mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75809 The current PyTorch multi-head attention and transformer implementations are slow. This should speed them up for inference. Differential Revision: [D35239925](https://our.internmc.facebook.com/intern/diff/D35239925/) **NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D35239925/)! Approved by: https://github.com/ezyang
1443 lines
49 KiB
Python
1443 lines
49 KiB
Python
import warnings
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
from .linear import NonDynamicallyQuantizableLinear
|
|
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
|
from torch.nn.parameter import Parameter
|
|
from .module import Module
|
|
from .. import functional as F
|
|
|
|
|
|
class Threshold(Module):
|
|
r"""Thresholds each element of the input Tensor.
|
|
|
|
Threshold is defined as:
|
|
|
|
.. math::
|
|
y =
|
|
\begin{cases}
|
|
x, &\text{ if } x > \text{threshold} \\
|
|
\text{value}, &\text{ otherwise }
|
|
\end{cases}
|
|
|
|
Args:
|
|
threshold: The value to threshold at
|
|
value: The value to replace with
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Threshold(0.1, 20)
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['threshold', 'value', 'inplace']
|
|
|
|
threshold: float
|
|
value: float
|
|
inplace: bool
|
|
|
|
def __init__(self, threshold: float, value: float, inplace: bool = False) -> None:
|
|
super(Threshold, self).__init__()
|
|
self.threshold = threshold
|
|
self.value = value
|
|
self.inplace = inplace
|
|
# TODO: check in THNN (if inplace == True, then assert value <= threshold)
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.threshold(input, self.threshold, self.value, self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = ', inplace=True' if self.inplace else ''
|
|
return 'threshold={}, value={}{}'.format(
|
|
self.threshold, self.value, inplace_str
|
|
)
|
|
|
|
|
|
class ReLU(Module):
|
|
r"""Applies the rectified linear unit function element-wise:
|
|
|
|
:math:`\text{ReLU}(x) = (x)^+ = \max(0, x)`
|
|
|
|
Args:
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/ReLU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.ReLU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
|
|
|
|
An implementation of CReLU - https://arxiv.org/abs/1603.05201
|
|
|
|
>>> m = nn.ReLU()
|
|
>>> input = torch.randn(2).unsqueeze(0)
|
|
>>> output = torch.cat((m(input),m(-input)))
|
|
"""
|
|
__constants__ = ['inplace']
|
|
inplace: bool
|
|
|
|
def __init__(self, inplace: bool = False):
|
|
super(ReLU, self).__init__()
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.relu(input, inplace=self.inplace)
|
|
|
|
def extra_repr(self) -> str:
|
|
inplace_str = 'inplace=True' if self.inplace else ''
|
|
return inplace_str
|
|
|
|
|
|
class RReLU(Module):
|
|
r"""Applies the randomized leaky rectified liner unit function, element-wise,
|
|
as described in the paper:
|
|
|
|
`Empirical Evaluation of Rectified Activations in Convolutional Network`_.
|
|
|
|
The function is defined as:
|
|
|
|
.. math::
|
|
\text{RReLU}(x) =
|
|
\begin{cases}
|
|
x & \text{if } x \geq 0 \\
|
|
ax & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
where :math:`a` is randomly sampled from uniform distribution
|
|
:math:`\mathcal{U}(\text{lower}, \text{upper})`.
|
|
|
|
See: https://arxiv.org/pdf/1505.00853.pdf
|
|
|
|
Args:
|
|
lower: lower bound of the uniform distribution. Default: :math:`\frac{1}{8}`
|
|
upper: upper bound of the uniform distribution. Default: :math:`\frac{1}{3}`
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/RReLU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.RReLU(0.1, 0.3)
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
|
|
.. _`Empirical Evaluation of Rectified Activations in Convolutional Network`:
|
|
https://arxiv.org/abs/1505.00853
|
|
"""
|
|
__constants__ = ['lower', 'upper', 'inplace']
|
|
|
|
lower: float
|
|
upper: float
|
|
inplace: bool
|
|
|
|
def __init__(
|
|
self,
|
|
lower: float = 1. / 8,
|
|
upper: float = 1. / 3,
|
|
inplace: bool = False
|
|
):
|
|
super(RReLU, self).__init__()
|
|
self.lower = lower
|
|
self.upper = upper
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.rrelu(input, self.lower, self.upper, self.training, self.inplace)
|
|
|
|
def extra_repr(self):
|
|
inplace_str = ', inplace=True' if self.inplace else ''
|
|
return 'lower={}, upper={}{}'.format(self.lower, self.upper, inplace_str)
|
|
|
|
|
|
class Hardtanh(Module):
|
|
r"""Applies the HardTanh function element-wise.
|
|
|
|
HardTanh is defined as:
|
|
|
|
.. math::
|
|
\text{HardTanh}(x) = \begin{cases}
|
|
\text{max\_val} & \text{ if } x > \text{ max\_val } \\
|
|
\text{min\_val} & \text{ if } x < \text{ min\_val } \\
|
|
x & \text{ otherwise } \\
|
|
\end{cases}
|
|
|
|
Args:
|
|
min_val: minimum value of the linear region range. Default: -1
|
|
max_val: maximum value of the linear region range. Default: 1
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Keyword arguments :attr:`min_value` and :attr:`max_value`
|
|
have been deprecated in favor of :attr:`min_val` and :attr:`max_val`.
