Files
pytorch/torch/onnx/__init__.py
2024-08-22 22:44:03 +00:00

431 lines
15 KiB
Python

# mypy: allow-untyped-defs
from __future__ import annotations
__all__ = [
# Modules
"symbolic_helper",
"utils",
"errors",
# All opsets
"symbolic_caffe2",
"symbolic_opset7",
"symbolic_opset8",
"symbolic_opset9",
"symbolic_opset10",
"symbolic_opset11",
"symbolic_opset12",
"symbolic_opset13",
"symbolic_opset14",
"symbolic_opset15",
"symbolic_opset16",
"symbolic_opset17",
"symbolic_opset18",
"symbolic_opset19",
"symbolic_opset20",
# Enums
"ExportTypes",
"OperatorExportTypes",
"TrainingMode",
"TensorProtoDataType",
"JitScalarType",
# Public functions
"export",
"export_to_pretty_string",
"is_in_onnx_export",
"select_model_mode_for_export",
"register_custom_op_symbolic",
"unregister_custom_op_symbolic",
"disable_log",
"enable_log",
# Errors
"CheckerError", # Backwards compatibility
# Dynamo Exporter
"DiagnosticOptions",
"ExportOptions",
"ONNXProgram",
"ONNXProgramSerializer",
"ONNXRuntimeOptions",
"InvalidExportOptionsError",
"OnnxExporterError",
"OnnxRegistry",
"dynamo_export",
"enable_fake_mode",
# DORT / torch.compile
"is_onnxrt_backend_supported",
]
from typing import Any, Collection, Mapping, Sequence, TYPE_CHECKING
import torch
from torch import _C
from torch._C import _onnx as _C_onnx
from torch._C._onnx import OperatorExportTypes, TensorProtoDataType, TrainingMode
from ._exporter_states import ExportTypes
from ._internal.onnxruntime import (
is_onnxrt_backend_supported,
OrtBackend as _OrtBackend,
OrtBackendOptions as _OrtBackendOptions,
OrtExecutionProvider as _OrtExecutionProvider,
)
from ._type_utils import JitScalarType
from .errors import CheckerError # Backwards compatibility
from .utils import (
_optimize_graph,
_run_symbolic_function,
_run_symbolic_method,
export_to_pretty_string,
is_in_onnx_export,
register_custom_op_symbolic,
select_model_mode_for_export,
unregister_custom_op_symbolic,
)
from . import ( # usort: skip. Keep the order instead of sorting lexicographically
errors,
symbolic_caffe2,
symbolic_helper,
symbolic_opset7,
symbolic_opset8,
symbolic_opset9,
symbolic_opset10,
symbolic_opset11,
symbolic_opset12,
symbolic_opset13,
symbolic_opset14,
symbolic_opset15,
symbolic_opset16,
symbolic_opset17,
symbolic_opset18,
symbolic_opset19,
symbolic_opset20,
utils,
)
from ._internal._exporter_legacy import ( # usort: skip. needs to be last to avoid circular import
DiagnosticOptions,
ExportOptions,
ONNXProgram,
ONNXProgramSerializer,
ONNXRuntimeOptions,
InvalidExportOptionsError,
OnnxExporterError,
OnnxRegistry,
dynamo_export,
enable_fake_mode,
)
if TYPE_CHECKING:
import os
# Set namespace for exposed private names
ExportTypes.__module__ = "torch.onnx"
JitScalarType.__module__ = "torch.onnx"
ExportOptions.__module__ = "torch.onnx"
ONNXProgram.__module__ = "torch.onnx"
ONNXProgramSerializer.__module__ = "torch.onnx"
ONNXRuntimeOptions.__module__ = "torch.onnx"
dynamo_export.__module__ = "torch.onnx"
InvalidExportOptionsError.__module__ = "torch.onnx"
OnnxExporterError.__module__ = "torch.onnx"
enable_fake_mode.__module__ = "torch.onnx"
OnnxRegistry.__module__ = "torch.onnx"
DiagnosticOptions.__module__ = "torch.onnx"
is_onnxrt_backend_supported.__module__ = "torch.onnx"
_OrtExecutionProvider.__module__ = "torch.onnx"
_OrtBackendOptions.__module__ = "torch.onnx"
_OrtBackend.__module__ = "torch.onnx"
producer_name = "pytorch"
producer_version = _C_onnx.PRODUCER_VERSION
def export(
model: torch.nn.Module
| torch.export.ExportedProgram
| torch.jit.ScriptModule
| torch.jit.ScriptFunction,
args: tuple[Any, ...],
f: str | os.PathLike | None = None,
*,
kwargs: dict[str, Any] | None = None,
export_params: bool = True,
verbose: bool | None = None,
input_names: Sequence[str] | None = None,
output_names: Sequence[str] | None = None,
opset_version: int | None = None,
dynamic_axes: Mapping[str, Mapping[int, str]]
| Mapping[str, Sequence[int]]
| None = None,
keep_initializers_as_inputs: bool = False,
dynamo: bool = False,
