mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This hits multi-line logging strings Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/98700 Approved by: https://github.com/voznesenskym
1277 lines
46 KiB
Python
1277 lines
46 KiB
Python
import functools
|
|
import inspect
|
|
import itertools
|
|
import logging
|
|
import math
|
|
import operator
|
|
import types
|
|
from typing import Dict, List
|
|
|
|
import torch
|
|
from torch import sym_float, sym_int
|
|
|
|
from .. import config, variables
|
|
from ..allowed_functions import is_allowed
|
|
from ..exc import unimplemented, Unsupported, UserError, UserErrorType
|
|
from ..guards import GuardBuilder
|
|
from ..replay_record import DummyModule
|
|
from ..source import AttrSource, is_constant_source, SuperSource, TypeSource
|
|
from ..utils import (
|
|
check_constant_args,
|
|
check_unspec_python_args,
|
|
istype,
|
|
proxy_args_kwargs,
|
|
specialize_args_kwargs,
|
|
)
|
|
from .base import MutableLocal, typestr, VariableTracker
|
|
from .constant import ConstantVariable, EnumVariable
|
|
from .dicts import ConstDictVariable
|
|
from .lists import (
|
|
BaseListVariable,
|
|
ListIteratorVariable,
|
|
ListVariable,
|
|
TupleIteratorVariable,
|
|
TupleVariable,
|
|
)
|
|
from .tensor import FakeItemVariable, SymNodeVariable, UnspecializedPythonVariable
|
|
from .user_defined import UserDefinedVariable
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class BuiltinVariable(VariableTracker):
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _constant_fold_functions():
|
|
fns = {
|
|
abs,
|
|
all,
|
|
any,
|
|
bool,
|
|
callable,
|
|
chr,
|
|
dict,
|
|
divmod,
|
|
float,
|
|
int,
|
|
len,
|
|
list,
|
|
max,
|
|
min,
|
|
ord,
|
|
pow,
|
|
repr,
|
|
round,
|
|
set,
|
|
str,
|
|
str.format,
|
|
sum,
|
|
tuple,
|
|
type,
|
|
operator.pos,
|
|
operator.neg,
|
|
operator.not_,
|
|
operator.invert,
|
|
operator.pow,
|
|
operator.mul,
|
|
operator.matmul,
|
|
operator.floordiv,
|
|
operator.truediv,
|
|
operator.mod,
|
|
operator.add,
|
|
operator.sub,
|
|
operator.getitem,
|
|
operator.lshift,
|
|
operator.rshift,
|
|
operator.and_,
|
|
operator.or_,
|
|
operator.xor,
|
|
operator.ipow,
|
|
operator.imul,
|
|
operator.imatmul,
|
|
operator.ifloordiv,
|
|
operator.itruediv,
|
|
operator.imod,
|
|
operator.iadd,
|
|
operator.isub,
|
|
operator.ilshift,
|
|
operator.irshift,
|
|
operator.iand,
|
|
operator.ixor,
|
|
operator.ior,
|
|
operator.index,
|
|
}
|
|
fns.update(x for x in math.__dict__.values() if isinstance(x, type(math.sqrt)))
|
|
return fns
|
|
|
|
def can_constant_fold_through(self):
|
|
return self.fn in self._constant_fold_functions()
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _fx_graph_functions():
|
|
fns = {
|
|
operator.pos,
|
|
operator.neg,
|
|
operator.not_,
|
|
operator.invert,
|
|
operator.pow,
|
|
operator.mul,
|
|
operator.matmul,
|
|
operator.floordiv,
|
|
operator.truediv,
|
|
operator.mod,
|
|
operator.add,
|
|
operator.sub,
|
|
operator.getitem,
|
|
operator.lshift,
|
|
operator.rshift,
|
|
operator.and_,
|
|
operator.or_,
|
|
operator.xor,
|
|
operator.ipow,
|
|
operator.imul,
|
|
operator.imatmul,
|
|
operator.ifloordiv,
|
|
operator.itruediv,
|
|
operator.imod,
|
|
operator.iadd,
|
|
operator.isub,
|
|
operator.ilshift,
|
|
operator.irshift,
|
|
operator.iand,
|
|
operator.ixor,
|
|
operator.ior,
|
|
}
|
|
return fns
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _binops():
|
|
# function -> ([forward name, reverse name, in-place name], in-place op)
|
|
fns = {
|
|
operator.add: (["__add__", "__radd__", "__iadd__"], operator.iadd),
|
|
operator.sub: (["__sub__", "__rsub__", "__isub__"], operator.isub),
|
|
operator.mul: (["__mul__", "__rmul__", "__imul__"], operator.imul),
|
|
operator.truediv: (
|
|
["__truediv__", "__rtruediv__", "__itruediv__"],