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Hardtanh.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Hardtanh(-2, 2)
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['min_val', 'max_val', 'inplace']
|
|
|
|
min_val: float
|
|
max_val: float
|
|
inplace: bool
|
|
|
|
def __init__(
|
|
self,
|
|
min_val: float = -1.,
|
|
max_val: float = 1.,
|
|
inplace: bool = False,
|
|
min_value: Optional[float] = None,
|
|
max_value: Optional[float] = None
|
|
) -> None:
|
|
super(Hardtanh, self).__init__()
|
|
if min_value is not None:
|
|
warnings.warn("keyword argument min_value is deprecated and rename to min_val")
|
|
min_val = min_value
|
|
if max_value is not None:
|
|
warnings.warn("keyword argument max_value is deprecated and rename to max_val")
|
|
max_val = max_value
|
|
|
|
self.min_val = min_val
|
|
self.max_val = max_val
|
|
self.inplace = inplace
|
|
assert self.max_val > self.min_val
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.hardtanh(input, self.min_val, self.max_val, self.inplace)
|
|
|
|
def extra_repr(self) -> str:
|
|
inplace_str = ', inplace=True' if self.inplace else ''
|
|
return 'min_val={}, max_val={}{}'.format(
|
|
self.min_val, self.max_val, inplace_str
|
|
)
|
|
|
|
|
|
class ReLU6(Hardtanh):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{ReLU6}(x) = \min(\max(0,x), 6)
|
|
|
|
Args:
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/ReLU6.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.ReLU6()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def __init__(self, inplace: bool = False):
|
|
super(ReLU6, self).__init__(0., 6., inplace)
|
|
|
|
def extra_repr(self) -> str:
|
|
inplace_str = 'inplace=True' if self.inplace else ''
|
|
return inplace_str
|
|
|
|
|
|
class Sigmoid(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{Sigmoid}(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}
|
|
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Sigmoid.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Sigmoid()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return torch.sigmoid(input)
|
|
|
|
|
|
class Hardsigmoid(Module):
|
|
r"""Applies the Hardsigmoid function element-wise.
|
|
|
|
Hardsigmoid is defined as:
|
|
|
|
.. math::
|
|
\text{Hardsigmoid}(x) = \begin{cases}
|
|
0 & \text{if~} x \le -3, \\
|
|
1 & \text{if~} x \ge +3, \\
|
|
x / 6 + 1 / 2 & \text{otherwise}
|
|
\end{cases}
|
|
|
|
Args:
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Hardsigmoid.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Hardsigmoid()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['inplace']
|
|
|
|
inplace: bool
|
|
|
|
def __init__(self, inplace : bool = False) -> None:
|
|
super(Hardsigmoid, self).__init__()
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.hardsigmoid(input, self.inplace)
|
|
|
|
|
|
class Tanh(Module):
|
|
r"""Applies the Hyperbolic Tangent (Tanh) function element-wise.
|
|
|
|
Tanh is defined as:
|
|
|
|
.. math::
|
|
\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)}
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Tanh.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Tanh()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return torch.tanh(input)
|
|
|
|
class SiLU(Module):
|
|
r"""Applies the Sigmoid Linear Unit (SiLU) function, element-wise.
|
|
The SiLU function is also known as the swish function.
|
|
|
|
.. math::
|
|
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}
|
|
|
|
.. note::
|
|
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
|
|
where the SiLU (Sigmoid Linear Unit) was originally coined, and see
|
|
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation
|
|
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
|
|
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
|
|
where the SiLU was experimented with later.
