mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-28 02:04:53 +08:00
Summary: This supersedes https://github.com/pytorch/pytorch/pull/35698. `abs` is a C-style function that takes only integral argument `std::abs` is polymorphic and can be applied to both integral and floating point types This PR also increases `kBatchSize` in `test_optimizer_xor` function in `test/cpp/api/optim.cpp` to fix `OptimTest.XORConvergence_LBFGS` failure under ASAN. Pull Request resolved: https://github.com/pytorch/pytorch/pull/35974 Test Plan: CI Reviewed By: pbelevich Differential Revision: D20853570 Pulled By: yf225 fbshipit-source-id: 6135588df2426c5b974e4e097b416955d1907bd4
433 lines
14 KiB
C++
433 lines
14 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/torch.h>
|
|
|
|
#include <test/cpp/api/optim_baseline.h>
|
|
#include <test/cpp/api/support.h>
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
using namespace torch::nn;
|
|
using namespace torch::optim;
|
|
|
|
template <typename OptimizerClass, typename Options>
|
|
bool test_optimizer_xor(Options options) {
|
|
torch::manual_seed(0);
|
|
|
|
Sequential model(
|
|
Linear(2, 8),
|
|
Functional(torch::sigmoid),
|
|
Linear(8, 1),
|
|
Functional(torch::sigmoid));
|
|
|
|
const int64_t kBatchSize = 200;
|
|
const int64_t kMaximumNumberOfEpochs = 3000;
|
|
|
|
OptimizerClass optimizer(model->parameters(), options);
|
|
|
|
float running_loss = 1;
|
|
int epoch = 0;
|
|
while (running_loss > 0.1) {
|
|
auto inputs = torch::empty({kBatchSize, 2});
|
|
auto labels = torch::empty({kBatchSize});
|
|
for (size_t i = 0; i < kBatchSize; i++) {
|
|
inputs[i] = torch::randint(2, {2}, torch::kInt64);
|
|
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
|
|
}
|
|
|
|
inputs.set_requires_grad(true);
|
|
|
|
auto step = [&](OptimizerClass& optimizer, Sequential model, torch::Tensor inputs, torch::Tensor labels) {
|
|
auto closure = [&]() {
|
|
optimizer.zero_grad();
|
|
auto x = model->forward(inputs);
|
|
auto loss = torch::binary_cross_entropy(x, labels);
|
|
loss.backward();
|
|
return loss;
|
|
};
|
|
return optimizer.step(closure);
|
|
};
|
|
|
|
torch::Tensor loss = step(optimizer, model, inputs, labels);
|
|
|
|
running_loss = running_loss * 0.99 + loss.item<float>() * 0.01;
|
|
if (epoch > kMaximumNumberOfEpochs) {
|
|
std::cout << "Loss is too high after epoch " << epoch << ": "
|
|
<< running_loss << std::endl;
|
|
return false;
|
|
}
|
|
epoch++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename Parameters>
|
|
void assign_parameter(
|
|
const Parameters& parameters,
|
|
const char* name,
|
|
torch::Tensor new_tensor) {
|
|
auto parameter = parameters[name];
|
|
parameter.set_requires_grad(false);
|
|
parameter.flatten().copy_(new_tensor);
|
|
parameter.set_requires_grad(true);
|
|
}
|
|
|
|
template <typename OptimizerClass, typename Options>
|
|
void check_exact_values(
|
|
Options options,
|
|
std::vector<std::vector<torch::Tensor>> expected_parameters) {
|
|
const size_t kIterations = 1001;
|
|
const size_t kSampleEvery = 100;
|
|
|
|
torch::manual_seed(0);
|
|
|
|
Sequential model(
|
|
Linear(2, 3),
|
|
Functional(torch::sigmoid),
|
|
Linear(3, 1),
|
|
Functional(torch::sigmoid));
|
|
|
|
model->to(torch::kFloat64);
|
|
|
|
// Use exact input values because matching random values is hard.
