Files
pytorch/caffe2/python/operator_test/conv_transpose_test.py
Xiaomeng Yang b145dcca04 Add support for group ConvTranspose (#18794)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18794

Add support for group ConvTranspose

Reviewed By: houseroad

Differential Revision: D14741327

fbshipit-source-id: 5d947ca044bf8495dd7f8f56122441ebbcc6c7e4
2019-04-04 11:52:06 -07:00

429 lines
16 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from hypothesis import assume, given, settings
import hypothesis.strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import core, utils
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.hip_test_util as hiputl
class TestConvolutionTranspose(hu.HypothesisTestCase):
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
adj=st.integers(0, 2),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
engine=st.sampled_from(["", "CUDNN", "BLOCK"]),
shared_buffer=st.booleans(),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_transpose_layout_legacy_args(
self, stride, pad, kernel, adj,
size, input_channels,
output_channels, batch_size,
engine, shared_buffer, use_bias, gc, dc):
assume(adj < stride)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
input_channels, kernel, kernel, output_channels)\
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
outputs = {}
for order in ["NCHW", "NHWC"]:
# MIOPEN doesn't work with NHWC, fallback to use normal hip
if hiputl.run_in_hip(gc, dc) and order == "NHWC":
tmp_engine = ""
else:
tmp_engine = engine
op = core.CreateOperator(
"ConvTranspose",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
kernel=kernel,
pad=pad,
adj=adj,
order=order,
engine=tmp_engine,
shared_buffer=int(shared_buffer),
device_option=gc,
)
if order == "NCHW":
X_f = utils.NHWC2NCHW(X)
w_f = utils.NHWC2NCHW(w)
else:
X_f = X
w_f = w
self.assertDeviceChecks(
dc,
op,
[X_f, w_f, b] if use_bias else [X_f, w_f],
[0])
self.ws.create_blob("X").feed(X_f, device_option=gc)
self.ws.create_blob("w").feed(w_f, device_option=gc)
self.ws.create_blob("b").feed(b, device_option=gc)
self.ws.run(op)
outputs[order] = self.ws.blobs["Y"].fetch()
output_size = (size - 1) * stride + kernel + adj - 2 * pad
self.assertEqual(
outputs["NCHW"].shape,
(batch_size, output_channels, output_size, output_size))
np.testing.assert_allclose(
outputs["NCHW"],
utils.NHWC2NCHW(outputs["NHWC"]),
atol=1e-4,
rtol=1e-4)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
adj=st.integers(0, 2),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
engine=st.sampled_from(["", "CUDNN", "BLOCK"]),
shared_buffer=st.booleans(),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_transpose_layout(
self, stride, pad, kernel, adj,
size, input_channels,
output_channels, batch_size,
engine, shared_buffer, use_bias, gc, dc):
assume(adj < stride)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
input_channels, kernel, kernel, output_channels)\
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
outputs = {}
for order in ["NCHW", "NHWC"]:
if hiputl.run_in_hip(gc, dc) and order == "NHWC":
# MIOPEN doesn't work with NHWC, fallback to use normal hip
tmp_engine = ""
else:
tmp_engine = engine
op = core.CreateOperator(
"ConvTranspose",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
strides=[stride] * 2,
kernels=[kernel] * 2,
pads=[pad] * 4,
adjs=[adj] * 2,
order=order,
engine=tmp_engine,
shared_buffer=int(shared_buffer),
device_option=gc,
)
if order == "NCHW":
X_f = utils.NHWC2NCHW(X)
w_f = utils.NHWC2NCHW(w)
else:
X_f = X
w_f = w
self.assertDeviceChecks(
dc,
op,
[X_f, w_f, b] if use_bias else [X_f, w_f],
[0])
self.ws.create_blob("X").feed(X_f, device_option=gc)
self.ws.create_blob("w").feed(w_f, device_option=gc)
self.ws.create_blob("b").feed(b, device_option=gc)
self.ws.run(op)
outputs[order] = self.ws.blobs["Y"].fetch()
output_size = (size - 1) * stride + kernel + adj - 2 * pad
self.assertEqual(
outputs["NCHW"].shape,
(batch_size, output_channels, output_size, output_size))
np.testing.assert_allclose(
outputs["NCHW"],
utils.NHWC2NCHW(outputs["NHWC"]),
atol=1e-4,
rtol=1e-4)
# CUDNN does not support separate stride and pad so we skip it.
@given(stride_h=st.integers(1, 3),
stride_w=st.integers(1, 3),
pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
kernel=st.integers(1, 5),
adj_h=st.integers(0, 2),
adj_w=st.integers(0, 2),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
engine=st.sampled_from(["", "BLOCK"]),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_transpose_separate_stride_pad_adj_layout(
self, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r, kernel,
adj_h, adj_w, size, input_channels, output_channels, batch_size,
engine, use_bias, gc, dc):
assume(adj_h < stride_h)
assume(adj_w < stride_w)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
input_channels, kernel, kernel, output_channels)\
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
outputs = {}
for order in ["NCHW", "NHWC"]:
op = core.CreateOperator(
"ConvTranspose",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride_h=stride_h,
stride_w=stride_w,
kernel=kernel,
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
adj_h=adj_h,
adj_w=adj_w,
order=order,
engine=engine,
