Files
pytorch/torch/quantization/quantize_jit.py
Jerry Zhang b2f489dc57 [quant][graphmode] Rename graph mode quantization API to quantize_jit (#40212)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40212

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D22144745

fbshipit-source-id: 38a19b5afdddbbce262eea8ddf5b68458e6017b3
2020-06-19 18:13:37 -07:00

94 lines
4.3 KiB
Python

from __future__ import absolute_import, division, print_function, unicode_literals
import enum
import torch
from .qconfig import QConfig
from torch.jit._recursive import wrap_cpp_module
# Quantization type (dynamic quantization, static quantization).
# Should match the c++ enum in quantization_type.h
class QuantType(enum.IntEnum):
DYNAMIC = 0
STATIC = 1
def _check_is_script_module(model):
if not isinstance(model, torch.jit.ScriptModule):
raise ValueError('input must be a script module, got: ' + str(type(model)))
def _check_forward_method(model):
if not model._c._has_method('forward'):
raise ValueError('input script module does not have forward method')
def script_qconfig(qconfig):
return QConfig(
activation=torch.jit.script(qconfig.activation())._c,
weight=torch.jit.script(qconfig.weight())._c)
def script_qconfig_dict(qconfig_dict):
return {k: script_qconfig(v) if v else None for k, v in qconfig_dict.items()}
def fuse_conv_bn_jit(model):
return torch.jit._recursive.wrap_cpp_module(torch._C._jit_pass_fold_convbn(model._c))
def _prepare_jit(model, qconfig_dict, inplace=False, quant_type=QuantType.STATIC):
assert not inplace, "The inplace support is still in development"
_check_is_script_module(model)
_check_forward_method(model)
if not all(isinstance(x, str) for x in qconfig_dict.keys()):
raise ValueError('qconfig_dict should only contain names(str) as keys.')
scripted_qconfig_dict = script_qconfig_dict(qconfig_dict)
model = fuse_conv_bn_jit(model)
return wrap_cpp_module(torch._C._jit_pass_insert_observers(model._c,
'forward',
scripted_qconfig_dict,
inplace,
quant_type))
def prepare_jit(model, qconfig_dict, inplace=False):
return _prepare_jit(model, qconfig_dict, inplace, quant_type=QuantType.STATIC)
def prepare_dynamic_jit(model, qconfig_dict, inplace=False):
return _prepare_jit(model, qconfig_dict, inplace, quant_type=QuantType.DYNAMIC)
def _convert_jit(model, inplace=False, debug=False, quant_type=QuantType.STATIC):
assert not inplace, "The inplace support is still in development"
_check_is_script_module(model)
model.eval()
model = wrap_cpp_module(torch._C._jit_pass_insert_quant_dequant(model._c, 'forward', inplace, debug, quant_type))
if not debug:
# Moving model parameters to CPU since quantized operators
# are only supported on CPU right now
model.cpu()
model = wrap_cpp_module(torch._C._jit_pass_quant_finalize(model._c, quant_type))
return model
def convert_jit(model, inplace=False, debug=False):
return _convert_jit(model, inplace, debug, quant_type=QuantType.STATIC)
def convert_dynamic_jit(model, inplace=False, debug=False):
return _convert_jit(model, inplace, debug, quant_type=QuantType.DYNAMIC)
def _quantize_jit(model, qconfig_dict, run_fn=None, run_args=None, inplace=False, debug=False, quant_type=QuantType.STATIC):
assert not inplace, "We don't support inplace right now"
# Always do inplace convert because the Tensor is already
# copied in prepare_jit when inplace is False
if quant_type == QuantType.DYNAMIC:
model = prepare_dynamic_jit(model, qconfig_dict, inplace)
# TODO: change inplace to True
model = convert_dynamic_jit(model, False, debug)
else:
assert run_fn, "Must provide calibration function for post training static quantization"
assert run_args, "Must provide calibration dataset for post training static quantization"
model = prepare_jit(model, qconfig_dict, inplace)
run_fn(model, *run_args)
# TODO: change inplace to True
model = convert_jit(model, False, debug)
return model
def quantize_jit(model, qconfig_dict, run_fn, run_args, inplace=False, debug=False):
return _quantize_jit(model, qconfig_dict, run_fn, run_args, inplace, debug, quant_type=QuantType.STATIC)
def quantize_dynamic_jit(model, qconfig_dict, inplace=False, debug=False):
return _quantize_jit(model, qconfig_dict, inplace=inplace, debug=debug, quant_type=QuantType.DYNAMIC)