|
|
operator.itruediv,
|
|
),
|
|
operator.floordiv: (
|
|
["__floordiv__", "__rfloordiv__", "__ifloordiv__"],
|
|
operator.ifloordiv,
|
|
),
|
|
operator.mod: (["__mod__", "__rmod__", "__imod__"], operator.imod),
|
|
pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
|
|
operator.pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
|
|
# NB: The follow binary operators are not supported for now, since the
|
|
# corresponding magic methods aren't defined on SymInt / SymFloat:
|
|
# operator.matmul
|
|
# divmod
|
|
# operator.lshift
|
|
# operator.rshift
|
|
# operator.and_
|
|
# operator.or_
|
|
# operator.xor
|
|
}
|
|
return fns
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _binop_handlers():
|
|
# Multiple dispatch mechanism defining custom binop behavior for certain type
|
|
# combinations. Handlers are attempted in order, and will be used if the type checks
|
|
# match. They are expected to have the signature:
|
|
# fn(tx, arg0: VariableTracker, arg1: VariableTracker, options) -> VariableTracker
|
|
|
|
# Override table contains: op_fn -> [list of handlers]
|
|
op_handlers = {}
|
|
for (
|
|
op,
|
|
(magic_method_names, in_place_op),
|
|
) in BuiltinVariable._binops().items():
|
|
op_handlers[op] = []
|
|
op_handlers[in_place_op] = []
|
|
|
|
forward_name, reverse_name, inplace_name = magic_method_names
|
|
|
|
# User-defined args (highest precedence)
|
|
def user_defined_handler(
|
|
tx,
|
|
a,
|
|
b,
|
|
options,
|
|
forward_name=forward_name,
|
|
reverse_name=reverse_name,
|
|
):
|
|
# Manually handle reversing logic if needed (e.g. call __radd__)
|
|
|
|
# TODO: If we expand this to handle tensor args, we need to manually
|
|
# handle cases like this:
|
|
#
|
|
# class A(int):
|
|
# def __radd__(self, other):
|
|
# print("woof")
|
|
# torch.randn(3) + A(3)
|
|
#
|
|
# In this example, A.__radd__() is not called -> nothing is printed, because
|
|
# Tensor.__add__ only does a subtype test against int, ignoring the subclass.
|
|
# To be fully correct, we should not call A.__radd__() here, and there may be
|
|
# other cases to reason about and add exceptions for.
|
|
if isinstance(a, UserDefinedVariable):
|
|
return a.call_method(tx, forward_name, [b], {})
|
|
else:
|
|
return b.call_method(tx, reverse_name, [a], {})
|
|
|
|
op_handlers[op].append(
|
|
((UserDefinedVariable, VariableTracker), user_defined_handler)
|
|
)
|
|
op_handlers[op].append(
|
|
((VariableTracker, UserDefinedVariable), user_defined_handler)
|
|
)
|
|
|
|
def user_defined_inplace_handler(
|
|
tx, a, b, options, forward_name=inplace_name
|
|
):
|
|
return a.call_method(tx, forward_name, [b], {})
|
|
|
|
op_handlers[in_place_op].append(
|
|
((UserDefinedVariable, VariableTracker), user_defined_inplace_handler)
|
|
)
|
|
op_handlers[in_place_op].append(
|
|
((VariableTracker, UserDefinedVariable), user_defined_inplace_handler)
|
|
)
|
|
|
|
# Dynamic shape args
|
|
def dynamic_handler(tx, a, b, options, fn=op):
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function", fn, *proxy_args_kwargs([a, b], {})
|
|
),
|
|
**options,
|
|
)
|
|
|
|
op_handlers[op].append(
|
|
((SymNodeVariable, VariableTracker), dynamic_handler)
|
|
)
|
|
op_handlers[op].append(
|
|
((VariableTracker, SymNodeVariable), dynamic_handler)
|
|
)
|
|
|
|
# NB: Prefer out-of-place op when calling in-place op to generate valid graph
|
|
op_handlers[in_place_op].append(
|
|
((SymNodeVariable, VariableTracker), dynamic_handler)
|
|
)
|
|
op_handlers[in_place_op].append(
|
|
((VariableTracker, SymNodeVariable), dynamic_handler)
|
|
)
|
|
|
|
# Special cases - lower precedence but still prefer these over constant folding
|
|
|
|
# List-like addition (e.g. [1, 2] + [3, 4])
|
|
def tuple_add_handler(tx, a, b, options):
|
|
return TupleVariable(a.items + list(b.unpack_var_sequence(tx)), **options)