device_option=gc,
)
if order == "NCHW":
X_f = utils.NHWC2NCHW(X)
w_f = utils.NHWC2NCHW(w)
else:
X_f = X
w_f = w
self.assertDeviceChecks(
dc,
op,
[X_f, w_f, b] if use_bias else [X_f, w_f],
[0])
self.ws.create_blob("X").feed(X_f, device_option=gc)
self.ws.create_blob("w").feed(w_f, device_option=gc)
self.ws.create_blob("b").feed(b, device_option=gc)
self.ws.run(op)
outputs[order] = self.ws.blobs["Y"].fetch()
output_h = (size - 1) * stride_h + kernel + adj_h - pad_t - pad_b
output_w = (size - 1) * stride_w + kernel + adj_w - pad_l - pad_r
self.assertEqual(
outputs["NCHW"].shape,
(batch_size, output_channels, output_h, output_w))
np.testing.assert_allclose(
outputs["NCHW"],
utils.NHWC2NCHW(outputs["NHWC"]),
atol=1e-4,
rtol=1e-4)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
adj=st.integers(0, 2),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
engine=st.sampled_from(["", "CUDNN", "BLOCK"]),
use_bias=st.booleans(),
compute_dX=st.booleans(),
**hu.gcs)
@settings(max_examples=2, timeout=100)
def test_convolution_transpose_gradients(self, stride, pad, kernel, adj,
size, input_channels,
output_channels, batch_size,
order, engine, use_bias,
compute_dX, gc, dc):
assume(adj < stride)
if hiputl.run_in_hip(gc, dc) and engine == "CUDNN":
assume(order == "NCHW")
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
input_channels, kernel, kernel, output_channels)\
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
op = core.CreateOperator(
"ConvTranspose",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
kernel=kernel,
pad=pad,
adj=adj,
order=order,
engine=engine,
no_gradient_to_input=not compute_dX,
)
if order == "NCHW":
X = utils.NHWC2NCHW(X)
w = utils.NHWC2NCHW(w)
inputs = [X, w, b] if use_bias else [X, w]
self.assertDeviceChecks(dc, op, inputs, [0])
if use_bias and compute_dX:
# w, b, X
outputs_to_check = [1, 2, 0]
elif use_bias:
# w, b
outputs_to_check = [1, 2]
elif compute_dX:
# w, X
outputs_to_check = [1, 0]
else:
# w
outputs_to_check = [1]
for i in outputs_to_check:
self.assertGradientChecks(gc, op, inputs, i, [0])
# CUDNN does not support separate stride and pad so we skip it.
@given(stride_h=st.integers(1, 3),
stride_w=st.integers(1, 3),
pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
kernel=st.integers(1, 5),
adj_h=st.integers(0, 2),
adj_w=st.integers(0, 2),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
engine=st.sampled_from(["", "BLOCK"]),
use_bias=st.booleans(),
compute_dX=st.booleans(),
**hu.gcs)
@settings(max_examples=2, timeout=100)
def test_convolution_transpose_separate_stride_pad_adj_gradient(
self, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r, kernel,
adj_h, adj_w, size, input_channels, output_channels, batch_size,
order, engine, use_bias, compute_dX, gc, dc):
assume(adj_h < stride_h)
assume(adj_w < stride_w)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
input_channels, kernel, kernel, output_channels)\
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
op = core.CreateOperator(
"ConvTranspose",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride_h=stride_h,
stride_w=stride_w,
kernel=kernel,
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
adj_h=adj_h,
adj_w=adj_w,
order=order,
engine=engine,
no_gradient_to_input=not compute_dX,
)
if order == "NCHW":
X = utils.NHWC2NCHW(X)
w = utils.NHWC2NCHW(w)
inputs = [X, w, b] if use_bias else [X, w]
self.assertDeviceChecks(dc, op, inputs, [0])
if use_bias and compute_dX:
# w, b, X
outputs_to_check = [1, 2, 0]
elif use_bias:
# w, b
outputs_to_check = [1, 2]
elif compute_dX:
# w, X
outputs_to_check = [1, 0]
else:
# w
outputs_to_check = [1]
for i in outputs_to_check:
self.assertGradientChecks(gc, op, inputs, i, [0])
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 3),
adj=st.integers(0, 2),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 4),
group=st.integers(1, 4),
order=st.sampled_from(["NCHW", "NHWC"]),
engine=st.sampled_from(["", "CUDNN", "BLOCK"]),
shared_buffer=st.booleans(),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_transpose_with_group(
self, stride, pad, kernel, adj, size, input_channels,
output_channels, batch_size, group, order, engine, shared_buffer,
use_bias, gc, dc):
assume(adj < stride)
# TODO: Group conv_transpose in NHWC not implemented for GPU yet.
assume(group == 1 or order == "NCHW" or
gc.device_type == caffe2_pb2.CPU)
if group != 1 and order == "NHWC":
dc = [d for d in dc if d.device_type == caffe2_pb2.CPU]
if hiputl.run_in_hip(gc, dc) and order == "NHWC":
engine = ""
op = core.CreateOperator(
"ConvTranspose",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
kernel=kernel,
pad=pad,
adj=adj,
group=group,
order=order,
engine=engine,
shared_buffer=int(shared_buffer),
device_option=gc,
)
input_channels *= group
output_channels *= group
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
input_channels, kernel, kernel, int(output_channels / group)) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
if order == "NCHW":
X = utils.NHWC2NCHW(X)
w = utils.NHWC2NCHW(w)
inputs = [X, w, b] if use_bias else [X, w]
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
if __name__ == "__main__":
import unittest
unittest.main()