mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Part of: #123062 Ran lintrunner on: - `test/scripts` - `test/simulate_nccl_errors.py` - `test/test_ao_sparsity.py` - `test/test_autocast.py` - `test/test_binary_ufuncs.py` - `test/test_bundled_images.py` - `test/test_bundled_inputs.py` - `test/test_comparison_utils.py` - `test/test_compile_benchmark_util.py` - `test/test_complex.py` - `test/test_cpp_api_parity.py` - `test/test_cpp_extensions_aot.py` - `test/test_cpp_extensions_jit.py` - `test/test_cpp_extensions_open_device_registration.py` Detail: ```bash $ lintrunner -a --take UFMT --all-files ok No lint issues. Successfully applied all patches. ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/124137 Approved by: https://github.com/soulitzer
55 lines
1.5 KiB
Python
55 lines
1.5 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
import torch._dynamo as torchdynamo
|
|
from torch.testing._internal.common_utils import run_tests, TEST_CUDA, TestCase
|
|
|
|
try:
|
|
import tabulate # noqa: F401 # type: ignore[import]
|
|
from torch.utils.benchmark.utils.compile import bench_all
|
|
|
|
HAS_TABULATE = True
|
|
except ImportError:
|
|
HAS_TABULATE = False
|
|
|
|
|
|
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
|
|
@unittest.skipIf(not HAS_TABULATE, "tabulate not available")
|
|
class TestCompileBenchmarkUtil(TestCase):
|
|
def test_training_and_inference(self):
|
|
class ToyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(torch.Tensor(2, 2))
|
|
|
|
def forward(self, x):
|
|
return x * self.weight
|
|
|
|
torchdynamo.reset()
|
|
model = ToyModel().cuda()
|
|
|
|
inference_table = bench_all(model, torch.ones(1024, 2, 2).cuda(), 5)
|
|
self.assertTrue(
|
|
"Inference" in inference_table
|
|
and "Eager" in inference_table
|
|
and "-" in inference_table
|
|
)
|
|
|
|
training_table = bench_all(
|
|
model,
|
|
torch.ones(1024, 2, 2).cuda(),
|
|
5,
|
|
optimizer=torch.optim.SGD(model.parameters(), lr=0.01),
|
|
)
|
|
self.assertTrue(
|
|
"Train" in training_table
|
|
and "Eager" in training_table
|
|
and "-" in training_table
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|