|
|
|
|
list_like_addition_handlers = [
|
|
# NB: Prefer the tuple-specific logic over base logic because of
|
|
# some SizeVariable weirdness. Specifically, the tuple-specific logic
|
|
# drops the subclass type (e.g. SizeVariable) and returns TupleVariables.
|
|
(
|
|
(TupleVariable, TupleVariable),
|
|
tuple_add_handler,
|
|
),
|
|
(
|
|
(TupleVariable, ConstantVariable),
|
|
tuple_add_handler,
|
|
),
|
|
(
|
|
(ConstantVariable, TupleVariable),
|
|
lambda tx, a, b, options: TupleVariable(
|
|
list(a.unpack_var_sequence(tx)) + b.items, **options
|
|
),
|
|
),
|
|
(
|
|
(BaseListVariable, BaseListVariable),
|
|
lambda tx, a, b, options: type(a)(a.items + b.items, **options),
|
|
),
|
|
]
|
|
op_handlers[operator.add].extend(list_like_addition_handlers)
|
|
|
|
def list_iadd_handler(tx, a, b, options):
|
|
if not a.mutable_local or not b.has_unpack_var_sequence(tx):
|
|
# Handler doesn't apply
|
|
return None
|
|
|
|
return tx.replace_all(
|
|
a,
|
|
ListVariable(
|
|
list(a.items) + list(b.unpack_var_sequence(tx)),
|
|
regen_guards=False,
|
|
**options,
|
|
),
|
|
)
|
|
|
|
list_like_iadd_handlers = [
|
|
(
|
|
(ListVariable, VariableTracker),
|
|
list_iadd_handler,
|
|
),
|
|
(
|
|
(TupleVariable, TupleVariable),
|
|
tuple_add_handler,
|
|
),
|
|
(
|
|
(TupleVariable, ConstantVariable),
|
|
tuple_add_handler,
|
|
),
|
|
]
|
|
op_handlers[operator.iadd].extend(list_like_iadd_handlers)
|
|
|
|
# List-like expansion (e.g. [1, 2, 3] * 3)
|
|
def expand_list_like(tx, lst, const, options):
|
|
return lst.__class__(
|
|
items=lst.items * const.as_python_constant(),
|
|
mutable_local=MutableLocal(),
|
|
**options,
|
|
)
|
|
|
|
list_like_expansion_handlers = [
|
|
((ListVariable, ConstantVariable), expand_list_like),
|
|
((TupleVariable, ConstantVariable), expand_list_like),
|
|
(
|
|
(ConstantVariable, ListVariable),
|
|
lambda tx, a, b, options: expand_list_like(tx, b, a, options),
|
|
),
|
|
(
|
|
(ConstantVariable, TupleVariable),
|
|
lambda tx, a, b, options: expand_list_like(tx, b, a, options),
|
|
),
|
|
]
|
|
op_handlers[operator.mul].extend(list_like_expansion_handlers)
|
|
|
|
return op_handlers
|
|
|
|
@staticmethod
|
|
def _find_binop_handler(op, a, b):
|
|
handlers = BuiltinVariable._binop_handlers()
|
|
if op not in handlers:
|
|
return None
|
|
|
|
# Return first handler that matches the type checks
|
|
for (type1, type2), handler in handlers[op]:
|
|
if isinstance(a, type1) and isinstance(b, type2):
|
|
return handler
|
|
|
|
return None
|
|
|
|
def can_insert_in_graph(self):
|
|
return self.fn in self._fx_graph_functions()
|
|
|
|
def __init__(self, fn, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.fn = fn
|
|
|
|
def __str__(self):
|
|
if self.fn is None:
|
|
name = "None"
|
|
else:
|
|
name = self.fn.__name__
|
|
|
|
return f"{self.__class__.__name__}({name})"
|
|
|
|
def python_type(self):
|
|
return type(self.fn)
|
|
|
|
def as_python_constant(self):
|
|
return self.fn
|
|
|
|
def reconstruct(self, codegen):
|
|
name = self.fn.__name__
|
|
assert self.fn.__module__ == "builtins"
|
|
assert name not in codegen.tx.f_globals, "shadowed global"
|
|
return [codegen.create_load_global(name, False, add=True)]
|
|
|
|
def constant_args(self, *args, **kwargs):
|
|
return check_constant_args(args, kwargs)
|
|
|
|
def tensor_args(self, *args, **kwargs):
|
|
return any(
|
|
isinstance(i, variables.TensorVariable)
|
|
for i in itertools.chain(args, kwargs.values())
|
|
) and not any(
|
|
isinstance(i, variables.GetAttrVariable)
|
|
for i in itertools.chain(args, kwargs.values())
|
|
)
|
|
|
|
def unspec_python_args(self, *args, **kwargs):
|
|
return check_unspec_python_args(args, kwargs)