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/SiLU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.SiLU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['inplace']
|
|
inplace: bool
|
|
|
|
def __init__(self, inplace: bool = False):
|
|
super(SiLU, self).__init__()
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.silu(input, inplace=self.inplace)
|
|
|
|
def extra_repr(self) -> str:
|
|
inplace_str = 'inplace=True' if self.inplace else ''
|
|
return inplace_str
|
|
|
|
class Mish(Module):
|
|
r"""Applies the Mish function, element-wise.
|
|
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
|
|
|
|
.. math::
|
|
\text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))
|
|
|
|
.. note::
|
|
See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Mish.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Mish()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['inplace']
|
|
inplace: bool
|
|
|
|
def __init__(self, inplace: bool = False):
|
|
super(Mish, self).__init__()
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.mish(input, inplace=self.inplace)
|
|
|
|
def extra_repr(self) -> str:
|
|
inplace_str = 'inplace=True' if self.inplace else ''
|
|
return inplace_str
|
|
|
|
class Hardswish(Module):
|
|
r"""Applies the hardswish function, element-wise, as described in the paper:
|
|
|
|
`Searching for MobileNetV3`_.
|
|
|
|
.. math::
|
|
\text{Hardswish}(x) = \begin{cases}
|
|
0 & \text{if~} x \le -3, \\
|
|
x & \text{if~} x \ge +3, \\
|
|
x \cdot (x + 3) /6 & \text{otherwise}
|
|
\end{cases}
|
|
|
|
Args:
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Hardswish.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Hardswish()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
|
|
.. _`Searching for MobileNetV3`:
|
|
https://arxiv.org/abs/1905.02244
|
|
"""
|
|
__constants__ = ['inplace']
|
|
|
|
inplace: bool
|
|
|
|
def __init__(self, inplace : bool = False) -> None:
|
|
super(Hardswish, self).__init__()
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.hardswish(input, self.inplace)
|
|
|
|
|
|
class ELU(Module):
|
|
r"""Applies the Exponential Linear Unit (ELU) function, element-wise, as described
|
|
in the paper: `Fast and Accurate Deep Network Learning by Exponential Linear
|
|
Units (ELUs) <https://arxiv.org/abs/1511.07289>`__.
|
|
|
|
ELU is defined as:
|
|
|
|
.. math::
|
|
\text{ELU}(x) = \begin{cases}
|
|
x, & \text{ if } x > 0\\
|
|
\alpha * (\exp(x) - 1), & \text{ if } x \leq 0
|
|
\end{cases}
|
|
|
|
Args:
|
|
alpha: the :math:`\alpha` value for the ELU formulation. Default: 1.0
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/ELU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.ELU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['alpha', 'inplace']
|
|
alpha: float
|
|
inplace: bool
|
|
|
|
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
|
|
super(ELU, self).__init__()
|
|
self.alpha = alpha
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.elu(input, self.alpha, self.inplace)
|
|
|
|
def extra_repr(self) -> str:
|
|
inplace_str = ', inplace=True' if self.inplace else ''
|
|
return 'alpha={}{}'.format(self.alpha, inplace_str)
|
|
|
|
|
|
class CELU(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))
|
|
|
|
More details can be found in the paper `Continuously Differentiable Exponential Linear Units`_ .
|
|
|
|
Args:
|
|
alpha: the :math:`\alpha` value for the CELU formulation. Default: 1.0
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/CELU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.CELU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
|
|
.. _`Continuously Differentiable Exponential Linear Units`:
|
|
https://arxiv.org/abs/1704.07483
|
|
"""
|
|
__constants__ = ['alpha', 'inplace']
|
|
alpha: float
|
|
inplace: bool
|
|
|
|
def __init__(self, alpha: float = 1., inplace: bool = False) -> None:
|
|
super(CELU, self).__init__()
|
|
self.alpha = alpha
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.celu(input, self.alpha, self.inplace)
|
|
|
|
def extra_repr(self) -> str:
|
|
inplace_str = ', inplace=True' if self.inplace else ''
|
|
return 'alpha={}{}'.format(self.alpha, inplace_str)
|
|
|
|
|
|
class SELU(Module):
|
|
r"""Applied element-wise, as:
|
|
|
|
.. math::
|
|
\text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))
|
|
|
|
with :math:`\alpha = 1.6732632423543772848170429916717` and
|
|
:math:`\text{scale} = 1.0507009873554804934193349852946`.
|
|
|
|
.. warning::
|
|
When using ``kaiming_normal`` or ``kaiming_normal_`` for initialisation,
|
|
``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'``
|
|
in order to get `Self-Normalizing Neural Networks`_.
|
|
See :func:`torch.nn.init.calculate_gain` for more information.
|
|
|
|
More details can be found in the paper `Self-Normalizing Neural Networks`_ .