|
|
auto parameters = model->named_parameters();
|
|
assign_parameter(
|
|
parameters,
|
|
"0.weight",
|
|
torch::tensor({-0.2109, -0.4976, -0.1413, -0.3420, -0.2524, 0.6976}, torch::kFloat64));
|
|
assign_parameter(
|
|
parameters, "0.bias", torch::tensor({-0.1085, -0.2979, 0.6892}, torch::kFloat64));
|
|
assign_parameter(
|
|
parameters, "2.weight", torch::tensor({-0.0508, -0.3941, -0.2843}, torch::kFloat64));
|
|
assign_parameter(parameters, "2.bias", torch::tensor({-0.0711}, torch::kFloat64));
|
|
|
|
auto optimizer = OptimizerClass(parameters.values(), options);
|
|
torch::Tensor input =
|
|
torch::tensor({0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, torch::kFloat64).reshape({3, 2});
|
|
|
|
for (size_t i = 0; i < kIterations; ++i) {
|
|
optimizer.zero_grad();
|
|
auto output = model->forward(input);
|
|
auto loss = output.sum();
|
|
loss.backward();
|
|
|
|
auto closure = []() { return torch::tensor({10}); };
|
|
optimizer.step(closure);
|
|
|
|
if (i % kSampleEvery == 0) {
|
|
ASSERT_TRUE(
|
|
expected_parameters.at(i / kSampleEvery).size() == parameters.size());
|
|
for (size_t p = 0; p < parameters.size(); ++p) {
|
|
ASSERT_TRUE(parameters[p]->defined());
|
|
// Always compare using double dtype, regardless of the original dtype of the tensors
|
|
auto computed = parameters[p]->flatten().to(torch::kFloat64);
|
|
auto expected = expected_parameters.at(i / kSampleEvery).at(p).to(torch::kFloat64);
|
|
if (!computed.allclose(expected, /*rtol=*/1e-3, /*atol=*/5e-4)) {
|
|
std::cout << "Iteration " << i << ": " << computed
|
|
<< " != " << expected << " (parameter " << p << ")"
|
|
<< std::endl;
|
|
ASSERT_TRUE(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(OptimTest, OptimizerAccessors) {
|
|
auto options = AdagradOptions(1.0);
|
|
std::vector<torch::Tensor> params;
|
|
for (size_t i = 0; i < 3; i++) {
|
|
params.push_back(torch::randn(10));
|
|
}
|
|
auto optimizer = Adagrad(params, options);
|
|
// test for defaults() method with non-const reference
|
|
auto& options_ = static_cast<AdagradOptions&>(optimizer.defaults());
|
|
ASSERT_TRUE(options == options_);
|
|
// test for param_groups() with non-const reference return
|
|
auto& params_groups = optimizer.param_groups();
|
|
params_groups.push_back(OptimizerParamGroup(params));
|
|
auto& params_1 = params_groups[1].params();
|
|
for (size_t i = 0; i < params_1.size(); i++) {
|
|
torch::equal(params[i], params_1[i]);
|
|
}
|
|
|
|
// test for add_param_group() when one or more params existing in another param_group
|
|
// are passed in the new param group to be added
|
|
ASSERT_THROWS_WITH(
|
|
optimizer.add_param_group(OptimizerParamGroup(params)), "some parameters appear in more than one parameter group");
|
|
|
|
// test for state() with non-const reference return
|
|
auto& state_ = static_cast<AdagradParamState&>(*(optimizer.state()[c10::guts::to_string(params_1[0].unsafeGetTensorImpl())]));
|
|
state_.step(state_.step()+1);
|
|
|
|
const auto& optimizer_ = Adagrad(params, options);
|
|
optimizer_.defaults();
|
|
// test for param_groups() with const reference return
|
|
const auto& params_2 = optimizer_.param_groups();
|
|
// test for state() with const reference return
|
|
optimizer_.state();
|
|
}
|
|
|
|
#define OLD_INTERFACE_WARNING_CHECK(func) \
|
|
{ \
|
|
std::stringstream buffer;\
|
|
torch::test::CerrRedirect cerr_redirect(buffer.rdbuf());\
|
|
func;\
|
|
ASSERT_EQ(\
|
|
torch::test::count_substr_occurrences(\
|
|
buffer.str(),\
|
|
"will be removed"\
|
|
),\
|
|
1);\
|
|
}
|
|
|
|
struct MyOptimizerOptions : public OptimizerCloneableOptions<MyOptimizerOptions> {
|
|
MyOptimizerOptions(double lr = 1.0) : lr_(lr) {};
|
|
TORCH_ARG(double, lr) = 1.0;
|
|
};
|
|
|
|
TEST(OptimTest, OldInterface) {
|
|
struct MyOptimizer : Optimizer {
|
|
using Optimizer::Optimizer;
|
|
torch::Tensor step(LossClosure closure = nullptr) override { return {};}
|
|