|
|
|
|
@staticmethod
|
|
def unwrap_unspec_args_kwargs(args, kwargs):
|
|
unwrapped_args = []
|
|
unwrapped_kwargs = {}
|
|
for x in args:
|
|
if isinstance(
|
|
x,
|
|
(variables.UnspecializedPythonVariable,),
|
|
):
|
|
unwrapped_args.append(x.raw_value)
|
|
else:
|
|
unwrapped_args.append(x.as_python_constant())
|
|
for k, v in kwargs:
|
|
if isinstance(
|
|
x,
|
|
(variables.UnspecializedPythonVariable,),
|
|
):
|
|
unwrapped_kwargs.update({k: v.raw_value})
|
|
else:
|
|
unwrapped_kwargs.update({k: v.as_python_constant()})
|
|
return unwrapped_args, unwrapped_kwargs
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
|
|
|
|
constant_args = check_constant_args(args, kwargs)
|
|
tensor_args = self.tensor_args(*args, **kwargs)
|
|
unspec_python_args = self.unspec_python_args(*args, **kwargs)
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
has_constant_handler = self.can_constant_fold_through() and (
|
|
constant_args or unspec_python_args
|
|
)
|
|
assert isinstance(args, (list, tuple))
|
|
assert isinstance(kwargs, dict)
|
|
|
|
if (
|
|
self.fn is operator.getitem
|
|
and len(args) == 2
|
|
and isinstance(args[1], variables.TensorVariable)
|
|
and args[1].dtype == torch.bool
|
|
and not config.dynamic_shapes
|
|
):
|
|
unimplemented("dynamic Tensor.__getitem__(bool[])")
|
|
|
|
# args[0] is list and args[1] is unspec
|
|
if self.fn is operator.getitem and not isinstance(
|
|
args[0], variables.TensorVariable
|
|
):
|
|
tensor_args = False
|
|
args, kwargs = specialize_args_kwargs(tx, args, kwargs)
|
|
|
|
if (
|
|
self.can_insert_in_graph()
|
|
and tensor_args
|
|
and not (
|
|
self.fn is operator.getitem
|
|
and isinstance(args[0], ConstDictVariable)
|
|
and isinstance(args[1], variables.TensorVariable)
|
|
)
|
|
):
|
|
try:
|
|
fn = self.fn
|
|
if self.fn is operator.iadd and isinstance(
|
|
args[0], variables.ConstantVariable
|
|
):
|
|
# Work around weird bug in hf_T5
|
|
fn, args = operator.add, [args[1], args[0]]
|
|
|
|
proxy = tx.output.create_proxy(
|
|
"call_function",
|
|
fn,
|
|
*proxy_args_kwargs(args, kwargs),
|
|
)
|
|
if any([isinstance(arg, FakeItemVariable) for arg in args]):
|
|
return wrap_fx_proxy_cls(
|
|
FakeItemVariable,
|
|
tx,
|
|
proxy,
|
|
**options,
|
|
)
|
|
elif self.unspec_python_args(*args, **kwargs):
|
|
_args, _kwargs = self.unwrap_unspec_args_kwargs(args, kwargs)
|
|
raw_value = self.fn(*_args, **_kwargs)
|
|
|
|
need_unwrap = any(
|
|
x.need_unwrap
|
|
for x in itertools.chain(args, kwargs.values())
|
|
if isinstance(x, variables.UnspecializedPythonVariable)
|
|
)
|
|
|
|
return wrap_fx_proxy_cls(
|
|
UnspecializedPythonVariable,
|
|
tx,
|
|
proxy,
|
|
raw_value=raw_value,
|
|
need_unwrap=need_unwrap,
|
|
**options,
|
|
)
|
|
elif all(isinstance(x, SymNodeVariable) for x in args):
|
|
return SymNodeVariable.create(tx, proxy, None, **options)
|
|
else:
|
|
# Work around for vision_maskrcnn due to precision difference
|
|
# specialize the dividend when float divide by tensor
|
|
if self.fn is operator.truediv and isinstance(
|
|
args[0], variables.UnspecializedPythonVariable
|
|
):
|
|
args[0] = args[0].convert_to_constant(tx)
|
|
return wrap_fx_proxy(tx, proxy, **options)
|
|
|
|
except NotImplementedError:
|
|
unimplemented(f"partial tensor op: {self} {args} {kwargs}")
|
|
|
|
# Handle cases like int(torch.seed())
|
|
# Also handle sym_float to sym_int cases
|
|
if self.fn in (int, float) and isinstance(args[0], SymNodeVariable):
|
|
fn_ = sym_int if self.fn is int else sym_float
|
|
out = wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
fn_,
|
|
(args[0].as_proxy(),),
|
|
{},
|
|
),
|
|
**options,
|
|
)
