Files
pytorch/test/cpp/jit/test_custom_class_registrations.cpp
Yidi Wu b22f0f5f51 [torchbind] fix bug of mutating FakeScriptObjects twice in aot_export (#128844)
This PR does two things:
1. it duplicates the fake script object because aot_export trace the program twice. The result of tracing in the first time would cause the tracing result of second time be wrong.
2. Also add a new test for methods that return constant outputs. Before the PR, there's is no meta["val"] for these nodes because fx won't track these constants. We still need to preserve these constant return operators in the graph because torchbind objects are stateful and deleting it would remove the implicit state mutation inside of the object.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128844
Approved by: https://github.com/angelayi
2024-06-24 23:14:34 +00:00

688 lines
22 KiB
C++

#include <test/cpp/jit/test_custom_class_registrations.h>
#include <torch/custom_class.h>
#include <torch/script.h>
#include <iostream>
#include <string>
#include <vector>
using namespace torch::jit;
namespace {
struct DefaultArgs : torch::CustomClassHolder {
int x;
DefaultArgs(int64_t start = 3) : x(start) {}
int64_t increment(int64_t val = 1) {
x += val;
return x;
}
int64_t decrement(int64_t val = 1) {
x += val;
return x;
}
int64_t scale_add(int64_t add, int64_t scale = 1) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x = scale * x + add;
return x;
}
int64_t divide(std::optional<int64_t> factor) {
if (factor) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x = x / *factor;
}
return x;
}
};
struct Foo : torch::CustomClassHolder {
int x, y;
Foo() : x(0), y(0) {}
Foo(int x_, int y_) : x(x_), y(y_) {}
int64_t info() {
return this->x * this->y;
}
int64_t add(int64_t z) {
return (x + y) * z;
}
at::Tensor add_tensor(at::Tensor z) {
return (x + y) * z;
}
void increment(int64_t z) {
this->x += z;
this->y += z;
}
int64_t combine(c10::intrusive_ptr<Foo> b) {
return this->info() + b->info();
}
bool eq(c10::intrusive_ptr<Foo> other) {
return this->x == other->x && this->y == other->y;
}
std::tuple<std::tuple<std::string, int64_t>, std::tuple<std::string, int64_t>>
__obj_flatten__() {
return std::tuple(std::tuple("x", this->x), std::tuple("y", this->y));
}
};
struct _StaticMethod : torch::CustomClassHolder {
// NOLINTNEXTLINE(modernize-use-equals-default)
_StaticMethod() {}
static int64_t staticMethod(int64_t input) {
return 2 * input;
}
};
struct FooGetterSetter : torch::CustomClassHolder {
FooGetterSetter() : x(0), y(0) {}
FooGetterSetter(int64_t x_, int64_t y_) : x(x_), y(y_) {}
int64_t getX() {
// to make sure this is not just attribute lookup
return x + 2;
}
void setX(int64_t z) {
// to make sure this is not just attribute lookup
x = z + 2;
}
int64_t getY() {
// to make sure this is not just attribute lookup
return y + 4;
}
private:
int64_t x, y;
};
struct FooGetterSetterLambda : torch::CustomClassHolder {
int64_t x;
FooGetterSetterLambda() : x(0) {}
FooGetterSetterLambda(int64_t x_) : x(x_) {}
};
struct FooReadWrite : torch::CustomClassHolder {
int64_t x;
const int64_t y;
FooReadWrite() : x(0), y(0) {}
FooReadWrite(int64_t x_, int64_t y_) : x(x_), y(y_) {}
};
struct LambdaInit : torch::CustomClassHolder {
int x, y;
LambdaInit(int x_, int y_) : x(x_), y(y_) {}
int64_t diff() {
return this->x - this->y;
}
};
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
struct NoInit : torch::CustomClassHolder {
int64_t x;
};
struct PickleTester : torch::CustomClassHolder {
PickleTester(std::vector<int64_t> vals) : vals(std::move(vals)) {}
std::vector<int64_t> vals;
};
// Thread-safe Tensor Queue
struct TensorQueue : torch::CustomClassHolder {
