Files
pytorch/caffe2/python/predictor/predictor_py_utils.py
Chunli Fu 834569232b [online trainer] Add blob reorder (#39534)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39534

Reviewed By: boryiingsu

Differential Revision: D21871352

fbshipit-source-id: 00cce83b7351fdafd36d4db57c99fb8a58e8a260
2020-06-05 17:33:08 -07:00

190 lines
5.9 KiB
Python

## @package predictor_py_utils
# Module caffe2.python.predictor.predictor_py_utils
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, scope
def create_predict_net(predictor_export_meta):
"""
Return the input prediction net.
"""
# Construct a new net to clear the existing settings.
net = core.Net(predictor_export_meta.predict_net.name or "predict")
net.Proto().op.extend(predictor_export_meta.predict_net.op)
net.Proto().partition_info.extend(predictor_export_meta.predict_net.partition_info)
net.Proto().external_input.extend(
predictor_export_meta.inputs + predictor_export_meta.parameters)
net.Proto().external_output.extend(predictor_export_meta.outputs)
net.Proto().arg.extend(predictor_export_meta.predict_net.arg)
if predictor_export_meta.net_type is not None:
net.Proto().type = predictor_export_meta.net_type
if predictor_export_meta.num_workers is not None:
net.Proto().num_workers = predictor_export_meta.num_workers
return net.Proto()
def create_predict_init_net(ws, predictor_export_meta):
"""
Return an initialization net that zero-fill all the input and
output blobs, using the shapes from the provided workspace. This is
necessary as there is no shape inference functionality in Caffe2.
"""
net = core.Net("predict-init")
def zero_fill(blob):
shape = predictor_export_meta.shapes.get(blob)
if shape is None:
if blob not in ws.blobs:
raise Exception(
"{} not in workspace but needed for shape: {}".format(
blob, ws.blobs))
shape = ws.blobs[blob].fetch().shape
# Explicitly null-out the scope so users (e.g. PredictorGPU)
# can control (at a Net-global level) the DeviceOption of
# these filling operators.
with scope.EmptyDeviceScope():
net.ConstantFill([], blob, shape=shape, value=0.0)
external_blobs = predictor_export_meta.inputs + \
predictor_export_meta.outputs
for blob in external_blobs:
zero_fill(blob)
net.Proto().external_input.extend(external_blobs)
if predictor_export_meta.extra_init_net:
net.AppendNet(predictor_export_meta.extra_init_net)
# Add the model_id in the predict_net to the init_net
AddModelIdArg(predictor_export_meta, net.Proto())
return net.Proto()
def get_comp_name(string, name):
if name:
return string + '_' + name
return string
def _ProtoMapGet(field, key):
'''
Given the key, get the value of the repeated field.
Helper function used by protobuf since it doesn't have map construct
'''
for v in field:
if (v.key == key):
return v.value
return None
def GetPlan(meta_net_def, key):
return _ProtoMapGet(meta_net_def.plans, key)
def GetPlanOriginal(meta_net_def, key):
return _ProtoMapGet(meta_net_def.plans, key)
def GetBlobs(meta_net_def, key):
blobs = _ProtoMapGet(meta_net_def.blobs, key)
if blobs is None:
return []
return blobs
def GetBlobsByTypePrefix(meta_net_def, blob_type_prefix):
blob_map = {}
for b in meta_net_def.blobs:
if b.key.startswith(blob_type_prefix):
for blob in b.value:
if blob not in blob_map:
blob_map[blob] = len(blob_map)
return sorted(blob_map, key=lambda blob: blob_map[blob])
def GetNet(meta_net_def, key):
return _ProtoMapGet(meta_net_def.nets, key)
def GetNetOriginal(meta_net_def, key):
return _ProtoMapGet(meta_net_def.nets, key)
def GetApplicationSpecificInfo(meta_net_def, key):
return _ProtoMapGet(meta_net_def.applicationSpecificInfo, key)
def AddBlobs(meta_net_def, blob_name, blob_def):
blobs = _ProtoMapGet(meta_net_def.blobs, blob_name)
if blobs is None:
blobs = meta_net_def.blobs.add()
blobs.key = blob_name
blobs = blobs.value
for blob in blob_def:
blobs.append(blob)
def ReplaceBlobs(meta_net_def, blob_name, blob_def):
blobs = _ProtoMapGet(meta_net_def.blobs, blob_name)
assert blobs is not None, "The blob_name:{} does not exist".format(blob_name)
del blobs[:]
for blob in blob_def:
blobs.append(blob)
def AddPlan(meta_net_def, plan_name, plan_def):
meta_net_def.plans.add(key=plan_name, value=plan_def)
def AddNet(meta_net_def, net_name, net_def):
meta_net_def.nets.add(key=net_name, value=net_def)
def SetBlobsOrder(meta_net_def, blobs_order):
for blob in blobs_order:
meta_net_def.blobsOrder.append(blob)
def SetPreLoadBlobs(meta_net_def, pre_load_blobs):
for blob in pre_load_blobs:
meta_net_def.preLoadBlobs.append(blob)
def GetBlobsOrder(meta_net_def):
return meta_net_def.blobsOrder
def SetTensorBoundShapes(meta_net_def, tensor_bound_shapes):
meta_net_def.tensorBoundShapes.CopyFrom(tensor_bound_shapes)
def GetArgumentByName(net_def, arg_name):
for arg in net_def.arg:
if arg.name == arg_name:
return arg
return None
def AddModelIdArg(meta_net_def, net_def):
"""Takes the model_id from the predict_net of meta_net_def (if it is
populated) and adds it to the net_def passed in. This is intended to be
called on init_nets, as their model_id is not populated by default, but
should be the same as that of the predict_net
"""
# Get model_id from the predict_net, assuming it's an integer
model_id = GetArgumentByName(meta_net_def.predict_net, "model_id")
if model_id is None:
return
model_id = model_id.i
# If there's another model_id on the net, replace it with the new one
old_id = GetArgumentByName(net_def, "model_id")
if old_id is not None:
old_id.i = model_id
return
# Add as an integer argument, this is also assumed above
arg = net_def.arg.add()
arg.name = "model_id"
arg.i = model_id