Files
pytorch/benchmarks/dynamo/torchao_backend.py
Yuanyuan Chen b2953f5643 [9/N] Apply ruff UP035 rule (#165515)
This is follow-up of #165214 to continue applying ruff UP035 rule to the code base.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165515
Approved by: https://github.com/Lucaskabela
2025-10-17 00:09:51 +00:00

59 lines
2.2 KiB
Python

from collections.abc import Callable
from typing import Any
import torch
def setup_baseline():
from torchao.quantization.utils import recommended_inductor_config_setter
recommended_inductor_config_setter()
torch._dynamo.config.automatic_dynamic_shapes = False
torch._dynamo.config.recompile_limit = 10000
def torchao_optimize_ctx(quantization: str):
from torchao.quantization.quant_api import (
autoquant,
int4_weight_only,
int8_dynamic_activation_int8_weight,
int8_weight_only,
quantize_,
)
from torchao.utils import unwrap_tensor_subclass
def inner(model_iter_fn: Callable):
def _torchao_apply(module: torch.nn.Module, example_inputs: Any):
if getattr(module, "_quantized", None) is None:
if quantization == "int8dynamic":
quantize_(
module,
int8_dynamic_activation_int8_weight(),
set_inductor_config=False,
)
elif quantization == "int8weightonly":
quantize_(module, int8_weight_only(), set_inductor_config=False)
elif quantization == "int4weightonly":
quantize_(module, int4_weight_only(), set_inductor_config=False)
if quantization == "autoquant":
autoquant(module, error_on_unseen=False, set_inductor_config=False)
if isinstance(example_inputs, dict):
module(**example_inputs)
else:
module(*example_inputs)
from torchao.quantization.autoquant import AUTOQUANT_CACHE
if len(AUTOQUANT_CACHE) == 0:
raise Exception( # noqa: TRY002
"NotAutoquantizable"
f"Found no autoquantizable layers in model {type(module)}, stopping autoquantized run"
)
else:
unwrap_tensor_subclass(module)
setattr(module, "_quantized", True) # noqa: B010
model_iter_fn(module, example_inputs)
return _torchao_apply
return inner