explicit MyOptimizer(
|
|
std::vector<at::Tensor> params, MyOptimizerOptions defaults = {}) :
|
|
Optimizer({std::move(OptimizerParamGroup(params))}, std::make_unique<MyOptimizerOptions>(defaults)) {}
|
|
};
|
|
std::vector<torch::Tensor> parameters = {
|
|
torch::ones({2, 3}), torch::zeros({2, 3}), torch::rand({2, 3})};
|
|
{
|
|
MyOptimizer optimizer(parameters);
|
|
size_t size;
|
|
OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
|
|
ASSERT_EQ(size, parameters.size());
|
|
}
|
|
{
|
|
std::vector<at::Tensor> params;
|
|
MyOptimizer optimizer(params);
|
|
|
|
size_t size;
|
|
OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
|
|
ASSERT_EQ(size, 0);
|
|
|
|
OLD_INTERFACE_WARNING_CHECK(optimizer.add_parameters(parameters));
|
|
|
|
OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
|
|
ASSERT_EQ(size, parameters.size());
|
|
|
|
std::vector<torch::Tensor> params_;
|
|
OLD_INTERFACE_WARNING_CHECK(params_ = optimizer.parameters());
|
|
for (size_t p = 0; p < size; ++p) {
|
|
ASSERT_TRUE(params_[p].allclose(parameters[p]));
|
|
}
|
|
}
|
|
{
|
|
Linear linear(3, 4);
|
|
MyOptimizer optimizer(linear->parameters());
|
|
|
|
size_t size;
|
|
OLD_INTERFACE_WARNING_CHECK(size = optimizer.size());
|
|
ASSERT_EQ(size, linear->parameters().size());
|
|
}
|
|
}
|
|
|
|
TEST(OptimTest, XORConvergence_SGD) {
|
|
ASSERT_TRUE(test_optimizer_xor<SGD>(
|
|
SGDOptions(0.1).momentum(0.9).nesterov(true).weight_decay(1e-6)));
|
|
}
|
|
|
|
TEST(OptimTest, XORConvergence_LBFGS) {
|
|
ASSERT_TRUE(test_optimizer_xor<LBFGS>(LBFGSOptions(1.0)));
|
|
ASSERT_TRUE(test_optimizer_xor<LBFGS>(LBFGSOptions(1.0).line_search_fn("strong_wolfe")));
|
|
}
|
|
|
|
TEST(OptimTest, XORConvergence_Adagrad) {
|
|
ASSERT_TRUE(test_optimizer_xor<Adagrad>(
|
|
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3)));
|
|
}
|
|
|
|
TEST(OptimTest, XORConvergence_RMSprop) {
|
|
ASSERT_TRUE(test_optimizer_xor<RMSprop>(RMSpropOptions(0.1).centered(true)));
|
|
}
|
|
|
|
TEST(OptimTest, XORConvergence_RMSpropWithMomentum) {
|
|
ASSERT_TRUE(test_optimizer_xor<RMSprop>(
|
|
RMSpropOptions(0.1).momentum(0.9).weight_decay(1e-6)));
|
|
}
|
|
|
|
TEST(OptimTest, XORConvergence_Adam) {
|
|
ASSERT_TRUE(test_optimizer_xor<Adam>(AdamOptions(0.1).weight_decay(1e-6)));
|
|
}
|
|
|
|
TEST(OptimTest, XORConvergence_AdamWithAmsgrad) {
|
|
ASSERT_TRUE(test_optimizer_xor<Adam>(
|
|
AdamOptions(0.1).weight_decay(1e-6).amsgrad(true)));
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_Adam) {
|
|
check_exact_values<Adam>(AdamOptions(1.0), expected_parameters::Adam());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_AdamWithWeightDecay) {
|
|
check_exact_values<Adam>(
|
|
AdamOptions(1.0).weight_decay(1e-2),
|
|
expected_parameters::Adam_with_weight_decay());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_AdamWithWeightDecayAndAMSGrad) {
|
|
check_exact_values<Adam>(
|
|
AdamOptions(1.0).weight_decay(1e-6).amsgrad(true),
|
|
expected_parameters::Adam_with_weight_decay_and_amsgrad());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_Adagrad) {
|
|
check_exact_values<Adagrad>(
|
|
AdagradOptions(1.0), expected_parameters::Adagrad());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_AdagradWithWeightDecay) {
|
|
check_exact_values<Adagrad>(
|
|
AdagradOptions(1.0).weight_decay(1e-2),
|
|
expected_parameters::Adagrad_with_weight_decay());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_AdagradWithWeightDecayAndLRDecay) {
|
|
check_exact_values<Adagrad>(
|
|
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3),
|
|
expected_parameters::Adagrad_with_weight_decay_and_lr_decay());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_RMSprop) {
|
|
check_exact_values<RMSprop>(
|
|
RMSpropOptions(0.1), expected_parameters::RMSprop());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_RMSpropWithWeightDecay) {
|
|
check_exact_values<RMSprop>(
|
|
