mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Adding a per torch.compile() object CompilePackage which tracks dynamo artifact. CompilePackage is considered a low level component and should not be directly exposed to end users. It has the following interface: 1. `CompilePackage.__init__()` which optionally takes previously serialized dynamo states. a. when `dynamo` argument is None, it will contruct a brand new CompilePackage object. b. when `dynamo` argument is not None, it will load a pre-compiled dynamo state. 2. `package.save()` which dumps the dynamo states into _DynamoCacheEntry. 3. `package.install(backends)` which will handle all the side-effectful global scope updates with compiled functions and resume functions. This diff focus on making the low level mechanism for precompile. It will be left to upper level interface to use these API to build more user-facing frontend. Differential Revision: [D75956538](https://our.internmc.facebook.com/intern/diff/D75956538/) Pull Request resolved: https://github.com/pytorch/pytorch/pull/155118 Approved by: https://github.com/jamesjwu Co-authored-by: James Wu <jjwu@meta.com>
332 lines
12 KiB
Python
332 lines
12 KiB
Python
"""
|
|
This module provides the infrastructure for creating and managing compile package
|
|
for torch.compile. We mainly have two abstractions here:
|
|
- CompilePackage: Overarching data structure for store and lookup a list of compiled codes.
|
|
- CodeCacheEntry: Data structure for a single code being compiled by torch.compile.
|
|
The caching behavior is always under user control explicitly so that a stronger guarantee can
|
|
be provided about cache hit for a specific compiled model. Users can load the compile package
|
|
from a different process or host.
|
|
"""
|
|
|
|
import contextlib
|
|
import dataclasses
|
|
import functools
|
|
import hashlib
|
|
import importlib
|
|
import logging
|
|
import pickle
|
|
import platform
|
|
import sys
|
|
import types
|
|
from collections.abc import Generator
|
|
from typing import Any, NewType, Optional
|
|
|
|
import torch
|
|
import torch._inductor.package
|
|
|
|
from .bytecode_transformation import get_code_keys
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class SerializedCode:
|
|
co_argcount: int
|
|
co_posonlyargcount: int
|
|
co_kwonlyargcount: int
|
|
co_nlocals: int
|
|
co_stacksize: int
|
|
co_flags: int
|
|
co_code: bytes
|
|
co_consts: tuple[Any, ...]
|
|
co_names: tuple[str, ...]
|
|
co_varnames: tuple[str, ...]
|
|
co_filename: str
|
|
co_name: str
|
|
co_firstlineno: int
|
|
co_cellvars: tuple[str, ...]
|
|
co_freevars: tuple[str, ...]
|
|
co_linetable: Optional[bytes] = None
|
|
co_qualname: Optional[str] = None
|
|
co_exceptiontable: Optional[bytes] = None
|
|
co_lnotab: Optional[str] = None
|
|
|
|
@classmethod
|
|
@functools.cache
|
|
def from_code_object(cls, code: types.CodeType) -> "SerializedCode":
|
|
kwargs = {key: getattr(code, key) for key in get_code_keys()}
|
|
kwargs["co_consts"] = tuple(
|
|
cls.from_code_object(c) if isinstance(c, types.CodeType) else c
|
|
for c in kwargs["co_consts"]
|
|
)
|
|
return cls(**kwargs)
|
|
|
|
@classmethod
|
|
@functools.cache
|
|
def to_code_object(cls, serialized_code: "SerializedCode") -> types.CodeType:
|
|
kwargs = {key: getattr(serialized_code, key) for key in get_code_keys()}
|
|
kwargs["co_consts"] = tuple(
|
|
cls.to_code_object(c) if isinstance(c, SerializedCode) else c
|
|
for c in kwargs["co_consts"]
|
|
)
|
|
return types.CodeType(
|
|
*kwargs.values(),
|
|
)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class _GuardedCodeCacheEntry:
|
|
"""
|
|
Contains the serializable information associated with a single compilation in dynamo.
|
|
To restore an execution of compiled code, we will need to serialize the following data:
|
|
- Dynamo bytecode for mapping Python inputs/outputs.
|
|
- Dynamo guards.
|
|
"""
|
|
|
|
guards_state: bytes
|
|
dynamo_code: SerializedCode
|
|
|
|
|
|
_BackendId = NewType("_BackendId", str) # __compiled_fn
|
|
_FunctionId = NewType("_FunctionId", str) # __resume_at
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class _DynamoCodeCacheEntry:
|
|
"""
|
|
Contains the serializable information associated with a single code object
|
|
in dynamo. To restore an execution of compiled code, we will need the following
|
|
ingredients:
|
|
1. The "original" code object, which serves as the entry point for eager
|
|
execution, i.e. the code only executed when there's no cache entry hit.