explicit TensorQueue(at::Tensor t) : init_tensor_(t) {}
explicit TensorQueue(c10::Dict<std::string, at::Tensor> dict) {
init_tensor_ = dict.at(std::string("init_tensor"));
const std::string key = "queue";
at::Tensor size_tensor;
size_tensor = dict.at(std::string(key + "/size")).cpu();
const auto* size_tensor_acc = size_tensor.const_data_ptr<int64_t>();
int64_t queue_size = size_tensor_acc[0];
for (const auto index : c10::irange(queue_size)) {
at::Tensor val;
queue_[index] = dict.at(key + "/" + std::to_string(index));
queue_.push_back(val);
}
}
c10::Dict<std::string, at::Tensor> serialize() const {
c10::Dict<std::string, at::Tensor> dict;
dict.insert(std::string("init_tensor"), init_tensor_);
const std::string key = "queue";
dict.insert(
key + "/size", torch::tensor(static_cast<int64_t>(queue_.size())));
for (const auto index : c10::irange(queue_.size())) {
dict.insert(key + "/" + std::to_string(index), queue_[index]);
}
return dict;
}
// Push the element to the rear of queue.
// Lock is added for thread safe.
void push(at::Tensor x) {
std::lock_guard<std::mutex> guard(mutex_);
queue_.push_back(x);
}
// Pop the front element of queue and return it.
// If empty, return init_tensor_.
// Lock is added for thread safe.
at::Tensor pop() {
std::lock_guard<std::mutex> guard(mutex_);
if (!queue_.empty()) {
auto val = queue_.front();
queue_.pop_front();
return val;
} else {
return init_tensor_;
}
}
// Return front element of queue, read-only.
// We might further optimize with read-write lock.
at::Tensor top() {
std::lock_guard<std::mutex> guard(mutex_);
if (!queue_.empty()) {
auto val = queue_.front();
return val;
} else {
return init_tensor_;
}
}
int64_t size() {
return queue_.size();
}
bool is_empty() {
std::lock_guard<std::mutex> guard(mutex_);
return queue_.empty();
}
double float_size() {
return 1. * queue_.size();
}
std::vector<at::Tensor> clone_queue() {
std::lock_guard<std::mutex> guard(mutex_);
std::vector<at::Tensor> ret;
for (const auto& t : queue_) {
ret.push_back(t.clone());
}
return ret;
}
std::vector<at::Tensor> get_raw_queue() {
std::vector<at::Tensor> raw_queue(queue_.begin(), queue_.end());
return raw_queue;
}
std::tuple<std::tuple<std::string, std::vector<at::Tensor>>> __obj_flatten__() {
return std::tuple(std::tuple("queue", this->get_raw_queue()));
}
private:
std::deque<at::Tensor> queue_;
std::mutex mutex_;
at::Tensor init_tensor_;
};
at::Tensor take_an_instance(const c10::intrusive_ptr<PickleTester>& instance) {
return torch::zeros({instance->vals.back(), 4});
}
struct ElementwiseInterpreter : torch::CustomClassHolder {
using InstructionType = std::tuple<
std::string /*op*/,
std::vector<std::string> /*inputs*/,
std::string /*output*/>;
// NOLINTNEXTLINE(modernize-use-equals-default)
ElementwiseInterpreter() {}
// Load a list of instructions into the interpreter. As specified above,
// instructions specify the operation (currently support "add" and "mul"),
// the names of the input values, and the name of the single output value
// from this instruction
void setInstructions(std::vector<InstructionType> instructions) {
instructions_ = std::move(instructions);
}
// Add a constant. The interpreter maintains a set of constants across
// calls. They are keyed by name, and constants can be referenced in
// Instructions by the name specified
void addConstant(const std::string& name, at::Tensor value) {
constants_.insert_or_assign(name, std::move(value));
}
// Set the string names for the positional inputs to the function this
// interpreter represents. When invoked, the interpreter will assign
// the positional inputs to the names in the corresponding position in
// input_names.
