mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
`E721` checks for object type comparisons using == and other comparison operators. This is useful because it is recommended to use `is` for type comparisons. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165162 Approved by: https://github.com/Skylion007
490 lines
16 KiB
Python
490 lines
16 KiB
Python
# Owner(s): ["oncall: quantization"]
|
|
# Copied from pytorch/test/fx/test_subgraph_rewriter.py
|
|
|
|
import os
|
|
import sys
|
|
|
|
import torch
|
|
from torch.fx import symbolic_trace, subgraph_rewriter
|
|
from torch.fx.annotate import annotate
|
|
# Make the helper files in test/ importable
|
|
from torch.fx.experimental.rewriter import RewritingTracer
|
|
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
|
|
if __name__ == '__main__':
|
|
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_fx.py TESTNAME\n\n"
|
|
"instead.")
|
|
|
|
class TestSubgraphRewriter(JitTestCase):
|
|
|
|
def test_subgraph_rewriter_preserves_logic(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
val = torch.neg(x) + torch.relu(x)
|
|
return torch.add(val, val)
|
|
|
|
def pattern(x):
|
|
return torch.neg(x) + torch.relu(x)
|
|
|
|
def comparison(x):
|
|
val = torch.neg(x) + torch.relu(x)
|
|
return torch.add(val, val)
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.rand(1, 3)
|
|
|
|
# Replace `pattern` with the same pattern (shouldn't change
|
|
# the underlying logic)
|
|
subgraph_rewriter.replace_pattern(traced, pattern, pattern)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_output = comparison_fn(x)
|
|
test_output = traced.forward(x)
|
|
self.assertEqual(ref_output, test_output)
|
|
|
|
def test_subgraph_rewriter_with_oneliner_pattern(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
val = torch.neg(x)
|
|
return torch.add(val, val)
|
|
|
|
def pattern(x):
|
|
return torch.neg(x)
|
|
|
|
def replacement(x):
|
|
return torch.relu(x)
|
|
|
|
def comparison(x):
|
|
val = torch.relu(x)
|
|
return torch.add(val, val)
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.rand(1, 3)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_output = comparison_fn(x)
|
|
test_output = traced.forward(x)
|
|
self.assertEqual(ref_output, test_output)
|
|
|
|
def test_subgraph_rewriter_single_pattern_match(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
val = torch.neg(x) + torch.relu(x)
|
|
return torch.add(val, val)
|
|
|
|
def pattern(x):
|
|
return torch.neg(x) + torch.relu(x)
|
|
|
|
def replacement(x):
|
|
return torch.relu(x)
|
|
|
|
def comparison(x):
|
|
val = torch.relu(x)
|
|
return torch.add(val, val)
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.rand(1, 3)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_output = comparison_fn(x)
|
|
test_output = traced.forward(x)
|
|
self.assertEqual(ref_output, test_output)
|
|
|
|
def test_subgraph_rewriter_multiple_pattern_match(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x, w1, w2):
|
|
m1 = torch.cat([w1, w2]).sum()
|
|
m2 = torch.cat([w1, w2]).sum()
|
|
return x + torch.max(m1) + torch.max(m2)
|
|
|
|
def pattern(w1, w2):
|
|
return torch.cat([w1, w2]).sum()
|
|
|
|
def replacement(w1, w2):
|
|
return torch.stack([w1, w2])
|
|
|
|
def comparison(x, w1, w2):
|
|
m1 = torch.stack([w1, w2])
|
|
m2 = torch.stack([w1, w2])
|
|
return x + torch.max(m1) + torch.max(m2)
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.rand(1, 3)
|
|
w1 = torch.rand(1, 3)
|
|
w2 = torch.rand(1, 3)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_outs = comparison_fn(x, w1, w2)
|
|
test_outs = traced.forward(x, w1, w2)
|
|
self.assertEqual(ref_outs, test_outs)
|
|
|
|
def test_subgraph_rewriter_graph_argument_order(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return torch.mm(x, y)
|
|
|
|
def pattern(x, y):
|
|
return torch.mm(x, y)
|
|
|
|
def comparison(x, y):
|
|
return torch.mm(x, y)
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.randn(3, 4)
|
|
y = torch.randn(4, 5)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, pattern, pattern)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_outs = comparison_fn(x, y)
|
|
test_outs = traced.forward(x, y)
|
|
self.assertEqual(ref_outs, test_outs)
|
|
|
|
def test_subgraph_rewriter_correct_output_replacement(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
val = torch.neg(y) + torch.relu(x)
|
|
return torch.add(val, val)
|
|
|
|
def pattern(x):
|
|
return torch.relu(x)
|
|
|
|
def replacement(x):
|
|
return torch.neg(x)
|
|
|
|
def comparison(x, y):