|
|
2. The python module name this code object belongs to, for idenfifying the
|
|
enclosing global scope to inject compiled and resume functions.
|
|
3. A list of function names that pointing to this code object. There could be
|
|
multiple function objects pointing to the same code such as recursive functions.
|
|
4. A list of guarded code that eval frame dispatches to.
|
|
5. A list of imported module objects unioned from all compiled branches.
|
|
6. A list of "backends" (compiled fx graph) unioned from all compield branches.
|
|
"""
|
|
|
|
python_code: SerializedCode
|
|
python_module: str
|
|
function_names: list[_FunctionId]
|
|
guarded_codes: list[_GuardedCodeCacheEntry]
|
|
import_sources: dict[str, str]
|
|
backend_ids: list[_BackendId]
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class _DynamoCacheEntry:
|
|
codes: list[_DynamoCodeCacheEntry]
|
|
python_version: str = platform.python_version()
|
|
torch_version: str = torch.__version__
|
|
|
|
@property
|
|
def backend_ids(self) -> set[_BackendId]:
|
|
return {backend_id for code in self.codes for backend_id in code.backend_ids}
|
|
|
|
|
|
class CompilePackage:
|
|
"""
|
|
CompilePackage is considered a low level component and should not be directly exposed to
|
|
end users. It has the following interface:
|
|
|
|
1. `CompilePackage.__init__()` which optionally takes previously serialized dynamo states.
|
|
a. when `dynamo` argument is None, it will contruct a brand new CompilePackage object.
|
|
b. when `dynamo` argument is not None, it will load a pre-compiled dynamo state.
|
|
2. `package.save()` which dumps the dynamo and backend states to a DynamoCacheEntry object.
|
|
3. `package.install(backends) which will handle all the side-effectful global scope
|
|
updates with compiled functions and resume functions.
|
|
"""
|
|
|
|
def __init__(self, fn: Any, dynamo: Optional[_DynamoCacheEntry] = None) -> None:
|
|
self._innermost_fn = None
|
|
self._codes: dict[types.CodeType, _DynamoCodeCacheEntry] = {}
|
|
|
|
self._current_entry: Optional[_DynamoCodeCacheEntry] = None
|
|
self._installed_globals: dict[types.ModuleType, list[str]] = {}
|
|
|
|
# For debugging/testing purpose only.
|
|
self._cached_backends: dict[_BackendId, Any] = {}
|
|
|
|
self._initialize(fn, dynamo)
|
|
# Always go back to a clean state after initialization.
|
|
self.uninstall()
|
|
self.validate()
|
|
|
|
def _initialize(self, fn: Any, dynamo: Optional[_DynamoCacheEntry] = None) -> None:
|
|
from .eval_frame import innermost_fn
|
|
|
|
self._innermost_fn = innermost_fn(fn)
|
|
assert self._innermost_fn is not None
|
|
if dynamo is not None:
|
|
assert isinstance(dynamo, _DynamoCacheEntry)
|
|
if dynamo.python_version != platform.python_version():
|
|
raise RuntimeError(
|
|
f"Compile package was created with a different Python version: {dynamo.python_version}"
|
|
)
|
|
if dynamo.torch_version != torch.__version__:
|
|
raise RuntimeError(
|
|
f"Compile package was created with a different PyTorch version: {dynamo.torch_version}"
|
|
)
|
|
|
|
main, *codes = dynamo.codes
|
|
self._codes = {self._innermost_fn.__code__: main}
|
|
for code in codes:
|
|
self._codes[SerializedCode.to_code_object(code.python_code)] = code
|
|
else:
|
|
self._add_function(
|
|
self._innermost_fn.__code__, self._innermost_fn.__module__
|
|
)
|
|
|
|
def _add_function(
|
|
self,
|
|
python_code: types.CodeType,
|
|
python_module: str,
|
|
name: Optional[_FunctionId] = None,
|
|
) -> None:
|
|
if python_code not in self._codes:
|
|
code = _DynamoCodeCacheEntry(
|
|
python_code=SerializedCode.from_code_object(python_code),
|
|
python_module=python_module,
|
|
function_names=[],
|
|
guarded_codes=[],
|
|
import_sources={},
|
|
backend_ids=[],
|
|
)
|
|
self._codes[python_code] = code
|
|
else:
|
|
code = self._codes[python_code]
|
|
assert code.python_module == python_module
|
|
|
|
if name is not None:
|
|
code.function_names.append(name)
|
|
|
|
@property
|
|
def cached_backends(self) -> dict[_BackendId, Any]:
|
|
return self._cached_backends
|
|
|
|
@functools.cached_property
|
|
def source_id(self) -> str:
|
|
assert self._innermost_fn is not None