void setInputNames(std::vector<std::string> input_names) {
input_names_ = std::move(input_names);
}
// Specify the output name for the function this interpreter represents. This
// should match the "output" field of one of the instructions in the
// instruction list, typically the last instruction.
void setOutputName(std::string output_name) {
output_name_ = std::move(output_name);
}
// Invoke this interpreter. This takes a list of positional inputs and returns
// a single output. Currently, inputs and outputs must all be Tensors.
at::Tensor __call__(std::vector<at::Tensor> inputs) {
// Environment to hold local variables
std::unordered_map<std::string, at::Tensor> environment;
// Load inputs according to the specified names
if (inputs.size() != input_names_.size()) {
std::stringstream err;
err << "Expected " << input_names_.size() << " inputs, but got "
<< inputs.size() << "!";
throw std::runtime_error(err.str());
}
for (size_t i = 0; i < inputs.size(); ++i) {
environment[input_names_[i]] = inputs[i];
}
for (InstructionType& instr : instructions_) {
// Retrieve all input values for this op
std::vector<at::Tensor> inputs;
for (const auto& input_name : std::get<1>(instr)) {
// Operator output values shadow constants.
// Imagine all constants are defined in statements at the beginning
// of a function (a la K&R C). Any definition of an output value must
// necessarily come after constant definition in textual order. Thus,
// We look up values in the environment first then the constant table
// second to implement this shadowing behavior
if (environment.find(input_name) != environment.end()) {
inputs.push_back(environment.at(input_name));
} else if (constants_.find(input_name) != constants_.end()) {
inputs.push_back(constants_.at(input_name));
} else {
std::stringstream err;
err << "Instruction referenced unknown value " << input_name << "!";
throw std::runtime_error(err.str());
}
}
// Run the specified operation
at::Tensor result;
const auto& op = std::get<0>(instr);
if (op == "add") {
if (inputs.size() != 2) {
throw std::runtime_error("Unexpected number of inputs for add op!");
}
result = inputs[0] + inputs[1];
} else if (op == "mul") {
if (inputs.size() != 2) {
throw std::runtime_error("Unexpected number of inputs for mul op!");
}
result = inputs[0] * inputs[1];
} else {
std::stringstream err;
err << "Unknown operator " << op << "!";
throw std::runtime_error(err.str());
}
// Write back result into environment
const auto& output_name = std::get<2>(instr);
environment[output_name] = std::move(result);
}
if (!output_name_) {
throw std::runtime_error("Output name not specified!");
}
return environment.at(*output_name_);
}
// Ser/De infrastructure. See
// https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html#defining-serialization-deserialization-methods-for-custom-c-classes
// for more info.
// This is the type we will use to marshall information on disk during
// ser/de. It is a simple tuple composed of primitive types and simple
// collection types like vector, optional, and dict.
using SerializationType = std::tuple<
std::vector<std::string> /*input_names_*/,
std::optional<std::string> /*output_name_*/,
c10::Dict<std::string, at::Tensor> /*constants_*/,
std::vector<InstructionType> /*instructions_*/
>;
// This function yields the SerializationType instance for `this`.
SerializationType __getstate__() const {
return SerializationType{
input_names_, output_name_, constants_, instructions_};
}
// This function will create an instance of `ElementwiseInterpreter` given
// an instance of `SerializationType`.