|
|
val = torch.neg(y) + torch.neg(x)
|
|
return torch.add(val, val)
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.randn(4, 4)
|
|
y = torch.randn(4, 4)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_outs = comparison_fn(x, y)
|
|
test_outs = traced.forward(x, y)
|
|
self.assertEqual(ref_outs, test_outs)
|
|
|
|
def test_subgraph_rewriter_traced_as_callable(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
val = torch.neg(x) + torch.relu(x)
|
|
return torch.add(val, val)
|
|
|
|
class Pattern(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.neg(x) + torch.relu(x)
|
|
|
|
class Replacement(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.sigmoid(x)
|
|
|
|
def comparison(x):
|
|
val = torch.sigmoid(x)
|
|
return torch.add(val, val)
|
|
|
|
traced = symbolic_trace(M())
|
|
traced_pattern = symbolic_trace(Pattern())
|
|
traced_replacement = symbolic_trace(Replacement())
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.randn(3, 4)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, traced_pattern, traced_replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_outs = comparison_fn(x)
|
|
test_outs = traced.forward(x)
|
|
self.assertEqual(ref_outs, test_outs)
|
|
|
|
def test_subgraph_rewriter_pattern_is_entire_graph(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
a = torch.neg(x)
|
|
return torch.add(a, a)
|
|
|
|
def pattern(x):
|
|
a = torch.neg(x)
|
|
return torch.add(a, a)
|
|
|
|
def replacement(x):
|
|
a = torch.sigmoid(x)
|
|
return torch.cat([a, a])
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison_fn = symbolic_trace(replacement)
|
|
|
|
x = torch.randn(3, 4)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_outs = comparison_fn(x)
|
|
test_outs = traced.forward(x)
|
|
self.assertEqual(ref_outs, test_outs)
|
|
|
|
def test_subgraph_rewriter_pattern_output_pattern_node_can_have_users_that_are_not_matched(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x):
|
|
y = torch.relu(x)
|
|
return torch.neg(y) - y
|
|
|
|
def pattern(x):
|
|
return torch.relu(x)
|
|
|
|
def replacement(x):
|
|
return torch.sigmoid(x)
|
|
|
|
def comparison(x):
|
|
y = torch.sigmoid(x)
|
|
return torch.neg(y) - y
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.randn(3, 4)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_outs = comparison_fn(x)
|
|
test_outs = traced.forward(x)
|
|
self.assertEqual(ref_outs, test_outs)
|
|
|
|
def test_subgraph_rewriter_internal_pattern_nodes_cannot_have_users_that_are_not_matched(self):
|
|
class M(torch.nn.Module):
|
|
def forward(self, x, w1, w2, b1, b2):
|
|
m0 = torch.cat([w1, w2]) # noqa: F841
|
|
m1 = torch.cat([w1, w2])
|
|
m2 = torch.cat([x, b2])
|
|
t0 = torch.addmm(b1, m1, m2.t()) # noqa: F841
|
|
t1 = torch.sum(w1, 1)
|
|
t2 = torch.addmm(b1, m1, m2.t())
|
|
return torch.sum(t1), torch.sum(t2)
|
|
|
|
def pattern(x, w1, w2, b1, b2):
|
|
m1 = torch.cat([w1, w2])
|
|
m2 = torch.cat([x, b2])
|
|
return torch.addmm(b1, m1, m2.t())
|
|
|
|
def replacement(x, w1, w2, b1, b2):
|
|
return torch.cat([x, w1, w2])
|
|
|
|
traced = symbolic_trace(M())
|
|
|
|
# Result should be [] since no matches can be found
|
|
res = subgraph_rewriter.replace_pattern(traced, pattern, replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
self.assertEqual(res, [])
|
|
|
|
def test_subgraph_rewriter_placeholder_matching(self):
|
|
"""
|
|
This tests that a placeholder Node can be matched to a Node with
|
|
a different number of input Nodes. In the example below, the
|
|
original traced Module looks like this:
|
|
opcode target args kwargs
|
|
------------- ---------------------------------------------------------- ------------------------ --------
|
|
placeholder x () {}
|
|
call_function <built-in function add> (x, 3) {}
|
|
call_method dequantize (add,) {}
|
|
call_function <built-in method sigmoid of type object at 0x7f7c1f440fe0> (dequantize,) {}
|
|
call_method to (sigmoid, torch.float16) {}
|
|
output output (to,) {}
|
|
while the pattern we want to match looks like this:
|
|
opcode target args kwargs
|
|
------------- ---------------------------------------------------------- ------------------------ --------
|
|
placeholder x () {}
|
|
call_method dequantize (x,) {}
|
|
call_function <built-in method sigmoid of type object at 0x7f7c1f440fe0> (dequantize,) {}
|
|
call_method to (sigmoid, torch.float16) {}
|
|
output output (to,) {}
|
|
Here, we want to be able to match the original graph's
|
|
`call_function.add` Node with the pattern graph's
|
|
`plaeholder.x` Node.