|
|
|
|
Args:
|
|
inplace (bool, optional): can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/SELU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.SELU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
|
|
.. _Self-Normalizing Neural Networks: https://arxiv.org/abs/1706.02515
|
|
"""
|
|
__constants__ = ['inplace']
|
|
inplace: bool
|
|
|
|
def __init__(self, inplace: bool = False) -> None:
|
|
super(SELU, self).__init__()
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.selu(input, self.inplace)
|
|
|
|
def extra_repr(self) -> str:
|
|
inplace_str = 'inplace=True' if self.inplace else ''
|
|
return inplace_str
|
|
|
|
|
|
class GLU(Module):
|
|
r"""Applies the gated linear unit function
|
|
:math:`{GLU}(a, b)= a \otimes \sigma(b)` where :math:`a` is the first half
|
|
of the input matrices and :math:`b` is the second half.
|
|
|
|
Args:
|
|
dim (int): the dimension on which to split the input. Default: -1
|
|
|
|
Shape:
|
|
- Input: :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(\ast_1, M, \ast_2)` where :math:`M=N/2`
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.GLU()
|
|
>>> input = torch.randn(4, 2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['dim']
|
|
dim: int
|
|
|
|
def __init__(self, dim: int = -1) -> None:
|
|
super(GLU, self).__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.glu(input, self.dim)
|
|
|
|
def extra_repr(self) -> str:
|
|
return 'dim={}'.format(self.dim)
|
|
|
|
|
|
class GELU(Module):
|
|
r"""Applies the Gaussian Error Linear Units function:
|
|
|
|
.. math:: \text{GELU}(x) = x * \Phi(x)
|
|
|
|
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.
|
|
|
|
When the approximate argument is 'tanh', Gelu is estimated with:
|
|
:math:: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt(2 / \pi) * (x + 0.044715 * x^3)))
|
|
|
|
Args:
|
|
approximate (string, optional): the gelu approximation algorithm to use:
|
|
``'none'`` | ``'tanh'``. Default: ``'none'``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/GELU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.GELU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['approximate']
|
|
approximate: str
|
|
|
|
def __init__(self, approximate: str = 'none') -> None:
|
|
super(GELU, self).__init__()
|
|
self.approximate = approximate
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.gelu(input, approximate=self.approximate)
|
|
|
|
def extra_repr(self) -> str:
|
|
return 'approximate={}'.format(self.approximate)
|
|
|
|
|
|
class Hardshrink(Module):
|
|
r"""Applies the Hard Shrinkage (Hardshrink) function element-wise.
|
|
|
|
Hardshrink is defined as:
|
|
|
|
.. math::
|
|
\text{HardShrink}(x) =
|
|
\begin{cases}
|
|
x, & \text{ if } x > \lambda \\
|
|
x, & \text{ if } x < -\lambda \\
|
|
0, & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
Args:
|
|
lambd: the :math:`\lambda` value for the Hardshrink formulation. Default: 0.5
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Hardshrink.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Hardshrink()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['lambd']
|
|
lambd: float
|
|
|
|
def __init__(self, lambd: float = 0.5) -> None:
|
|
super(Hardshrink, self).__init__()
|
|
self.lambd = lambd
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.hardshrink(input, self.lambd)
|
|
|
|
def extra_repr(self) -> str:
|
|
return '{}'.format(self.lambd)
|
|
|
|
|
|
class LeakyReLU(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)
|
|
|
|
|
|
or
|
|
|
|
.. math::
|
|
\text{LeakyRELU}(x) =
|
|
\begin{cases}
|
|
x, & \text{ if } x \geq 0 \\
|
|
\text{negative\_slope} \times x, & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
Args:
|
|
negative_slope: Controls the angle of the negative slope. Default: 1e-2
|
|
inplace: can optionally do the operation in-place. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(*)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(*)`, same shape as the input
|
|
|
|
.. image:: ../scripts/activation_images/LeakyReLU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.LeakyReLU(0.1)
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['inplace', 'negative_slope']
|
|
inplace: bool
|
|
negative_slope: float
|
|
|
|
def __init__(self, negative_slope: float = 1e-2, inplace: bool = False) -> None:
|
|
super(LeakyReLU, self).__init__()
|
|
self.negative_slope = negative_slope
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.leaky_relu(input, self.negative_slope, self.inplace)
|
|
|
|
def extra_repr(self) -> str:
|
|
inplace_str = ', inplace=True' if self.inplace else ''
|
|
return 'negative_slope={}{}'.format(self.negative_slope, inplace_str)
|
|
|
|
|
|
class LogSigmoid(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{LogSigmoid}(x) = \log\left(\frac{ 1 }{ 1 + \exp(-x)}\right)
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/LogSigmoid.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.LogSigmoid()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.logsigmoid(input)
|
|
|
|
|
|
class Softplus(Module):
|
|
r"""Applies the Softplus function :math:`\text{Softplus}(x) = \frac{1}{\beta} *
|
|
\log(1 + \exp(\beta * x))` element-wise.