|
|
sha256_hash = hashlib.sha256()
|
|
sha256_hash.update(self._innermost_fn.__qualname__.encode())
|
|
sha256_hash.update(str(self._innermost_fn.__code__.co_firstlineno).encode())
|
|
return sha256_hash.hexdigest()
|
|
|
|
@contextlib.contextmanager
|
|
def code_context(self, code: types.CodeType) -> Generator[None, None, None]:
|
|
assert self._current_entry is None
|
|
|
|
entry = self._codes[code]
|
|
self._current_entry = entry
|
|
try:
|
|
yield
|
|
finally:
|
|
self._current_entry = None
|
|
|
|
def add_guarded_code(
|
|
self,
|
|
guards_state: bytes,
|
|
dynamo_code: types.CodeType,
|
|
) -> None:
|
|
assert self._current_entry is not None
|
|
guarded_code_entry = _GuardedCodeCacheEntry(
|
|
guards_state=guards_state,
|
|
dynamo_code=SerializedCode.from_code_object(dynamo_code),
|
|
)
|
|
self._current_entry.guarded_codes.append(guarded_code_entry)
|
|
|
|
def add_resume_function(
|
|
self,
|
|
python_code: types.CodeType,
|
|
python_module: str,
|
|
name: Optional[str],
|
|
) -> None:
|
|
self._add_function(
|
|
python_code, python_module, _FunctionId(name) if name else None
|
|
)
|
|
|
|
def add_import_source(self, alias: str, module_name: str) -> None:
|
|
assert self._current_entry is not None
|
|
self._current_entry.import_sources[alias] = module_name
|
|
|
|
def add_backend_id(self, backend_id: str, backend: Optional[Any] = None) -> None:
|
|
assert self._current_entry is not None
|
|
assert backend_id.startswith("__compiled_fn_") # sanity check
|
|
backend_id = _BackendId(backend_id)
|
|
self._current_entry.backend_ids.append(backend_id)
|
|
if backend is not None:
|
|
self._cached_backends[backend_id] = backend
|
|
|
|
def validate(self) -> None:
|
|
assert self._current_entry is None
|
|
assert self._innermost_fn is not None
|
|
assert next(iter(self._codes)) is self._innermost_fn.__code__
|
|
|
|
def _install_global(self, module: types.ModuleType, name: str, value: Any) -> None:
|
|
module.__dict__[name] = value
|
|
self._installed_globals.setdefault(module, []).append(name)
|
|
|
|
def uninstall(self) -> None:
|
|
from torch._C._dynamo.eval_frame import _reset_precompile_entries
|
|
|
|
assert self._innermost_fn is not None
|
|
for module, names in self._installed_globals.items():
|
|
for name in names:
|
|
module.__dict__.pop(name)
|
|
|
|
self._installed_globals = {}
|
|
|
|
_reset_precompile_entries(self._innermost_fn.__code__)
|
|
|
|
def install(self, backends: dict[_BackendId, Any]) -> None:
|
|
"""
|
|
Sync the package states to the compiled function. This includes the following actions:
|
|
1. Clean up the previously installed states.
|
|
2. Install the compiled functions to global scopes.
|
|
3. Install the precompiled cache entries to ExtraStates on the code object.
|
|
"""
|
|
from torch._C._dynamo.eval_frame import _load_precompile_entry
|
|
|
|
self.uninstall()
|
|
|
|
for code, entry in self._codes.items():
|
|
module = sys.modules[entry.python_module]
|
|
for alias, module_name in entry.import_sources.items():
|
|
self._install_global(
|
|
module, alias, importlib.import_module(module_name)
|
|
)
|
|
for function_name in entry.function_names:
|
|
fn = types.FunctionType(code, module.__dict__, function_name)
|
|
self._install_global(module, function_name, fn)
|
|
for backend_id in entry.backend_ids:
|
|
backend = backends[backend_id]
|
|
self._install_global(
|
|
module,
|
|
backend_id,
|
|
torch._dynamo.disable(backend),
|
|
)
|
|
|
|
for code, entry in self._codes.items():
|
|
for guarded_code in entry.guarded_codes:
|
|
guards_state = pickle.loads(guarded_code.guards_state)
|
|
assert isinstance(guards_state, torch._dynamo.guards.GuardsState)
|
|
check_fn_manager = torch._dynamo.guards.CheckFunctionManager(
|
|
code,
|
|
guards_state.output_graph,
|
|
guards_serialization_mode="load",
|
|
shape_code_parts=guards_state.shape_code_parts,
|
|
)
|
|
_load_precompile_entry(
|
|
code,
|
|
check_fn_manager.guard_manager,
|
|
SerializedCode.to_code_object(guarded_code.dynamo_code),
|
|
)
|
|
|
|
def save(self) -> _DynamoCacheEntry:
|
|
self.validate()
|
|
return _DynamoCacheEntry(codes=list(self._codes.values()))
|