Files
pytorch/test/test_compile_benchmark_util.py
Yuanhao Ji b3504af56e Enable UFMT on test/scripts and some files (#124137)
Part of: #123062

Ran lintrunner on:

- `test/scripts`
- `test/simulate_nccl_errors.py`
- `test/test_ao_sparsity.py`
- `test/test_autocast.py`
- `test/test_binary_ufuncs.py`
- `test/test_bundled_images.py`
- `test/test_bundled_inputs.py`
- `test/test_comparison_utils.py`
- `test/test_compile_benchmark_util.py`
- `test/test_complex.py`
- `test/test_cpp_api_parity.py`
- `test/test_cpp_extensions_aot.py`
- `test/test_cpp_extensions_jit.py`
- `test/test_cpp_extensions_open_device_registration.py`

Detail:

```bash
$ lintrunner -a --take UFMT --all-files
ok No lint issues.
Successfully applied all patches.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124137
Approved by: https://github.com/soulitzer
2024-04-19 22:01:27 +00:00

55 lines
1.5 KiB
Python

# Owner(s): ["module: dynamo"]
import unittest
import torch
import torch._dynamo as torchdynamo
from torch.testing._internal.common_utils import run_tests, TEST_CUDA, TestCase
try:
import tabulate # noqa: F401 # type: ignore[import]
from torch.utils.benchmark.utils.compile import bench_all
HAS_TABULATE = True
except ImportError:
HAS_TABULATE = False
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
@unittest.skipIf(not HAS_TABULATE, "tabulate not available")
class TestCompileBenchmarkUtil(TestCase):
def test_training_and_inference(self):
class ToyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.weight = torch.nn.Parameter(torch.Tensor(2, 2))
def forward(self, x):
return x * self.weight
torchdynamo.reset()
model = ToyModel().cuda()
inference_table = bench_all(model, torch.ones(1024, 2, 2).cuda(), 5)
self.assertTrue(
"Inference" in inference_table
and "Eager" in inference_table
and "-" in inference_table
)
training_table = bench_all(
model,
torch.ones(1024, 2, 2).cuda(),
5,
optimizer=torch.optim.SGD(model.parameters(), lr=0.01),
)
self.assertTrue(
"Train" in training_table
and "Eager" in training_table
and "-" in training_table
)
if __name__ == "__main__":
run_tests()