|
|
|
|
SoftPlus is a smooth approximation to the ReLU function and can be used
|
|
to constrain the output of a machine to always be positive.
|
|
|
|
For numerical stability the implementation reverts to the linear function
|
|
when :math:`input \times \beta > threshold`.
|
|
|
|
Args:
|
|
beta: the :math:`\beta` value for the Softplus formulation. Default: 1
|
|
threshold: values above this revert to a linear function. Default: 20
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Softplus.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softplus()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['beta', 'threshold']
|
|
beta: int
|
|
threshold: int
|
|
|
|
def __init__(self, beta: int = 1, threshold: int = 20) -> None:
|
|
super(Softplus, self).__init__()
|
|
self.beta = beta
|
|
self.threshold = threshold
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.softplus(input, self.beta, self.threshold)
|
|
|
|
def extra_repr(self) -> str:
|
|
return 'beta={}, threshold={}'.format(self.beta, self.threshold)
|
|
|
|
|
|
class Softshrink(Module):
|
|
r"""Applies the soft shrinkage function elementwise:
|
|
|
|
.. math::
|
|
\text{SoftShrinkage}(x) =
|
|
\begin{cases}
|
|
x - \lambda, & \text{ if } x > \lambda \\
|
|
x + \lambda, & \text{ if } x < -\lambda \\
|
|
0, & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
Args:
|
|
lambd: the :math:`\lambda` (must be no less than zero) value for the Softshrink formulation. Default: 0.5
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Softshrink.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softshrink()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['lambd']
|
|
lambd: float
|
|
|
|
def __init__(self, lambd: float = 0.5) -> None:
|
|
super(Softshrink, self).__init__()
|
|
self.lambd = lambd
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.softshrink(input, self.lambd)
|
|
|
|
def extra_repr(self) -> str:
|
|
return str(self.lambd)
|
|
|
|
|
|
class MultiheadAttention(Module):
|
|
r"""Allows the model to jointly attend to information
|
|
from different representation subspaces as described in the paper:
|
|
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
|
|
|
Multi-Head Attention is defined as:
|
|
|
|
.. math::
|
|
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
|
|
|
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
|
|
|
``forward()`` will use a special optimized implementation if all of the following
|
|
conditions are met:
|
|
|
|
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
|
|
restriction will be loosened in the future.)
|
|
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
|
- training is disabled (using ``.eval()``)
|
|
- dropout is 0
|
|
- ``add_bias_kv`` is ``False``
|
|
- ``add_zero_attn`` is ``False``
|
|
- ``batch_first`` is ``True`` and the input is batched
|
|
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
|
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
|
|
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
|
nor ``attn_mask`` is passed
|
|
|
|
If the optimized implementation is in use, a
|
|
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
|
``query``/``key``/``value`` to represent padding more efficiently than using a
|
|
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
|
will be returned, and an additional speedup proportional to the fraction of the input
|
|
that is padding can be expected.
|
|
|
|
Args:
|
|
embed_dim: Total dimension of the model.
|
|
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
|
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
|
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
|
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
|
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
|
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
|
Default: ``False``.
|
|
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
|
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
|
batch_first: If ``True``, then the input and output tensors are provided
|
|
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
|
|
|
Examples::
|
|
|
|
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
|
|
|
"""
|
|
__constants__ = ['batch_first']
|
|
bias_k: Optional[torch.Tensor]
|
|
bias_v: Optional[torch.Tensor]
|
|
|
|
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
|
|
kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
|
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
|
super(MultiheadAttention, self).__init__()
|
|
self.embed_dim = embed_dim
|
|
self.kdim = kdim if kdim is not None else embed_dim
|
|
self.vdim = vdim if vdim is not None else embed_dim
|
|
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
|
|
|
self.num_heads = num_heads
|
|
self.dropout = dropout
|
|
self.batch_first = batch_first
|
|
self.head_dim = embed_dim // num_heads
|
|
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
|
|
|
if self._qkv_same_embed_dim is False:
|
|
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
|
|
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
|
|
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
|
|
self.register_parameter('in_proj_weight', None)
|
|
else:
|
|
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
|
|
self.register_parameter('q_proj_weight', None)
|
|
self.register_parameter('k_proj_weight', None)
|
|
self.register_parameter('v_proj_weight', None)
|
|
|
|
if bias:
|
|
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
|
|
else:
|
|
self.register_parameter('in_proj_bias', None)
|
|
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
|
|
|
if add_bias_kv:
|
|
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
|
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
|
else:
|
|
self.bias_k = self.bias_v = None
|
|
|
|
self.add_zero_attn = add_zero_attn
|
|
|
|
self._reset_parameters()
|
|
|
|
def _reset_parameters(self):
|
|
if self._qkv_same_embed_dim:
|
|
xavier_uniform_(self.in_proj_weight)
|
|
else:
|
|
xavier_uniform_(self.q_proj_weight)
|
|
xavier_uniform_(self.k_proj_weight)
|
|
xavier_uniform_(self.v_proj_weight)
|
|
|
|
if self.in_proj_bias is not None:
|
|
constant_(self.in_proj_bias, 0.)