|
|
return out
|
|
|
|
# Handle binary ops (e.g. __add__ / __radd__, __iadd__, etc.)
|
|
# NB: Tensor args are handled above and not here
|
|
if len(kwargs) == 0 and len(args) == 2:
|
|
# Try to find a handler for the arg types; otherwise, fall through to constant handler
|
|
binop_handler = BuiltinVariable._find_binop_handler(
|
|
self.fn, args[0], args[1]
|
|
)
|
|
if binop_handler:
|
|
res = binop_handler(tx, args[0], args[1], options)
|
|
if res is not None:
|
|
return res
|
|
|
|
handler = getattr(self, f"call_{self.fn.__name__}", None)
|
|
if handler:
|
|
try:
|
|
inspect.signature(handler).bind(tx, *args, **kwargs)
|
|
except TypeError as exc:
|
|
if not has_constant_handler:
|
|
log.warning(
|
|
"incorrect arg count %s %s and no constant handler",
|
|
handler,
|
|
exc,
|
|
)
|
|
handler = None
|
|
|
|
if handler:
|
|
try:
|
|
result = handler(tx, *args, **kwargs)
|
|
if result is not None:
|
|
return result.add_options(options)
|
|
except Unsupported as exc:
|
|
if not has_constant_handler:
|
|
raise
|
|
# Actually, we will handle this just fine
|
|
exc.remove_from_stats()
|
|
|
|
if has_constant_handler:
|
|
args, kwargs = specialize_args_kwargs(tx, args, kwargs)
|
|
# constant fold
|
|
return variables.ConstantVariable(
|
|
self.as_python_constant()(
|
|
*[x.as_python_constant() for x in args],
|
|
**{k: v.as_python_constant() for k, v in kwargs.items()},
|
|
),
|
|
**options,
|
|
)
|
|
|
|
if self.fn is round:
|
|
if len(args) > 0 and isinstance(args[0], SymNodeVariable):
|
|
raise UserError(
|
|
UserErrorType.STANDARD_LIBRARY,
|
|
"Calling round() on symbolic value is not supported. "
|
|
"You can use floor() to implement this functionality",
|
|
)
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def _call_min_max(self, tx, *args):
|
|
if len(args) == 1 and args[0].has_unpack_var_sequence(tx):
|
|
# expand iterable
|
|
items = args[0].unpack_var_sequence(tx)
|
|
return self._call_min_max_seq(tx, items)
|
|
elif len(args) == 2:
|
|
return self._call_min_max_binary(tx, args[0], args[1])
|
|
elif len(args) > 2:
|
|
return self._call_min_max_seq(tx, args)
|
|
|
|
def _call_min_max_seq(self, tx, items):
|
|
assert len(items) > 0
|
|
if len(items) == 1:
|
|
return items[0]
|
|
|
|
return functools.reduce(functools.partial(self._call_min_max_binary, tx), items)
|
|
|
|
def _call_min_max_binary(self, tx, a, b):
|
|
if self.tensor_args(a, b):
|
|
if not isinstance(a, variables.TensorVariable):
|
|
a, b = b, a
|
|
assert isinstance(a, variables.TensorVariable)
|
|
|
|
# result of an item call is a scalar convert to a tensor
|
|
if isinstance(a, FakeItemVariable):
|
|
a = variables.TorchVariable(torch.tensor).call_function(tx, [a], {})
|
|
|
|
# Dynamic input does not get resolved, rather, gets stored as call_function
|
|
if isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
self.fn,
|
|
*proxy_args_kwargs([a, b], {}),
|
|
),
|
|
**VariableTracker.propagate(self, [a, b]),
|
|
)
|
|
|
|
# convert min/max to torch ops
|
|
if b.is_python_constant():
|
|
kwargs = {"min": b} if (self.fn is max) else {"max": b}
|
|
result = variables.TorchVariable(torch.clamp).call_function(
|
|
tx, [a], kwargs
|
|
)
|
|
else:
|
|
fn = {max: torch.maximum, min: torch.minimum}[self.fn]
|
|
result = variables.TorchVariable(fn).call_function(tx, [a, b], {})
