted.yaml BUILD_LITE_INTERPRETER=1 ./scripts/build_pytorch_android.sh armeabi-v7a`
libpytorch_jni_lite.so -- 2.8 MB

**iOS:**
```
(base) chenlai@chenlai-mp install % du -sh *
 15M	include
 58M	lib
2.8M	share
```

```
(base) chenlai@chenlai-mp lib % ls -lh
total 119600
-rw-r--r--  1 chenlai  staff   3.2M Mar  4 23:16 libXNNPACK.a
-rw-r--r--  1 chenlai  staff   910K Mar  4 23:16 libc10.a
-rw-r--r--  1 chenlai  staff   4.6K Mar  4 23:16 libclog.a
-rw-r--r--  1 chenlai  staff    42K Mar  4 23:16 libcpuinfo.a
-rw-r--r--  1 chenlai  staff   1.5M Mar  4 23:16 libeigen_blas.a
-rw-r--r--  1 chenlai  staff    44K Mar  4 23:16 libpthreadpool.a
-rw-r--r--  1 chenlai  staff   166K Mar  4 23:16 libpytorch_qnnpack.a
-rw-r--r--  1 chenlai  staff   384B Mar  4 23:16 libtorch.a
-rw-r--r--  1 chenlai  staff    52M Mar  4 23:16 libtorch_cpu.a
```

Test Plan: Imported from OSS

Reviewed By: dhruvbird

Differential Revision: D27074814

Pulled By: cccclai

fbshipit-source-id: 762b5ad5b87b6a262444392fd089249c4837ba18
2021-03-25 23:57:48 -07:00

133 lines
4.7 KiB
Python

#!/usr/bin/env python3
import argparse
import os
from typing import Set
from tools.codegen.selective_build.selector import *
from tools.codegen.code_template import CodeTemplate
if_condition_template_str = """if (kernel_tag_sv.compare("$kernel_tag_name") == 0) {
return $dtype_checks;
}"""
if_condition_template = CodeTemplate(if_condition_template_str)
selected_kernel_dtypes_h_template_str = """#pragma once
#include <c10/core/ScalarType.h>
#include <c10/util/string_view.h>
#include <c10/macros/Macros.h>
namespace at {
inline constexpr bool should_include_kernel_dtype(
const char *kernel_tag_str,
at::ScalarType scalar_type
) {
c10::string_view kernel_tag_sv C10_UNUSED = c10::string_view(kernel_tag_str);
$body
return false;
}
}
"""
selected_kernel_dtypes_h_template = CodeTemplate(selected_kernel_dtypes_h_template_str)
selected_mobile_ops_preamble = """#pragma once
/**
* Generated by gen_selected_mobile_ops_header.py
*/
"""
def extract_root_operators(selective_builder: SelectiveBuilder) -> Set[str]:
ops = []
for (op_name, op) in selective_builder.operators.items():
if op.is_root_operator:
ops.append(op_name)
return set(ops)
def get_selected_kernel_dtypes_code(
selective_builder: SelectiveBuilder,
) -> str:
# See https://www.internalfb.com/intern/paste/P153411698/ for an example of the
# generated code in case all kernel dtypes are selected and in case some kernel
# dtypes are selected (i.e. both cases).
#
body = "return true;"
if selective_builder.include_all_operators is False and selective_builder.include_all_kernel_dtypes is False:
body_parts = []
for kernel_tag, dtypes in selective_builder.kernel_metadata.items():
conditions = list(map(lambda x: 'scalar_type == at::ScalarType::' + x, dtypes))
body_parts.append(
if_condition_template.substitute(
kernel_tag_name=kernel_tag,
dtype_checks=" || ".join(conditions),
),
)
body = " else ".join(body_parts)
header_contents = selected_kernel_dtypes_h_template.substitute(body=body)
return header_contents
# Write the file selected_mobile_ops.h with optionally:
# 1. The selected root operators
# 2. The selected kernel dtypes
def write_selected_mobile_ops(
output_file_path: str,
selective_builder: SelectiveBuilder,
) -> None:
root_ops = extract_root_operators(selective_builder)
with open(output_file_path, "wb") as out_file:
body_parts = [selected_mobile_ops_preamble]
if not selective_builder.include_all_operators:
body_parts.append("#define TORCH_OPERATOR_WHITELIST " + (";".join(sorted(root_ops))) + ";\n\n")
body_parts.append(get_selected_kernel_dtypes_code(selective_builder))
header_contents = "".join(body_parts)
out_file.write(header_contents.encode("utf-8"))
# root_ops: a set of selected root operators for selective build
# Write the file selected_mobile_ops.h with optionally:
# 1. The selected root operators from root_ops
# 2. All kernel dtypes
def write_selected_mobile_ops_with_all_dtypes(
output_file_path: str,
root_ops: Set[str],
) -> None:
with open(output_file_path, "wb") as out_file:
body_parts = [selected_mobile_ops_preamble]
body_parts.append("#define TORCH_OPERATOR_WHITELIST " + (";".join(sorted(root_ops))) + ";\n\n")
selective_builder = SelectiveBuilder.get_nop_selector()
body_parts.append(get_selected_kernel_dtypes_code(selective_builder))
header_contents = "".join(body_parts)
out_file.write(header_contents.encode("utf-8"))
def main():
parser = argparse.ArgumentParser(
description="Generate selected_mobile_ops.h for selective build."
)
parser.add_argument(
"-p", "--yaml_file_path", type=str, required=True, help="Path to the yaml"
" file with a list of operators used by the model."
)
parser.add_argument(
"-o", "--output_file_path", type=str, required=True, help="Path to destination"
"folder where selected_mobile_ops.h will be written."
)
parsed_args = parser.parse_args()
model_file_name = parsed_args.yaml_file_path
print("Loading yaml file: ", model_file_name)
loaded_model = {}
with open(model_file_name, "rb") as model_file:
loaded_model = yaml.load(model_file)
root_operators_set = set(loaded_model)
print("Writing header file selected_mobile_ops.h: ", parsed_args.output_file_path)
write_selected_mobile_ops_with_all_dtypes(
os.path.join(parsed_args.output_file_path, "selected_mobile_ops.h"),
root_operators_set)
if __name__ == "__main__":
main()