|
|
constant_(self.out_proj.bias, 0.)
|
|
if self.bias_k is not None:
|
|
xavier_normal_(self.bias_k)
|
|
if self.bias_v is not None:
|
|
xavier_normal_(self.bias_v)
|
|
|
|
def __setstate__(self, state):
|
|
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
|
if '_qkv_same_embed_dim' not in state:
|
|
state['_qkv_same_embed_dim'] = True
|
|
|
|
super(MultiheadAttention, self).__setstate__(state)
|
|
|
|
def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
|
|
need_weights: bool = True, attn_mask: Optional[Tensor] = None,
|
|
average_attn_weights: bool = True) -> Tuple[Tensor, Optional[Tensor]]:
|
|
r"""
|
|
Args:
|
|
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
|
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
|
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
|
Queries are compared against key-value pairs to produce the output.
|
|
See "Attention Is All You Need" for more details.
|
|
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
|
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
|
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
|
See "Attention Is All You Need" for more details.
|
|
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
|
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
|
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
|
See "Attention Is All You Need" for more details.
|
|
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
|
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
|
Binary and byte masks are supported.
|
|
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
|
the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key``
|
|
value will be ignored.
|
|
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
|
Default: ``True``.
|
|
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
|
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
|
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
|
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
|
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
|
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
|
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
|
the attention weight.
|
|
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
|
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
|
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
|
|
|
Outputs:
|
|
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
|
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
|
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
|
embedding dimension ``embed_dim``.
|
|
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
|
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
|
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
|
:math:`S` is the source sequence length. If ``average_weights=False``, returns attention weights per
|
|
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
|
|
|
.. note::
|
|
`batch_first` argument is ignored for unbatched inputs.
|
|
"""
|
|
is_batched = query.dim() == 3
|
|
why_not_fast_path = ''
|
|
if not is_batched:
|
|
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
|
elif query is not key or key is not value:
|
|
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
|
elif self.training:
|
|
why_not_fast_path = "training is enabled"
|
|
elif not self.batch_first:
|
|
why_not_fast_path = "batch_first was not True"
|
|
elif self.bias_k is not None:
|
|
why_not_fast_path = "self.bias_k was not None"
|
|
elif self.bias_v is not None:
|
|
why_not_fast_path = "self.bias_v was not None"
|
|
elif self.dropout:
|
|
why_not_fast_path = f"dropout was {self.dropout}, required zero"
|
|
elif self.add_zero_attn:
|
|
why_not_fast_path = "add_zero_attn was enabled"
|
|
elif not self._qkv_same_embed_dim:
|
|
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
|
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
|
|
why_not_fast_path = "key_padding_mask and attn_mask are not supported with NestedTensor input"
|
|
elif not query.is_nested and key_padding_mask is not None and attn_mask is not None:
|
|
why_not_fast_path = "key_padding_mask and attn_mask were both supplied"
|
|
|
|
if not why_not_fast_path:
|
|
tensor_args = (
|
|
query,
|
|
key,
|
|
value,
|
|
self.in_proj_weight,
|
|
self.in_proj_bias,
|
|
self.out_proj.weight,
|
|
self.out_proj.bias,
|
|
)