static c10::intrusive_ptr<ElementwiseInterpreter> __setstate__(
SerializationType state) {
auto instance = c10::make_intrusive<ElementwiseInterpreter>();
std::tie(
instance->input_names_,
instance->output_name_,
instance->constants_,
instance->instructions_) = std::move(state);
return instance;
}
// Class members
std::vector<std::string> input_names_;
std::optional<std::string> output_name_;
c10::Dict<std::string, at::Tensor> constants_;
std::vector<InstructionType> instructions_;
};
struct ReLUClass : public torch::CustomClassHolder {
at::Tensor run(const at::Tensor& t) {
return t.relu();
}
};
struct ContainsTensor : public torch::CustomClassHolder {
explicit ContainsTensor(at::Tensor t) : t_(t) {}
at::Tensor get() {
return t_;
}
std::tuple<std::tuple<std::string, at::Tensor>> __obj_flatten__() {
return std::tuple(std::tuple("t", this->t_));
}
at::Tensor t_;
};
TORCH_LIBRARY(_TorchScriptTesting, m) {
m.impl_abstract_pystub("torch.testing._internal.torchbind_impls");
m.class_<ScalarTypeClass>("_ScalarTypeClass")
.def(torch::init<at::ScalarType>())
.def_pickle(
[](const c10::intrusive_ptr<ScalarTypeClass>& self) {
return std::make_tuple(self->scalar_type_);
},
[](std::tuple<at::ScalarType> s) {
return c10::make_intrusive<ScalarTypeClass>(std::get<0>(s));
});
m.class_<ReLUClass>("_ReLUClass")
.def(torch::init<>())
.def("run", &ReLUClass::run);
m.class_<_StaticMethod>("_StaticMethod")
.def(torch::init<>())
.def_static("staticMethod", &_StaticMethod::staticMethod);
m.class_<DefaultArgs>("_DefaultArgs")
.def(torch::init<int64_t>(), "", {torch::arg("start") = 3})
.def("increment", &DefaultArgs::increment, "", {torch::arg("val") = 1})
.def("decrement", &DefaultArgs::decrement, "", {torch::arg("val") = 1})
.def(
"scale_add",
&DefaultArgs::scale_add,
"",
{torch::arg("add"), torch::arg("scale") = 1})
.def(
"divide",
&DefaultArgs::divide,
"",
{torch::arg("factor") = torch::arg::none()});
m.class_<Foo>("_Foo")
.def(torch::init<int64_t, int64_t>())
// .def(torch::init<>())
.def("info", &Foo::info)
.def("increment", &Foo::increment)
.def("add", &Foo::add)
.def("add_tensor", &Foo::add_tensor)
.def("__eq__", &Foo::eq)
.def("combine", &Foo::combine)
.def("__obj_flatten__", &Foo::__obj_flatten__)
.def_pickle(
[](c10::intrusive_ptr<Foo> self) { // __getstate__
return std::vector<int64_t>{self->x, self->y};
},
[](std::vector<int64_t> state) { // __setstate__
return c10::make_intrusive<Foo>(state[0], state[1]);
});
m.def(
"takes_foo(__torch__.torch.classes._TorchScriptTesting._Foo foo, Tensor x) -> Tensor");
m.def(
"takes_foo_python_meta(__torch__.torch.classes._TorchScriptTesting._Foo foo, Tensor x) -> Tensor");
m.def(
"takes_foo_list_return(__torch__.torch.classes._TorchScriptTesting._Foo foo, Tensor x) -> Tensor[]");
m.def(
"takes_foo_tuple_return(__torch__.torch.classes._TorchScriptTesting._Foo foo, Tensor x) -> (Tensor, Tensor)");
m.class_<FooGetterSetter>("_FooGetterSetter")
.def(torch::init<int64_t, int64_t>())
.def_property("x", &FooGetterSetter::getX, &FooGetterSetter::setX)
.def_property("y", &FooGetterSetter::getY);
m.class_<FooGetterSetterLambda>("_FooGetterSetterLambda")
.def(torch::init<int64_t>())
.def_property(
"x",
[](const c10::intrusive_ptr<FooGetterSetterLambda>& self) {
return self->x;
},