# Dynamo only options
external_data: bool = True,
dynamic_shapes: dict[str, Any] | tuple[Any, ...] | list[Any] | None = None,
report: bool = False,
verify: bool = False,
profile: bool = False,
dump_exported_program: bool = False,
artifacts_dir: str | os.PathLike = ".",
fallback: bool = False,
# Deprecated options
training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL,
operator_export_type: _C_onnx.OperatorExportTypes = _C_onnx.OperatorExportTypes.ONNX,
do_constant_folding: bool = True,
custom_opsets: Mapping[str, int] | None = None,
export_modules_as_functions: bool | Collection[type[torch.nn.Module]] = False,
autograd_inlining: bool = True,
**_: Any, # ignored options
) -> Any | None:
r"""Exports a model into ONNX format.
Args:
model: The model to be exported.
args: Example positional inputs. Any non-Tensor arguments will be hard-coded into the
exported model; any Tensor arguments will become inputs of the exported model,
in the order they occur in the tuple.
f: Path to the output ONNX model file. E.g. "model.onnx".
kwargs: Optional example keyword inputs.
export_params: If false, parameters (weights) will not be exported.
verbose: Whether to enable verbose logging.
input_names: names to assign to the input nodes of the graph, in order.
output_names: names to assign to the output nodes of the graph, in order.
opset_version: The version of the
`default (ai.onnx) opset <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_
to target. Must be >= 7.
dynamic_axes:
By default the exported model will have the shapes of all input and output tensors
set to exactly match those given in ``args``. To specify axes of tensors as
dynamic (i.e. known only at run-time), set ``dynamic_axes`` to a dict with schema:
* KEY (str): an input or output name. Each name must also be provided in ``input_names`` or
``output_names``.
* VALUE (dict or list): If a dict, keys are axis indices and values are axis names. If a
list, each element is an axis index.
For example::
class SumModule(torch.nn.Module):
def forward(self, x):
return torch.sum(x, dim=1)
torch.onnx.export(
SumModule(),
(torch.ones(2, 2),),
"onnx.pb",
input_names=["x"],
output_names=["sum"],
)
Produces::
input {
name: "x"
...
shape {
dim {
dim_value: 2 # axis 0
}
dim {
dim_value: 2 # axis 1
...
output {
name: "sum"
...
shape {
dim {
dim_value: 2 # axis 0
...
While::
torch.onnx.export(
SumModule(),
(torch.ones(2, 2),),
"onnx.pb",
input_names=["x"],
output_names=["sum"],
dynamic_axes={
# dict value: manually named axes
"x": {0: "my_custom_axis_name"},
# list value: automatic names
"sum": [0],
},
)
Produces::
input {
name: "x"
...
shape {
dim {
dim_param: "my_custom_axis_name" # axis 0
}
dim {
dim_value: 2 # axis 1
...
output {
name: "sum"
...
shape {
dim {
dim_param: "sum_dynamic_axes_1" # axis 0
...
keep_initializers_as_inputs: If True, all the
initializers (typically corresponding to model weights) in the
exported graph will also be added as inputs to the graph. If False,
then initializers are not added as inputs to the graph, and only
the user inputs are added as inputs.
Set this to True if you intend to supply model weights at runtime.
Set it to False if the weights are static to allow for better optimizations
(e.g. constant folding) by backends/runtimes.
dynamo: Whether to export the model with ``torch.export`` ExportedProgram instead of TorchScript.
external_data: Whether to save the model weights as an external data file.
This is required for models with large weights that exceed the ONNX file size limit (2GB).
When False, the weights are saved in the ONNX file with the model architecture.
dynamic_shapes: A dictionary of dynamic shapes for the model inputs. Refer to
:func:`torch.export.export` for more details.
report: Whether to generate a markdown report for the export process.
verify: Whether to verify the exported model using ONNX Runtime.
profile: Whether to profile the export process.
dump_exported_program: Whether to dump the :class:`torch.export.ExportedProgram` to a file.