|
|
# We have to use list comprehensions below because TorchScript does not support
|
|
# generator expressions.
|
|
if torch.overrides.has_torch_function(tensor_args):
|
|
why_not_fast_path = "some Tensor argument has_torch_function"
|
|
elif not all([(x.is_cuda or 'cpu' in str(x.device)) for x in tensor_args]):
|
|
why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
|
|
elif torch.is_grad_enabled() and any([x.requires_grad for x in tensor_args]):
|
|
why_not_fast_path = ("grad is enabled and at least one of query or the "
|
|
"input/output projection weights or biases requires_grad")
|
|
if not why_not_fast_path:
|
|
return torch._native_multi_head_attention(
|
|
query,
|
|
key,
|
|
value,
|
|
self.embed_dim,
|
|
self.num_heads,
|
|
self.in_proj_weight,
|
|
self.in_proj_bias,
|
|
self.out_proj.weight,
|
|
self.out_proj.bias,
|
|
key_padding_mask if key_padding_mask is not None else attn_mask,
|
|
need_weights,
|
|
average_attn_weights)
|
|
any_nested = query.is_nested or key.is_nested or value.is_nested
|
|
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
|
|
f"The fast path was not hit because {why_not_fast_path}")
|
|
|
|
if self.batch_first and is_batched:
|
|
# make sure that the transpose op does not affect the "is" property
|
|
if key is value:
|
|
if query is key:
|
|
query = key = value = query.transpose(1, 0)
|
|
else:
|
|
query, key = [x.transpose(1, 0) for x in (query, key)]
|
|
value = key
|
|
else:
|
|
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
|
|
|
|
if not self._qkv_same_embed_dim:
|
|
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
|
query, key, value, self.embed_dim, self.num_heads,
|
|
self.in_proj_weight, self.in_proj_bias,
|
|
self.bias_k, self.bias_v, self.add_zero_attn,
|
|
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
|
training=self.training,
|
|
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
|
attn_mask=attn_mask, use_separate_proj_weight=True,
|
|
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
|
v_proj_weight=self.v_proj_weight, average_attn_weights=average_attn_weights)
|
|
else:
|
|
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
|
query, key, value, self.embed_dim, self.num_heads,
|
|
self.in_proj_weight, self.in_proj_bias,
|
|
self.bias_k, self.bias_v, self.add_zero_attn,
|
|
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
|
training=self.training,
|
|
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
|
attn_mask=attn_mask, average_attn_weights=average_attn_weights)
|
|
if self.batch_first and is_batched:
|
|
return attn_output.transpose(1, 0), attn_output_weights
|
|
else:
|
|
return attn_output, attn_output_weights
|
|
|
|
class PReLU(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{PReLU}(x) = \max(0,x) + a * \min(0,x)
|
|
|
|
or
|
|
|
|
.. math::
|
|
\text{PReLU}(x) =
|
|
\begin{cases}
|
|
x, & \text{ if } x \geq 0 \\
|
|
ax, & \text{ otherwise }
|
|
\end{cases}
|
|
|
|
Here :math:`a` is a learnable parameter. When called without arguments, `nn.PReLU()` uses a single
|
|
parameter :math:`a` across all input channels. If called with `nn.PReLU(nChannels)`,
|
|
a separate :math:`a` is used for each input channel.
|
|
|
|
|
|
.. note::
|
|
weight decay should not be used when learning :math:`a` for good performance.
|
|
|
|
.. note::
|
|
Channel dim is the 2nd dim of input. When input has dims < 2, then there is
|
|
no channel dim and the number of channels = 1.
|
|
|
|
Args:
|
|
num_parameters (int): number of :math:`a` to learn.
|
|
Although it takes an int as input, there is only two values are legitimate:
|
|
1, or the number of channels at input. Default: 1
|
|
init (float): the initial value of :math:`a`. Default: 0.25
|
|
|
|
Shape:
|
|
- Input: :math:`( *)` where `*` means, any number of additional
|
|
dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
Attributes:
|
|
weight (Tensor): the learnable weights of shape (:attr:`num_parameters`).
|
|
|
|
.. image:: ../scripts/activation_images/PReLU.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.PReLU()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['num_parameters']
|
|
num_parameters: int
|
|
|
|
def __init__(self, num_parameters: int = 1, init: float = 0.25,
|
|
device=None, dtype=None) -> None:
|
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
|
self.num_parameters = num_parameters
|
|
super(PReLU, self).__init__()
|
|
self.weight = Parameter(torch.empty(num_parameters, **factory_kwargs).fill_(init))
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.prelu(input, self.weight)
|
|
|
|
def extra_repr(self) -> str:
|
|
return 'num_parameters={}'.format(self.num_parameters)
|
|
|
|
|
|
class Softsign(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{SoftSign}(x) = \frac{x}{ 1 + |x|}
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Softsign.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softsign()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.softsign(input)
|
|
|
|
|
|
class Tanhshrink(Module):
|
|
r"""Applies the element-wise function:
|
|
|
|
.. math::
|
|
\text{Tanhshrink}(x) = x - \tanh(x)
|
|
|
|
Shape:
|
|
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
|
- Output: :math:`(*)`, same shape as the input.
|
|
|
|
.. image:: ../scripts/activation_images/Tanhshrink.png
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Tanhshrink()
|
|
>>> input = torch.randn(2)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.tanhshrink(input)
|
|
|
|
|
|
class Softmin(Module):
|
|
r"""Applies the Softmin function to an n-dimensional input Tensor
|
|
rescaling them so that the elements of the n-dimensional output Tensor
|
|
lie in the range `[0, 1]` and sum to 1.