|
|
|
|
# return unspec if both a, b are unspec or const
|
|
if all(
|
|
isinstance(
|
|
i,
|
|
(
|
|
variables.UnspecializedPythonVariable,
|
|
variables.ConstantVariable,
|
|
),
|
|
)
|
|
for i in [a, b]
|
|
):
|
|
if any([isinstance(val, FakeItemVariable) for val in [a, b]]):
|
|
return variables.FakeItemVariable.from_tensor_variable(result)
|
|
|
|
if b.is_python_constant():
|
|
raw_b = b.as_python_constant()
|
|
else:
|
|
raw_b = b.raw_value
|
|
if self.fn is max:
|
|
raw_res = max(a.raw_value, raw_b)
|
|
else:
|
|
raw_res = min(a.raw_value, raw_b)
|
|
|
|
need_unwrap = any(
|
|
x.need_unwrap
|
|
for x in [a, b]
|
|
if isinstance(x, variables.UnspecializedPythonVariable)
|
|
)
|
|
return variables.UnspecializedPythonVariable.from_tensor_variable(
|
|
result, raw_res, need_unwrap
|
|
)
|
|
# otherwise return tensor
|
|
else:
|
|
return result
|
|
elif isinstance(a, variables.ConstantVariable) and isinstance(
|
|
b, variables.ConstantVariable
|
|
):
|
|
if self.fn is max:
|
|
return variables.ConstantVariable(max(a.value, b.value))
|
|
else:
|
|
return variables.ConstantVariable(min(a.value, b.value))
|
|
elif isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
|
|
proxy = tx.output.create_proxy(
|
|
"call_function", self.fn, *proxy_args_kwargs([a, b], {})
|
|
)
|
|
return SymNodeVariable.create(tx, proxy, None)
|
|
else:
|
|
unimplemented(f"unsupported min / max over args {str(a)}, {str(b)}")
|
|
|
|
call_min = _call_min_max
|
|
call_max = _call_min_max
|
|
|
|
def call_range(self, tx, *args):
|
|
if self.unspec_python_args(*args) or self.constant_args(*args):
|
|
args, _ = specialize_args_kwargs(tx, args, {})
|
|
return variables.RangeVariable(args)
|
|
elif self._dynamic_args(*args):
|
|
|
|
def guard_if_dyn(arg):
|
|
if isinstance(arg, SymNodeVariable):
|
|
return arg.evaluate_expr(tx.output)
|
|
elif isinstance(arg, ConstantVariable):
|
|
return arg.as_python_constant()
|
|
return arg
|
|
|
|
args = [variables.ConstantVariable(guard_if_dyn(arg)) for arg in args]
|
|
return variables.RangeVariable(args)
|
|
# None no-ops this handler and lets the driving function proceed
|
|
return None
|
|
|
|
def _dynamic_args(self, *args, **kwargs):
|
|
return any([isinstance(x, SymNodeVariable) for x in args]) or any(
|
|
[isinstance(x, SymNodeVariable) for x in kwargs.values()]
|
|
)
|
|
|
|
def call_slice(self, tx, *args):
|
|
return variables.SliceVariable(args)
|
|
|
|
def _dyn_proxy(self, tx, *args, **kwargs):
|
|
from .builder import wrap_fx_proxy
|
|
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function", self.fn, *proxy_args_kwargs(args, kwargs)
|
|
),
|
|
**options,
|
|
)
|
|
|
|
def _call_iter_tuple_list(self, tx, obj=None, *args, **kwargs):
|
|
if self._dynamic_args(*args, **kwargs):
|
|
return self._dyn_proxy(tx, *args, **kwargs)
|
|
cls = variables.BaseListVariable.cls_for(self.fn)
|
|
if obj is None:
|
|
return cls(
|
|
[],
|
|
mutable_local=MutableLocal(),
|
|
)
|
|
elif obj.has_unpack_var_sequence(tx):
|
|
guards = set()
|
|
if obj.source and not is_constant_source(obj.source):
|
|
if isinstance(obj, TupleIteratorVariable):
|
|
guards.add(obj.source.make_guard(GuardBuilder.TUPLE_ITERATOR_LEN))
|
|
else:
|
|
guards.add(obj.source.make_guard(GuardBuilder.LIST_LENGTH))