[](const c10::intrusive_ptr<FooGetterSetterLambda>& self,
int64_t val) { self->x = val; });
m.class_<FooReadWrite>("_FooReadWrite")
.def(torch::init<int64_t, int64_t>())
.def_readwrite("x", &FooReadWrite::x)
.def_readonly("y", &FooReadWrite::y);
m.class_<LambdaInit>("_LambdaInit")
.def(torch::init([](int64_t x, int64_t y, bool swap) {
if (swap) {
return c10::make_intrusive<LambdaInit>(y, x);
} else {
return c10::make_intrusive<LambdaInit>(x, y);
}
}))
.def("diff", &LambdaInit::diff);
m.class_<NoInit>("_NoInit").def(
"get_x", [](const c10::intrusive_ptr<NoInit>& self) { return self->x; });
m.class_<MyStackClass<std::string>>("_StackString")
.def(torch::init<std::vector<std::string>>())
.def("push", &MyStackClass<std::string>::push)
.def("pop", &MyStackClass<std::string>::pop)
.def("clone", &MyStackClass<std::string>::clone)
.def("merge", &MyStackClass<std::string>::merge)
.def_pickle(
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
return self->stack_;
},
[](std::vector<std::string> state) { // __setstate__
return c10::make_intrusive<MyStackClass<std::string>>(
std::vector<std::string>{"i", "was", "deserialized"});
})
.def("return_a_tuple", &MyStackClass<std::string>::return_a_tuple)
.def(
"top",
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self)
-> std::string { return self->stack_.back(); })
.def(
"__str__",
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
std::stringstream ss;
ss << "[";
for (size_t i = 0; i < self->stack_.size(); ++i) {
ss << self->stack_[i];
if (i != self->stack_.size() - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
});
// clang-format off
// The following will fail with a static assert telling you you have to
// take an intrusive_ptr<MyStackClass> as the first argument.
// .def("foo", [](int64_t a) -> int64_t{ return 3;});
// clang-format on
m.class_<PickleTester>("_PickleTester")
.def(torch::init<std::vector<int64_t>>())
.def_pickle(
[](c10::intrusive_ptr<PickleTester> self) { // __getstate__
return std::vector<int64_t>{1, 3, 3, 7};
},
[](std::vector<int64_t> state) { // __setstate__
return c10::make_intrusive<PickleTester>(std::move(state));
})
.def(
"top",
[](const c10::intrusive_ptr<PickleTester>& self) {
return self->vals.back();
})
.def("pop", [](const c10::intrusive_ptr<PickleTester>& self) {
auto val = self->vals.back();
self->vals.pop_back();
return val;
});
m.def(
"take_an_instance(__torch__.torch.classes._TorchScriptTesting._PickleTester x) -> Tensor Y",
take_an_instance);
// test that schema inference is ok too
m.def("take_an_instance_inferred", take_an_instance);
m.class_<ElementwiseInterpreter>("_ElementwiseInterpreter")
.def(torch::init<>())
.def("set_instructions", &ElementwiseInterpreter::setInstructions)
.def("add_constant", &ElementwiseInterpreter::addConstant)
.def("set_input_names", &ElementwiseInterpreter::setInputNames)
.def("set_output_name", &ElementwiseInterpreter::setOutputName)
.def("__call__", &ElementwiseInterpreter::__call__)
.def_pickle(
/* __getstate__ */
[](const c10::intrusive_ptr<ElementwiseInterpreter>& self) {
return self->__getstate__();
},
/* __setstate__ */
[](ElementwiseInterpreter::SerializationType state) {
return ElementwiseInterpreter::__setstate__(std::move(state));
});
m.class_<ContainsTensor>("_ContainsTensor")
.def(torch::init<at::Tensor>())