|
|
|
|
Softmin is defined as:
|
|
|
|
.. math::
|
|
\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
|
|
|
|
Shape:
|
|
- Input: :math:`(*)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(*)`, same shape as the input
|
|
|
|
Args:
|
|
dim (int): A dimension along which Softmin will be computed (so every slice
|
|
along dim will sum to 1).
|
|
|
|
Returns:
|
|
a Tensor of the same dimension and shape as the input, with
|
|
values in the range [0, 1]
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softmin()
|
|
>>> input = torch.randn(2, 3)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['dim']
|
|
dim: Optional[int]
|
|
|
|
def __init__(self, dim: Optional[int] = None) -> None:
|
|
super(Softmin, self).__init__()
|
|
self.dim = dim
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
if not hasattr(self, 'dim'):
|
|
self.dim = None
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.softmin(input, self.dim, _stacklevel=5)
|
|
|
|
def extra_repr(self):
|
|
return 'dim={dim}'.format(dim=self.dim)
|
|
|
|
class Softmax(Module):
|
|
r"""Applies the Softmax function to an n-dimensional input Tensor
|
|
rescaling them so that the elements of the n-dimensional output Tensor
|
|
lie in the range [0,1] and sum to 1.
|
|
|
|
Softmax is defined as:
|
|
|
|
.. math::
|
|
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
|
|
|
|
When the input Tensor is a sparse tensor then the unspecifed
|
|
values are treated as ``-inf``.
|
|
|
|
Shape:
|
|
- Input: :math:`(*)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(*)`, same shape as the input
|
|
|
|
Returns:
|
|
a Tensor of the same dimension and shape as the input with
|
|
values in the range [0, 1]
|
|
|
|
Args:
|
|
dim (int): A dimension along which Softmax will be computed (so every slice
|
|
along dim will sum to 1).
|
|
|
|
.. note::
|
|
This module doesn't work directly with NLLLoss,
|
|
which expects the Log to be computed between the Softmax and itself.
|
|
Use `LogSoftmax` instead (it's faster and has better numerical properties).
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softmax(dim=1)
|
|
>>> input = torch.randn(2, 3)
|
|
>>> output = m(input)
|
|
|
|
"""
|
|
__constants__ = ['dim']
|
|
dim: Optional[int]
|
|
|
|
def __init__(self, dim: Optional[int] = None) -> None:
|
|
super(Softmax, self).__init__()
|
|
self.dim = dim
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
if not hasattr(self, 'dim'):
|
|
self.dim = None
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.softmax(input, self.dim, _stacklevel=5)
|
|
|
|
def extra_repr(self) -> str:
|
|
return 'dim={dim}'.format(dim=self.dim)
|
|
|
|
|
|
class Softmax2d(Module):
|
|
r"""Applies SoftMax over features to each spatial location.
|
|
|
|
When given an image of ``Channels x Height x Width``, it will
|
|
apply `Softmax` to each location :math:`(Channels, h_i, w_j)`
|
|
|
|
Shape:
|
|
- Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`.
|
|
- Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
|
|
|
|
Returns:
|
|
a Tensor of the same dimension and shape as the input with
|
|
values in the range [0, 1]
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.Softmax2d()
|
|
>>> # you softmax over the 2nd dimension
|
|
>>> input = torch.randn(2, 3, 12, 13)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
assert input.dim() == 4 or input.dim() == 3, 'Softmax2d requires a 3D or 4D tensor as input'
|
|
return F.softmax(input, -3, _stacklevel=5)
|
|
|
|
|
|
class LogSoftmax(Module):
|
|
r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional
|
|
input Tensor. The LogSoftmax formulation can be simplified as:
|
|
|
|
.. math::
|
|
\text{LogSoftmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right)
|
|
|
|
Shape:
|
|
- Input: :math:`(*)` where `*` means, any number of additional
|
|
dimensions
|
|
- Output: :math:`(*)`, same shape as the input
|
|
|
|
Args:
|
|
dim (int): A dimension along which LogSoftmax will be computed.
|
|
|
|
Returns:
|
|
a Tensor of the same dimension and shape as the input with
|
|
values in the range [-inf, 0)
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.LogSoftmax()
|
|
>>> input = torch.randn(2, 3)
|
|
>>> output = m(input)
|
|
"""
|
|
__constants__ = ['dim']
|
|
dim: Optional[int]
|
|
|
|
def __init__(self, dim: Optional[int] = None) -> None:
|
|
super(LogSoftmax, self).__init__()
|
|
self.dim = dim
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
if not hasattr(self, 'dim'):
|
|
self.dim = None
|
|
|
|
def forward(self, input: Tensor) -> Tensor:
|
|
return F.log_softmax(input, self.dim, _stacklevel=5)
|
|
|
|
def extra_repr(self):
|
|
return 'dim={dim}'.format(dim=self.dim)
|