RMSpropOptions(0.1).weight_decay(1e-2),
|
|
expected_parameters::RMSprop_with_weight_decay());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_RMSpropWithWeightDecayAndCentered) {
|
|
check_exact_values<RMSprop>(
|
|
RMSpropOptions(0.1).weight_decay(1e-6).centered(true),
|
|
expected_parameters::RMSprop_with_weight_decay_and_centered());
|
|
}
|
|
|
|
TEST(
|
|
OptimTest,
|
|
ProducesPyTorchValues_RMSpropWithWeightDecayAndCenteredAndMomentum) {
|
|
check_exact_values<RMSprop>(
|
|
RMSpropOptions(0.1).weight_decay(1e-6).centered(true).momentum(0.9),
|
|
expected_parameters::
|
|
RMSprop_with_weight_decay_and_centered_and_momentum());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_SGD) {
|
|
check_exact_values<SGD>(SGDOptions(0.1), expected_parameters::SGD());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_SGDWithWeightDecay) {
|
|
check_exact_values<SGD>(
|
|
SGDOptions(0.1).weight_decay(1e-2),
|
|
expected_parameters::SGD_with_weight_decay());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_SGDWithWeightDecayAndMomentum) {
|
|
check_exact_values<SGD>(
|
|
SGDOptions(0.1).weight_decay(1e-2).momentum(0.9),
|
|
expected_parameters::SGD_with_weight_decay_and_momentum());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_SGDWithWeightDecayAndNesterovMomentum) {
|
|
check_exact_values<SGD>(
|
|
SGDOptions(0.1).weight_decay(1e-6).momentum(0.9).nesterov(true),
|
|
expected_parameters::SGD_with_weight_decay_and_nesterov_momentum());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_LBFGS) {
|
|
check_exact_values<LBFGS>(
|
|
LBFGSOptions(1.0),
|
|
expected_parameters::LBFGS());
|
|
}
|
|
|
|
TEST(OptimTest, ProducesPyTorchValues_LBFGS_with_line_search) {
|
|
check_exact_values<LBFGS>(
|
|
LBFGSOptions(1.0).line_search_fn("strong_wolfe"),
|
|
expected_parameters::LBFGS_with_line_search());
|
|
}
|
|
|
|
TEST(OptimTest, ZeroGrad) {
|
|
torch::manual_seed(0);
|
|
|
|
Linear model(2, 8);
|
|
SGD optimizer(model->parameters(), 0.1);
|
|
|
|
for (const auto& parameter : model->parameters()) {
|
|
ASSERT_FALSE(parameter.grad().defined());
|
|
}
|
|
|
|
auto output = model->forward(torch::ones({5, 2}));
|
|
auto loss = output.sum();
|
|
loss.backward();
|
|
|
|
for (const auto& parameter : model->parameters()) {
|
|
ASSERT_TRUE(parameter.grad().defined());
|
|
ASSERT_GT(parameter.grad().sum().item<float>(), 0);
|
|
}
|
|
|
|
optimizer.zero_grad();
|
|
|
|
for (const auto& parameter : model->parameters()) {
|
|
ASSERT_TRUE(parameter.grad().defined());
|
|
ASSERT_EQ(parameter.grad().sum().item<float>(), 0);
|
|
}
|
|
}
|
|
|
|
TEST(OptimTest, ExternalVectorOfParameters) {
|
|
torch::manual_seed(0);
|
|
|
|
std::vector<torch::Tensor> parameters = {
|
|
torch::randn({2, 2}), torch::randn({3, 3}), torch::randn({4, 4})};
|
|
std::vector<torch::Tensor> original_parameters = {
|
|
parameters[0].clone(), parameters[1].clone(), parameters[2].clone()};
|
|
|
|
// Set all gradients to one
|
|
for (auto& parameter : parameters) {
|
|
parameter.grad() = torch::ones_like(parameter);
|
|
}
|
|
|
|
SGD optimizer(parameters, 1.0);
|
|
|
|
optimizer.step();
|
|
|
|
ASSERT_TRUE(parameters[0].allclose(original_parameters[0] - 1.0));
|
|
ASSERT_TRUE(parameters[1].allclose(original_parameters[1] - 1.0));
|
|
ASSERT_TRUE(parameters[2].allclose(original_parameters[2] - 1.0));
|
|
}
|
|
|
|
TEST(OptimTest, AddParameter_LBFGS) {
|
|
torch::manual_seed(0);
|
|
|
|
std::vector<torch::Tensor> parameters = {torch::randn({5, 5})};
|
|
std::vector<torch::Tensor> original_parameters = {parameters[0].clone()};
|
|
|
|
// Set all gradients to one
|
|
for (auto& parameter : parameters) {
|
|
parameter.grad() = torch::ones_like(parameter);
|
|
}
|
|
|
|
LBFGS optimizer(std::vector<torch::Tensor>{}, 1.0);
|
|
OLD_INTERFACE_WARNING_CHECK(optimizer.add_parameters(parameters));
|
|
|
|
optimizer.step([]() { return torch::tensor(1); });
|
|
|
|
// REQUIRE this doesn't throw
|
|
}
|