Files
pytorch/benchmarks/inductor_backends/cutlass.py
Yuanyuan Chen b2953f5643 [9/N] Apply ruff UP035 rule (#165515)
This is follow-up of #165214 to continue applying ruff UP035 rule to the code base.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165515
Approved by: https://github.com/Lucaskabela
2025-10-17 00:09:51 +00:00

468 lines
13 KiB
Python

import os
import sys
os.environ["TORCH_LOGS"] = "inductor"
import itertools
import logging
import time
from abc import abstractmethod
from collections import defaultdict
from collections.abc import Callable
from dataclasses import asdict, dataclass, field
from typing import Any, Optional
from tabulate import tabulate
from tqdm import tqdm
from triton.testing import do_bench
import torch
from torch._inductor import config as inductor_config
from torch.testing._internal.inductor_utils import _quantize_rowwise
log: logging.Logger = logging.getLogger(__name__)
inductor_config.autotune_num_choices_displayed = None
# force autotuning, but reuse compilation artifacts
inductor_config.autotune_local_cache = False
# uncomment for better debugging
# inductor_config.force_disable_caches = True
USE_FAST_ACCUM = True
UNITS = {
"name": "",
"forward_time": " (us)",
"teraflops": " (TFLOPS)",
"compilation_time": " (s)",
}
PERF_OVER_ATEN_STR: str = "perf_over_aten (%)"
OP_NAMES = [
"mm",
# "addmm",
# "bmm",
# "_scaled_mm",
]
SHAPES = [
# M, N, K
(1024, 1024, 1024),
(2048, 2048, 2048),
(8192, 8192, 8192),
]
BATCH_SIZES = [
# For non-bmm testing, still need to specify something
8,
]
DTYPES = [
torch.float16,
torch.bfloat16,
# torch.float8_e4m3fn,
]
# triton knobs
ENABLE_PERSISTENT_TMA_MATMULS = [
False,
True,
]
# cutlass knobs
CUTLASS_INSTANTIATION_LEVELS = [
"0",
# "1111",
# "2222",
"3332",
# "9992",
]
def benchmark_torch_function_in_microseconds(func: Callable, *args, **kwargs) -> float:
return do_bench(lambda: func(*args, **kwargs), warmup=100, rep=10000) * 1e3
@dataclass(frozen=True, kw_only=True)
class ExperimentConfig:
max_autotune: bool = True
coordinate_descent_tuning: bool = True
max_autotune_gemm_backends: str = "ATEN"
@abstractmethod
def name(self) -> str:
pass
def to_options(self) -> dict[str, Any]:
return {
"max_autotune": self.max_autotune,
"coordinate_descent_tuning": self.coordinate_descent_tuning,
"max_autotune_gemm_backends": self.max_autotune_gemm_backends,
}
@dataclass(frozen=True, kw_only=True)
class AtenExperimentConfig(ExperimentConfig):
def name(self) -> str:
return "aten"
@dataclass(frozen=True, kw_only=True)
class CutlassExperimentConfig(ExperimentConfig):
cutlass_instantiation_level: str
def name(self) -> str:
level_name = (
self.cutlass_instantiation_level
if self.cutlass_instantiation_level != "0"
else "default"
)
return f"cutlass_lvl_{level_name}"
def to_options(self) -> dict[str, Any]:
return {
**super().to_options(),
"cuda.cutlass_instantiation_level": self.cutlass_instantiation_level,
}
@dataclass(frozen=True, kw_only=True)
class TritonExperimentConfig(ExperimentConfig):
enable_persistent_tma_matmul: bool = False
def name(self) -> str:
if self.enable_persistent_tma_matmul:
return "triton_persistent_tma"
else:
return "triton"
def to_options(self) -> dict[str, Any]:
return {
**super().to_options(),
"triton.enable_persistent_tma_matmul": self.enable_persistent_tma_matmul,
}
@dataclass(frozen=True, kw_only=True)
class ExperimentGroupConfig:
op_name: str
shape: tuple[int, int, int]
dtype: torch.dtype
batch_size: int
experiments: list[ExperimentConfig] = field(default_factory=list)
def name(self) -> str:
M, N, K = self.shape
B = self.batch_size
sizes = (
f"(BS: {B}, {M}x{K}, {K}x{N})"
if self.op_name == "bmm"