|
|
return cls(
|
|
list(obj.unpack_var_sequence(tx)),
|
|
mutable_local=MutableLocal(),
|
|
guards=guards,
|
|
).add_options(self, obj)
|
|
|
|
call_iter = _call_iter_tuple_list
|
|
call_tuple = _call_iter_tuple_list
|
|
call_list = _call_iter_tuple_list
|
|
|
|
@staticmethod
|
|
def is_supported_call_dict_arg(tx, arg):
|
|
return (
|
|
arg is None
|
|
or isinstance(arg, ConstDictVariable)
|
|
or (
|
|
isinstance(
|
|
arg,
|
|
(
|
|
ListVariable,
|
|
TupleVariable,
|
|
ListIteratorVariable,
|
|
),
|
|
)
|
|
and all(
|
|
isinstance(x, (ListVariable, TupleVariable))
|
|
and isinstance(
|
|
x.unpack_var_sequence(tx)[0], (ConstantVariable, EnumVariable)
|
|
)
|
|
for x in arg.unpack_var_sequence(tx)
|
|
)
|
|
)
|
|
)
|
|
|
|
@staticmethod
|
|
def call_dict_helper(tx, user_cls, arg, **options):
|
|
if arg is None:
|
|
return ConstDictVariable(
|
|
{}, user_cls, mutable_local=MutableLocal()
|
|
).add_options(options)
|
|
elif isinstance(arg, variables.ConstDictVariable):
|
|
return arg.clone(
|
|
user_cls=user_cls, mutable_local=MutableLocal()
|
|
).add_options(options)
|
|
elif isinstance(
|
|
arg,
|
|
(
|
|
ListVariable,
|
|
TupleVariable,
|
|
ListIteratorVariable,
|
|
),
|
|
):
|
|
items = user_cls()
|
|
for x in arg.unpack_var_sequence(tx):
|
|
k = x.unpack_var_sequence(tx)[0].as_python_constant()
|
|
v = x.unpack_var_sequence(tx)[1]
|
|
items.update({k: v})
|
|
return ConstDictVariable(
|
|
items, user_cls, mutable_local=MutableLocal()
|
|
).add_options(options)
|
|
else:
|
|
raise AssertionError("call_dict_helper with illegal arg")
|
|
|
|
def call_dict(self, tx, obj=None):
|
|
if self.is_supported_call_dict_arg(tx, obj):
|
|
return self.call_dict_helper(tx, dict, obj)
|
|
|
|
def call_zip(self, tx, *args):
|
|
options = VariableTracker.propagate(self, args)
|
|
if all(x.has_unpack_var_sequence(tx) for x in args):
|
|
items = [
|
|
variables.TupleVariable(list(item), **options)
|
|
for item in zip(*[arg.unpack_var_sequence(tx) for arg in args])
|
|
]
|
|
return variables.TupleVariable(items, **options)
|
|
|
|
def call_enumerate(self, tx, *args):
|
|
options = VariableTracker.propagate(self, args)
|
|
if len(args) == 1:
|
|
start = 0
|
|
else:
|
|
assert len(args) == 2
|
|
assert isinstance(args[1], variables.ConstantVariable)
|
|
start = args[1].as_python_constant()
|
|
if args[0].has_unpack_var_sequence(tx):
|
|
items = [
|
|
variables.TupleVariable(
|
|
[variables.ConstantVariable(idx, **options), var],
|
|
**options,
|
|
)
|
|
for idx, var in enumerate(args[0].unpack_var_sequence(tx), start)
|
|
]
|
|
return variables.TupleVariable(items, **options)
|
|
|
|
def call_len(self, tx, *args, **kwargs):
|
|
return args[0].call_method(tx, "__len__", args[1:], kwargs)
|
|
|
|
def call_getitem(self, tx, *args, **kwargs):
|
|
if self.unspec_python_args(*args, **kwargs):
|
|
args, kwargs = specialize_args_kwargs(tx, args, kwargs)
|
|
return args[0].call_method(tx, "__getitem__", args[1:], kwargs)
|
|
|
|
def call_isinstance(self, tx, arg, isinstance_type):
|
|
arg_type = arg.python_type()
|
|
|
|
isinstance_type = isinstance_type.as_python_constant()
|
|
|
|
if isinstance(arg, variables.TensorVariable) and arg.dtype is not None:
|
|
return variables.ConstantVariable(arg.call_isinstance(isinstance_type))