|
|
Credit to Jerry Zhang (GitHub: jerryzh168) for this test case
|
|
"""
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.dtype = torch.float16
|
|
|
|
def forward(self, x):
|
|
x += 3
|
|
x = x.dequantize()
|
|
x = torch.sigmoid(x)
|
|
dtype = self.dtype
|
|
x = x.to(dtype)
|
|
return x
|
|
|
|
def pattern(x):
|
|
x = x.dequantize()
|
|
x = torch.sigmoid(x)
|
|
x = x.to(torch.float16)
|
|
return x
|
|
|
|
def replacement(x):
|
|
return x
|
|
|
|
def comparison(x):
|
|
return x + 3
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.randn(3, 4)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_outs = comparison_fn(x)
|
|
test_outs = traced.forward(x)
|
|
self.assertEqual(ref_outs, test_outs)
|
|
|
|
def test_subgraph_rewriter_replaces_referenced_submodules(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.sigmoid = torch.nn.Sigmoid()
|
|
self.submod = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = x + 1
|
|
return self.submod(self.sigmoid(x))
|
|
|
|
class Pattern(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.sigmoid = torch.nn.Sigmoid()
|
|
self.submod = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
return self.submod(self.sigmoid(x))
|
|
|
|
class Replacement(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.id = torch.nn.Identity()
|
|
self.submod = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
return self.submod(self.id(x))
|
|
|
|
class Comparison(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.id = torch.nn.Identity()
|
|
self.submod = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = x + 1
|
|
return self.submod(self.id(x))
|
|
|
|
traced = symbolic_trace(M())
|
|
comparison = Comparison()
|
|
|
|
x = torch.randn(3, 4)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, Pattern(), Replacement())
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_outs = comparison(x)
|
|
test_outs = traced.forward(x)
|
|
self.assertEqual(ref_outs, test_outs)
|
|
|
|
traced.get_submodule("id")
|
|
with self.assertRaisesRegex(AttributeError, "has no attribute"):
|
|
traced.get_submodule("sigmoid")
|
|
|
|
submod = traced.get_submodule("submod")
|
|
self.assertEqual(type(submod), torch.nn.ReLU)
|
|
|
|
def test_subgraph_rewriter_annotations_int(self):
|
|
|
|
class M1(torch.nn.Module):
|
|
def forward(self, x):
|
|
y: int = x
|
|
return torch.add(x, y)
|
|
|
|
class M2(torch.nn.Module):
|
|
def forward(self, x):
|
|
y = annotate(x, int)
|
|
return torch.add(x, y)
|
|
|
|
ast_rewriter = RewritingTracer()
|
|
graph = ast_rewriter.trace(M1())
|
|
|
|
module = M2()
|
|
symbolic_traced: torch.fx.GraphModule = symbolic_trace(module)
|
|
for n, m in zip(symbolic_traced.graph.nodes, graph.nodes):
|
|
if n.op == 'placeholder':
|
|
assert n.type is int
|
|
assert m.type is int
|
|
|
|
def test_subgraph_writer_replace_consecutive_submodules(self):
|
|
|
|
def f(x):
|
|
x = torch.sigmoid(x)
|
|
x = torch.sigmoid(x)
|
|
return torch.sigmoid(x)
|
|
|
|
def pattern(x):
|
|
return torch.sigmoid(x)
|
|
|
|
def replacement(x):
|
|
return torch.exp(x)
|
|
|
|
def comparison(x):
|
|
x = torch.exp(x)
|
|
x = torch.exp(x)
|
|
return torch.exp(x)
|
|
|
|
traced = symbolic_trace(f)
|
|
comparison_fn = symbolic_trace(comparison)
|
|
|
|
x = torch.randn(3, 4)
|
|
|
|
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
|
|
|
|
traced.graph.lint()
|
|
|
|
ref_outs = comparison_fn(x)
|
|
test_outs = traced.forward(x)
|
|
self.assertEqual(ref_outs, test_outs)
|