This is useful for debugging the exporter.
artifacts_dir: The directory to save the debugging artifacts like the report and the serialized
exported program.
fallback: Whether to fallback to the TorchScript exporter if the dynamo exporter fails.
training: Deprecated option. Instead, set the training mode of the model before exporting.
operator_export_type: Deprecated option. Only ONNX is supported.
do_constant_folding: Deprecated option. The exported graph is always optimized.
custom_opsets: Deprecated.
A dictionary:
* KEY (str): opset domain name
* VALUE (int): opset version
If a custom opset is referenced by ``model`` but not mentioned in this dictionary,
the opset version is set to 1. Only custom opset domain name and version should be
indicated through this argument.
export_modules_as_functions: Deprecated option.
Flag to enable
exporting all ``nn.Module`` forward calls as local functions in ONNX. Or a set to indicate the
particular types of modules to export as local functions in ONNX.
This feature requires ``opset_version`` >= 15, otherwise the export will fail. This is because
``opset_version`` < 15 implies IR version < 8, which means no local function support.
Module variables will be exported as function attributes. There are two categories of function
attributes.
1. Annotated attributes: class variables that have type annotations via
`PEP 526-style <https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations>`_
will be exported as attributes.
Annotated attributes are not used inside the subgraph of ONNX local function because
they are not created by PyTorch JIT tracing, but they may be used by consumers
to determine whether or not to replace the function with a particular fused kernel.
2. Inferred attributes: variables that are used by operators inside the module. Attribute names
will have prefix "inferred::". This is to differentiate from predefined attributes retrieved from
python module annotations. Inferred attributes are used inside the subgraph of ONNX local function.
* ``False`` (default): export ``nn.Module`` forward calls as fine grained nodes.
* ``True``: export all ``nn.Module`` forward calls as local function nodes.
* Set of type of nn.Module: export ``nn.Module`` forward calls as local function nodes,
only if the type of the ``nn.Module`` is found in the set.
autograd_inlining: Deprecated.
Flag used to control whether to inline autograd functions.
Refer to https://github.com/pytorch/pytorch/pull/74765 for more details.
"""
if dynamo is True or isinstance(model, torch.export.ExportedProgram):
from torch.onnx._internal import exporter
if isinstance(args, torch.Tensor):
args = (args,)
return exporter.export_compat(
model,
args,
f,
kwargs=kwargs,
export_params=export_params,
verbose=verbose,
input_names=input_names,
output_names=output_names,
opset_version=opset_version,
dynamic_axes=dynamic_axes,
keep_initializers_as_inputs=keep_initializers_as_inputs,
external_data=external_data,
dynamic_shapes=dynamic_shapes,
report=report,
verify=verify,
profile=profile,
dump_exported_program=dump_exported_program,
artifacts_dir=artifacts_dir,
fallback=fallback,
)
else:
from torch.onnx.utils import export
export(
model,
args,
f, # type: ignore[arg-type]
kwargs=kwargs,
export_params=export_params,
verbose=verbose is True,
input_names=input_names,
output_names=output_names,
opset_version=opset_version,
dynamic_axes=dynamic_axes,
keep_initializers_as_inputs=keep_initializers_as_inputs,
training=training,
operator_export_type=operator_export_type,
do_constant_folding=do_constant_folding,
custom_opsets=custom_opsets,
export_modules_as_functions=export_modules_as_functions,
autograd_inlining=autograd_inlining,
)
return None
# TODO(justinchuby): Deprecate these logging functions in favor of the new diagnostic module.
# Returns True iff ONNX logging is turned on.
is_onnx_log_enabled = _C._jit_is_onnx_log_enabled
def enable_log() -> None:
r"""Enables ONNX logging."""
_C._jit_set_onnx_log_enabled(True)
def disable_log() -> None:
r"""Disables ONNX logging."""
_C._jit_set_onnx_log_enabled(False)
"""Sets output stream for ONNX logging.
Args:
stream_name (str, default "stdout"): Only 'stdout' and 'stderr' are supported
as ``stream_name``.
"""
set_log_stream = _C._jit_set_onnx_log_output_stream
"""A simple logging facility for ONNX exporter.
Args:
args: Arguments are converted to string, concatenated together with a newline
character appended to the end, and flushed to output stream.
"""
log = _C._jit_onnx_log