Files
pytorch/torch/nativert/executor/ExecutionFrame.cpp
Yuanyuan Chen 36871622f1 [2/N] Mark unused parameters in C++ code (#165121)
This is follow-up of #164912 to mark unused C++ parameters to improve code readability.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165121
Approved by: https://github.com/Skylion007
2025-10-15 03:04:39 +00:00

182 lines
5.7 KiB
C++

#include <c10/util/Enumerate.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
#include <torch/nativert/executor/ExecutionFrame.h>
namespace torch::nativert {
ExecutionFrame::ExecutionFrame(const Graph& graph)
: graph_(graph),
allValues_(graph.numValues()),
persistent_(graph.numValues()),
moveable_output_mask_(graph.userOutputs().size()) {
updatePersistentValues(/* weights = nullptr */);
updateMovableOutputs();
}
ExecutionFrame::ExecutionFrame(
const Graph& graph,
const Weights& weights,
const torch::nativert::ExecutorConfig& cfg,
LayoutPlanner* layoutPlanner)
: ExecutionFrame(graph) {
setWeights(weights);
if (layoutPlanner != nullptr) {
layoutPlanner_ = layoutPlanner;
layoutManager_ = std::make_unique<LayoutManager>(
*layoutPlanner,
*this,
cfg.layoutPlannerSettings.layoutManagerSettings());
}
}
void ExecutionFrame::setWeights(const Weights& weights) {
weightVersion_ = weights.version();
updatePersistentValues(&weights);
updateMovableOutputs();
}
/* static */ std::vector<std::pair<ValueId, c10::IValue>> ExecutionFrame::
getPersistentValues(const Graph& graph, const Weights* weights) {
std::vector<std::pair<ValueId, c10::IValue>> persistentValues;
/* ADD GRAPH-DEPENDENT PERSISTENT VALUES */
for (const auto& [valueId, constSymintValue] :
graph.getConstantSymIntValues()) {
persistentValues.emplace_back(valueId, constSymintValue);
}
if (weights == nullptr) {
return persistentValues;
}
/* ADD WEIGHT-DEPENDENT PERSISTENT VALUES */
const auto& inputsToWeights = graph.signature().inputsToWeights();
for (const auto& [inputName, weightName] : inputsToWeights) {
const Value* value = graph.getValue(inputName);
persistentValues.emplace_back(value->id(), weights->at(weightName));
}
const auto& inputsToCustomObjs = graph.signature().inputsToCustomObjs();
for (const auto& [inputName, customObjName] : inputsToCustomObjs) {
const Value* value = graph.getValue(inputName);
persistentValues.emplace_back(
value->id(), weights->getCustomObj(customObjName));
}
std::unordered_map<std::string, ValueId> foldedConstIds;
for (const Node& node : graph.nodes()) {
if (node.target() == "torch.ops.higher_order.run_const_graph") {
const auto& const_graph =
std::get<std::unique_ptr<Graph>>(node.attributes().at(0).value);
for (size_t i = 0; i < node.outputs().size(); ++i) {
foldedConstIds[std::string{const_graph->outputs().at(i)->name()}] =
node.outputs()[i]->id();
}
}
}
for (const auto& [name, tensor] : weights->getFoldedConsts()) {
persistentValues.emplace_back(foldedConstIds.at(name), tensor);
}
for (const auto& [name, iv] : weights->getConstFoldedValues()) {
const Value* value = graph.getValue(name);
persistentValues.emplace_back(value->id(), iv);
}
return persistentValues;
}
void ExecutionFrame::updatePersistentValues(const Weights* weights) {
auto persistentValues = ExecutionFrame::getPersistentValues(graph_, weights);
for (auto it = std::make_move_iterator(persistentValues.begin());
it != std::make_move_iterator(persistentValues.end());
++it) {
auto&& [value, iv] = *it;
setPersistentIValue(value, std::move(iv));
}
}
void ExecutionFrame::updateMovableOutputs() {
moveable_output_mask_.assign(moveable_output_mask_.size(), true);
c10::FastSet<ValueId> inputs;
for (const auto* input : graph_.userInputs()) {
if (input) {
inputs.insert(input->id());
}
}
const auto& outputs = graph_.userOutputs();
const size_t num_outputs = outputs.size();
c10::FastSet<ValueId> seen;
for (size_t i = 0; i < num_outputs; i++) {
auto idx = num_outputs - 1 - i;
if (const Value* const* valuePtr = std::get_if<Value*>(&outputs[idx]);
valuePtr && *valuePtr) {
auto id = (*valuePtr)->id();
/*
values are not moveable if:
1. they are persistent
2. they are inputs (since inputs are borrowed)
3. the value will be moved in a later (right-more) output
*/
if (!seen.insert(id).second || persistent_[id] ||
inputs.find(id) != inputs.end()) {
moveable_output_mask_[idx] = false;
}
}
}
}
ExecutionFrame::ExecutionFrame(
const Graph& graph,
size_t numValues,
const std::vector<ValueId>& /*unused*/,
const std::vector<ValueId>& /*unused*/)
: graph_(graph) {
allValues_.resize(numValues);
}
void ExecutionFrame::setIValue(ValueId id, c10::IValue ivalue) {
DCHECK(static_cast<size_t>(id) < allValues_.size());
allValues_[id] = std::move(ivalue);
}
void ExecutionFrame::setBorrowedIValue(ValueId id, c10::IValue ivalue) {
DCHECK(static_cast<size_t>(id) < allValues_.size());
borrowedValueIds_.push_back(id);
allValues_[id] = std::move(ivalue);
}
at::Tensor ExecutionFrame::getTensor(ValueId id) const {
const auto& ivalue = getIValue(id);
TORCH_CHECK(ivalue.isTensor(), "getTensor called on non-tensor value");
return ivalue.toTensor();
}
std::vector<c10::IValue> ExecutionFrame::tryMoveUserOutputs() {
std::vector<c10::IValue> ret;
const auto& outputs = graph_.userOutputs();
ret.reserve(outputs.size());
for (const auto& [i, outputValue] : c10::enumerate(outputs)) {
if (const Value* const* valuePtr = std::get_if<Value*>(&outputValue);
valuePtr && *valuePtr) {
ret.push_back(
isOutputMovable(i) ? moveIValue((*valuePtr)->id())
: getIValue((*valuePtr)->id()));
} else if (Constant const* constant = std::get_if<Constant>(&outputValue)) {
ret.push_back(constantToIValue(*constant));
}
}
return ret;
}
} // namespace torch::nativert