Files
pytorch/torch/csrc/jit/mobile/module.cpp
Richard Barnes b5867a1b34 irange-ify 7 (#62117)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62117

Test Plan: Sandcastle

Reviewed By: ngimel

Differential Revision: D29879640

fbshipit-source-id: 189578a57301747a3421742e145bbcdf2ad75c49
2021-07-28 13:30:39 -07:00

244 lines
7.5 KiB
C++

#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/backends/backend_exception.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <exception>
#include <ATen/record_function.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
std::ostream& operator<<(std::ostream& out, Instruction inst);
namespace mobile {
void CompilationUnit::register_function(std::unique_ptr<Function> fn) {
methods_.emplace_back(std::move(fn));
}
Function* CompilationUnit::find_function(const c10::QualifiedName& qn) {
for (auto& fn : methods_) {
if (fn->qualname() == qn) {
return fn.get();
}
}
return nullptr;
}
Method Module::get_method(const std::string& name) const {
if (auto method = find_method(name)) {
return *method;
}
AT_ERROR("Method '", name, "' is not defined.");
}
c10::optional<Method> Module::find_method(const std::string& basename) const {
for (auto& fn : cu_->methods()) {
if (fn->name() == basename) {
return c10::make_optional<Method>(Method(this, fn.get()));
}
}
return c10::nullopt;
}
namespace {
void set_train_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
bool on) {
if (auto slot = obj->type()->findAttributeSlot("training")) {
obj->setSlot(*slot, on);
} else {
TORCH_INTERNAL_ASSERT(false, "'training' attribute not found");
}
for (const auto& slot : obj->slots()) {
if (slot.isObject()) {
set_train_recurse(slot.toObject(), on);
}
}
}
void slot_params_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
std::vector<at::Tensor>* params) {
for (const auto& slot : obj->slots()) {
if (slot.isTensor()) {
params->emplace_back(slot.toTensor());
} else if (slot.isObject()) {
slot_params_recurse(slot.toObject(), params);
}
}
}
void slot_named_params_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
std::map<std::string, at::Tensor>* params,
const std::string& parent_name) {
auto slots = obj->slots();
size_t nslots = slots.size();
for (const auto i : c10::irange(nslots)) {
auto slot = slots[i];
std::string name =
parent_name.size() == 0 ? parent_name : parent_name + ".";
name += obj->type()->getAttributeName(i);
// TODO: Fix this filter. Requires_grad is not the appropriate
// filter of a parameter, but is a temporary hack to help probable
// users of this api. The correct behavior is to filter by the
// obj->type->is_parameter() but this currently always returns
// false on mobile.
if (slot.isTensor() && slot.toTensor().requires_grad()) {
(*params)[name] = slot.toTensor();
} else if (slot.isObject()) {
slot_named_params_recurse(slot.toObject(), params, name);
}
}
}
std::string getTopModuleTypeName(const Module& m) {
std::string name;
if (m._ivalue()->type() && m._ivalue()->type()->name()) {
name = m._ivalue()->type()->name().value().name();
}
return name;
}
} // namespace
const std::vector<at::Tensor> Module::parameters() const {
std::vector<at::Tensor> params;
slot_params_recurse(object_, &params);
return params;
}
// Returns a mapping for all attributes that requires_grad=True in a module.
// This behavior differs from full torch script modules. This is a bug,
// but currently there is no way to correctly label parameters in the
// loading of a mobile module. TODO
const std::map<std::string, at::Tensor> Module::named_parameters() const {
std::map<std::string, at::Tensor> params;
const std::string name = "";
slot_named_params_recurse(object_, &params, name);
return params;
}
// We will continue to support this API for now as this is being relied upon
// for profiling.
// We really need to change this part, so in the next step for profiling support
// for delegates, the first thing will be to rewrite how profiling is done
// for lite interpreter.
std::string Module::get_forward_method_debug_info(size_t pc) const {
auto debug_handle = find_method("forward")->get_debug_handle(pc);
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getModuleHierarchyInfo(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
void Module::train(bool on) {
set_train_recurse(object_, on);
}
bool Module::is_training() const {
if (auto slot = object_->type()->findAttributeSlot("training")) {
return object_->getSlot(*slot).toBool();
}
return true;
}
const std::vector<Method> Module::get_methods() const {
std::vector<Method> methods;
for (std::unique_ptr<Function>& fn : cu_->methods()) {
methods.emplace_back(this, fn.get());
}
return methods;
}
Method::Method(const Module* owner, Function* function)
: owner_(owner), function_(function) {}
void Method::run(Stack& stack) const {
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
/* if the metadata dict doesn't contain "model_name", copy the metadata and
set the value of "model_name" as name() */
std::unordered_map<std::string, std::string> copied_metadata =
owner_->getMetadata();
if (observer) {
observer->onEnterRunMethod(
copied_metadata, instance_key, function_->name());
}
auto debug_info = std::make_shared<MobileDebugInfo>();
std::string name = copied_metadata["model_name"];
debug_info->setModelName(name);
debug_info->setMethodName(function_->name());
at::DebugInfoGuard guard(at::DebugInfoKind::MOBILE_RUNTIME_INFO, debug_info);
try {
stack.insert(stack.begin(), owner_->_ivalue()); // self
function_->run(stack);
if (observer) {
observer->onExitRunMethod(instance_key);
}
// This exception must be caught first as it derived from c10::Error
} catch (c10::BackendRuntimeException& e) {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
e.pushDebugHandle(function_->getExceptionDebugHandle());
// symbolicate all handles
e.add_context(owner_->getDebugTable().getSourceDebugString(
e.getDebugHandles(), getTopModuleTypeName(*owner_)));
#endif
if (observer) {
observer->onFailRunMethod(instance_key, e.what());
}
TORCH_RETHROW(e);
} catch (c10::Error& error) {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
auto debug_string = owner_->getDebugTable().getSourceDebugString(
function_->getExceptionDebugHandle(), getTopModuleTypeName(*owner_));
error.add_context(debug_string);
#endif
if (observer) {
observer->onFailRunMethod(instance_key, error.what());
}
TORCH_RETHROW(error);
} catch (...) {
auto currentException = std::current_exception();
try {
if (!currentException) {
TORCH_CHECK(false, "Unknown exception");
} else {
try {
std::rethrow_exception(currentException);
} catch (const std::exception& e) {
TORCH_CHECK(false, e.what());
}
}
} catch (c10::Error& error) {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
auto debug_string = owner_->getDebugTable().getSourceDebugString(
function_->getExceptionDebugHandle(), getTopModuleTypeName(*owner_));
error.add_context(debug_string);
#endif
if (observer) {
observer->onFailRunMethod(instance_key, error.what());
}
TORCH_RETHROW(error);
}
}
}
c10::IValue Method::operator()(std::vector<c10::IValue> stack) const {
run(stack);
TORCH_INTERNAL_ASSERT(!stack.empty());
return stack.front();
}
} // namespace mobile
} // namespace jit
} // namespace torch