.def("get", &ContainsTensor::get)
.def("__obj_flatten__", &ContainsTensor::__obj_flatten__)
.def_pickle(
// __getstate__
[](const c10::intrusive_ptr<ContainsTensor>& self) -> at::Tensor {
return self->t_;
},
// __setstate__
[](at::Tensor data) -> c10::intrusive_ptr<ContainsTensor> {
return c10::make_intrusive<ContainsTensor>(std::move(data));
});
m.class_<TensorQueue>("_TensorQueue")
.def(torch::init<at::Tensor>())
.def("push", &TensorQueue::push)
.def("pop", &TensorQueue::pop)
.def("top", &TensorQueue::top)
.def("is_empty", &TensorQueue::is_empty)
.def("float_size", &TensorQueue::float_size)
.def("size", &TensorQueue::size)
.def("clone_queue", &TensorQueue::clone_queue)
.def("get_raw_queue", &TensorQueue::get_raw_queue)
.def("__obj_flatten__", &TensorQueue::__obj_flatten__)
.def_pickle(
// __getstate__
[](const c10::intrusive_ptr<TensorQueue>& self)
-> c10::Dict<std::string, at::Tensor> {
return self->serialize();
},
// __setstate__
[](c10::Dict<std::string, at::Tensor> data)
-> c10::intrusive_ptr<TensorQueue> {
return c10::make_intrusive<TensorQueue>(std::move(data));
});
}
at::Tensor takes_foo(c10::intrusive_ptr<Foo> foo, at::Tensor x) {
return foo->add_tensor(x);
}
std::vector<at::Tensor> takes_foo_list_return(
c10::intrusive_ptr<Foo> foo,
at::Tensor x) {
std::vector<at::Tensor> result;
result.reserve(3);
auto a = foo->add_tensor(x);
auto b = foo->add_tensor(a);
auto c = foo->add_tensor(b);
result.push_back(a);
result.push_back(b);
result.push_back(c);
return result;
}
std::tuple<at::Tensor, at::Tensor> takes_foo_tuple_return(
c10::intrusive_ptr<Foo> foo,
at::Tensor x) {
auto a = foo->add_tensor(x);
auto b = foo->add_tensor(a);
return std::make_tuple(a, b);
}
void queue_push(c10::intrusive_ptr<TensorQueue> tq, at::Tensor x) {
tq->push(x);
}
at::Tensor queue_pop(c10::intrusive_ptr<TensorQueue> tq) {
return tq->pop();
}
int64_t queue_size(c10::intrusive_ptr<TensorQueue> tq) {
return tq->size();
}
TORCH_LIBRARY_FRAGMENT(_TorchScriptTesting, m) {
m.impl_abstract_pystub("torch.testing._internal.torchbind_impls");
m.def(
"takes_foo_cia(__torch__.torch.classes._TorchScriptTesting._Foo foo, Tensor x) -> Tensor");
m.def(
"queue_pop(__torch__.torch.classes._TorchScriptTesting._TensorQueue foo) -> Tensor");
m.def(
"queue_push(__torch__.torch.classes._TorchScriptTesting._TensorQueue foo, Tensor x) -> ()");
m.def(
"queue_size(__torch__.torch.classes._TorchScriptTesting._TensorQueue foo) -> int");
}
TORCH_LIBRARY_IMPL(_TorchScriptTesting, CPU, m) {
m.impl("takes_foo", takes_foo);
m.impl("takes_foo_list_return", takes_foo_list_return);
m.impl("takes_foo_tuple_return", takes_foo_tuple_return);
m.impl("queue_push", queue_push);
m.impl("queue_pop", queue_pop);
m.impl("queue_size", queue_size);
}
TORCH_LIBRARY_IMPL(_TorchScriptTesting, Meta, m) {
m.impl("takes_foo", &takes_foo);
m.impl("takes_foo_list_return", takes_foo_list_return);
m.impl("takes_foo_tuple_return", takes_foo_tuple_return);
}
TORCH_LIBRARY_IMPL(_TorchScriptTesting, CompositeImplicitAutograd, m) {
m.impl("takes_foo_cia", takes_foo);
}
// Need to implement BackendSelect because these two operators don't have tensor
// inputs.
TORCH_LIBRARY_IMPL(_TorchScriptTesting, BackendSelect, m) {
m.impl("queue_pop", queue_pop);
m.impl("queue_size", queue_size);
}
} // namespace