else f"({M}x{K}, {K}x{N})"
)
return f"{self.op_name} {sizes} {self.dtype}"
@dataclass(frozen=True, kw_only=True)
class ExperimentResults:
name: str
forward_time: float
teraflops: float
compilation_time: float
def asdict(self):
return asdict(self)
@dataclass(frozen=True, kw_only=True)
class ExperimentGroup:
config: ExperimentGroupConfig
results: list[ExperimentResults] = field(default_factory=list)
def get_inputs(
config: ExperimentGroupConfig,
) -> tuple[torch.Tensor, ...]:
op_name = config.op_name
M, N, K = config.shape
batch_size = config.batch_size
dtype = config.dtype
device = torch.device("cuda")
if op_name == "mm":
A = torch.randn(M, K, dtype=dtype, device=device)
B = torch.randn(N, K, dtype=dtype, device=device).t()
return A, B
elif op_name == "addmm":
A = torch.randn(M, K, dtype=dtype, device=device)
B = torch.randn(N, K, dtype=dtype, device=device).t()
C = torch.randn(N, dtype=dtype, device=device)
return C, A, B
elif op_name == "bmm":
A = torch.randn(batch_size, M, K, dtype=dtype, device=device)
B = torch.randn(batch_size, N, K, dtype=dtype, device=device).permute(0, 2, 1)
return A, B
elif op_name == "_scaled_mm":
# For _scaled_mm, we only support fp8e4m3 with rowwise scaling
if dtype != torch.float8_e4m3fn:
raise ValueError(f"_scaled_mm only supports fp8e4m3, got {dtype}")
# Create input tensors in bfloat16 first, then quantize to fp8
input_dtype = torch.bfloat16
x = torch.randn(M, K, dtype=input_dtype, device=device)
w = torch.randn(N, K, dtype=input_dtype, device=device)
# Quantize using rowwise scaling
w_fp8, w_inverse_scale = _quantize_rowwise(w, dtype)
w_t_fp8 = w_fp8.t()
w_inverse_scale = w_inverse_scale.t() # scale_b should be (1, N)
x_fp8, x_inverse_scale = _quantize_rowwise(x, dtype)
# Return inputs for _scaled_mm: (input, weight_t, scale_a, scale_b, bias, out, out_dtype, use_fast_accum)
return (
x_fp8,
w_t_fp8,
x_inverse_scale,
w_inverse_scale,
None,
None,
torch.bfloat16,
USE_FAST_ACCUM,
)
else:
raise ValueError(f"Unknown op {op_name}")
def run_single_experiment_group(
group_config: ExperimentGroupConfig,
) -> list[ExperimentResults]:
inputs = get_inputs(group_config)
op = getattr(torch, group_config.op_name)
results = []
for config in group_config.experiments:
torch._dynamo.reset()
torch._inductor.utils.clear_caches()
compiled_op = torch.compile(
op,
options=config.to_options(),
)
start_time = time.perf_counter()
try:
_ = compiled_op(*inputs)
except Exception as e:
import traceback
log.warning(
f"Benchmark config {config.name()} failed: {e}, " # noqa: G004
f"traceback: {traceback.format_exc()}"
)
results.append(
ExperimentResults(
name=config.name(),
forward_time=float("inf"),
teraflops=0.0,
compilation_time=float("inf"),
)
)
continue
compilation_time = time.perf_counter() - start_time
forward_time = benchmark_torch_function_in_microseconds(
compiled_op,
*inputs,
)
flops = calculate_flops(
group_config.op_name,
group_config.shape,
group_config.batch_size,
)
teraflops = flops / (forward_time * 1e-6) / 1e12
results.append(
ExperimentResults(
name=config.name(),
forward_time=forward_time,
teraflops=teraflops,
compilation_time=compilation_time,
)
)
return results
def generate_experiment_groups(
op_names: list[str],
shapes: list[tuple[int, int, int]],
dtypes: list[torch.dtype],
enable_persistent_tma_matmuls: list[bool],
cutlass_instantiation_levels: list[str],
batch_sizes: list[int],
) -> list[ExperimentGroupConfig]:
groups = []
for (
op_name,
shape,
dtype,
batch_size,
) in itertools.product(op_names, shapes, dtypes, batch_sizes):
group = ExperimentGroupConfig(
op_name=op_name,
shape=shape,
dtype=dtype,
batch_size=batch_size,
)
experiments = generate_experiment_configs(
enable_persistent_tma_matmuls, cutlass_instantiation_levels
)
group.experiments.extend(experiments)
groups.append(group)
return groups
def generate_experiment_configs(
enable_persistent_tma_matmuls: list[bool], cutlass_instantiation_levels: list[str]
) -> list[ExperimentConfig]:
configs = []
# add aten configs
configs.append(
AtenExperimentConfig(
max_autotune_gemm_backends="ATEN",
)
)
# add triton configs
for enable_persistent_tma_matmul in enable_persistent_tma_matmuls:
configs.append(
TritonExperimentConfig(
max_autotune_gemm_backends="TRITON",
enable_persistent_tma_matmul=enable_persistent_tma_matmul,
)
)
# add cutlass configs
for cutlass_instantiation_level in cutlass_instantiation_levels:
configs.append(
CutlassExperimentConfig(
max_autotune_gemm_backends="CUTLASS",
cutlass_instantiation_level=cutlass_instantiation_level,
)
)
return configs
def calculate_table_data(results: list[ExperimentResults]) -> dict:
table_data = defaultdict(list)
aten_perf: Optional[float] = None
for experiment_result in results:
for key, value in experiment_result.asdict().items():
assert key in UNITS, f"Unknown key {key}"
table_data[key + UNITS[key]].append(value)
if experiment_result.name == "aten":
aten_perf = experiment_result.forward_time
table_data[PERF_OVER_ATEN_STR].append("NA")
elif aten_perf is not None:
perf_over_aten = (
(experiment_result.forward_time - aten_perf) / aten_perf * 100
)
table_data[PERF_OVER_ATEN_STR].append(perf_over_aten)
else:
# fallback in case aten is not in experiment group
table_data[PERF_OVER_ATEN_STR].append("NA")
return table_data
def calculate_flops(op_name: str, shape: tuple[int, int, int], batch_size: int) -> int:
"""
Calculate the number of floating point operations based on operation type and shape.
"""
M, N, K = shape
if op_name == "bmm":
return 2 * batch_size * M * N * K
elif op_name == "addmm":
return 2 * M * N * K + M * N
elif op_name == "_scaled_mm":
return 2 * M * N * K
else:
return 2 * M * N * K
def get_printable_results(experiment_groups: list[ExperimentGroup]) -> list[str]:
edge_over_aten = defaultdict(list)
output = []
for experiment_group in experiment_groups:
group_config_name = experiment_group.config.name()
output.append(f"\nExperiment group: {group_config_name}")
table_data = calculate_table_data(experiment_group.results)
for name, edge in zip(table_data["name"], table_data[PERF_OVER_ATEN_STR]):
edge_over_aten[name].append(edge)
output.append(
tabulate(table_data, headers="keys", tablefmt="pretty", floatfmt=".3f")
)
if "aten" in edge_over_aten:
output.append("\nAverage edge over aten (max(-edge, 0), higher is better):")
for name in edge_over_aten:
if name != "aten":
values = [
max(-v, 0.0)
for v in edge_over_aten[name]
if v != float("inf") and v != "NA"
]
valid_count = len(values)
average_edge = sum(values) / valid_count if values else "No valid data"
output.append(
f"{name}: {average_edge} (from {valid_count} valid values)"
)
output.append("\n")
return "\n".join(output)
def main():
seed = 123
torch.manual_seed(seed)
results = []
log.info("Starting benchmarking...")
configs = list(
generate_experiment_groups(
OP_NAMES,
SHAPES,
DTYPES,
ENABLE_PERSISTENT_TMA_MATMULS,
CUTLASS_INSTANTIATION_LEVELS,
BATCH_SIZES,
)
)
for i, group_config in enumerate(tqdm(configs)):
group_results = run_single_experiment_group(group_config) # noqa: G004
results.append(
ExperimentGroup(config=group_config, results=group_results),
)
sys.stderr.write(
f"\nINTERMEDIATE results: {i + 1}/{len(configs)} \n"
+ get_printable_results(results)
)
print("\nFINAL results...")
print(get_printable_results(results))
if __name__ == "__main__":
main()