|
|
# UserDefinedObject with C extensions can have torch.Tensor attributes,
|
|
# so break graph.
|
|
if isinstance(arg, variables.UserDefinedObjectVariable) and isinstance(
|
|
arg.value, types.MemberDescriptorType
|
|
):
|
|
unimplemented(
|
|
f"isinstance called on UserDefinedClass {arg} {isinstance_type}"
|
|
)
|
|
# handle __instancecheck__ defined in user class
|
|
if (
|
|
isinstance(arg, variables.UserDefinedObjectVariable)
|
|
and "__instancecheck__" in isinstance_type.__class__.__dict__
|
|
):
|
|
return variables.ConstantVariable(
|
|
isinstance_type.__class__.__instancecheck__(isinstance_type, arg.value)
|
|
)
|
|
|
|
try:
|
|
val = issubclass(arg_type, isinstance_type)
|
|
except TypeError:
|
|
val = arg_type is isinstance_type
|
|
return variables.ConstantVariable(val)
|
|
|
|
def call_super(self, tx, a, b):
|
|
source = (
|
|
None
|
|
if a.source is None or b.source is None
|
|
else SuperSource(a.source, b.source)
|
|
)
|
|
return variables.SuperVariable(a, b, source=source)
|
|
|
|
def call_next(self, tx, arg):
|
|
if isinstance(arg, variables.ListIteratorVariable):
|
|
val, next_iter = arg.next_variables()
|
|
tx.replace_all(arg, next_iter)
|
|
return val
|
|
elif isinstance(arg, variables.BaseListVariable):
|
|
return arg.items[0].add_options(self, arg)
|
|
|
|
def call_hasattr(self, tx, obj, attr):
|
|
if attr.is_python_constant():
|
|
name = attr.as_python_constant()
|
|
return obj.call_hasattr(tx, name).add_options(self, obj, attr)
|
|
|
|
def call_map(self, tx, fn, seq):
|
|
if seq.has_unpack_var_sequence(tx):
|
|
items = [fn.call_function(tx, [x], {}) for x in seq.unpack_var_sequence(tx)]
|
|
return variables.TupleVariable(items).add_options(self, fn, seq)
|
|
|
|
def call_sum(self, tx, seq, **kwargs):
|
|
# Special case for sum on tuple of floats and ints
|
|
if (
|
|
isinstance(seq, (variables.ListVariable, variables.TupleVariable))
|
|
and all(
|
|
[
|
|
isinstance(x, variables.ConstantVariable)
|
|
and isinstance(x.value, (int, float))
|
|
for x in seq.items
|
|
]
|
|
)
|
|
and not kwargs
|
|
):
|
|
new_list = [x.value for x in seq.items]
|
|
return variables.ConstantVariable(sum(new_list))
|
|
if seq.has_unpack_var_sequence(tx):
|
|
start = kwargs.pop(
|
|
"start", variables.ConstantVariable(0)
|
|
).as_python_constant()
|
|
assert not kwargs
|
|
items = seq.unpack_var_sequence(tx)[start:]
|
|
return BuiltinVariable(functools.reduce).call_function(
|
|
tx,
|
|
[
|
|
BuiltinVariable(operator.add),
|
|
variables.TupleVariable(items),
|
|
variables.ConstantVariable(0).add_options(self, seq),
|
|
],
|
|
{},
|
|
)
|
|
|
|
def call_reduce(self, tx, function, iterable, initializer=None):
|
|
if iterable.has_unpack_var_sequence(tx):
|
|
items = iterable.unpack_var_sequence(tx)
|
|
if initializer is None:
|
|
value, items = items[0], items[1:]
|
|
else:
|
|
value = initializer
|
|
for element in items:
|
|
value = function.call_function(tx, [value, element], {})
|
|
return value
|
|
|
|
def call_getattr(
|
|
self, tx, obj: VariableTracker, name_var: VariableTracker, default=None
|
|
):
|
|
from . import (
|
|
ConstantVariable,
|
|
GetAttrVariable,
|
|
PythonModuleVariable,
|
|
TorchVariable,
|
|
UserFunctionVariable,
|
|
)
|
|
from .builder import VariableBuilder
|
|
|
|
options = VariableTracker.propagate(self, obj, name_var)
|
|
guards = options["guards"]
|
|
name = name_var.as_python_constant()
|
|
|
|
if not name_var.is_python_constant():
|
|
unimplemented("non-const getattr() name")
|
|
|
|
if tx.output.side_effects.is_attribute_mutation(obj):
|
|
try:
|
|
# re-read a pending side effect?
|
|
return tx.output.side_effects.load_attr(obj, name).add_options(options)
|
|
except KeyError:
|
|
pass
|
|
|
|
if default is not None:
|
|
hasattr_var = self.call_hasattr(tx, obj, name_var)
|
|
guards.update(hasattr_var.guards)
|
|
assert hasattr_var.as_python_constant() in (True, False)
|
|
if not hasattr_var.as_python_constant():
|
|
return default.add_guards(guards)
|
|
|
|
if obj.source:
|
|
source = AttrSource(obj.source, name)
|
|
options["source"] = source
|
|
else:
|
|
source = None
|
|
|
|
if isinstance(obj, variables.NNModuleVariable):
|
|
return obj.var_getattr(tx, name).add_options(options)
|
|
elif isinstance(obj, variables.TensorVariable) and name == "grad":
|
|
if source:
|
|
# We are going to be raising this tensor as grapharg. So, ensure
|
|
# that we have real grad value instead of fake tensor value.
|
|
# Walk through the inputs of the subgraph and find if we already
|
|
# have the original tensor stored in the graphargs.
|
|
for grapharg in tx.output.graphargs:
|
|
if grapharg.source == source.base:
|
|
example_value = grapharg.example.grad
|
|
return VariableBuilder(tx, source)(example_value).add_options(
|
|
options
|
|
)
|
|
unimplemented("tensor grad")
|
|
else:
|
|
unimplemented("tensor grad")
|
|
elif isinstance(
|
|
obj,
|
|
(
|
|
variables.TensorVariable,
|
|
variables.NamedTupleVariable,
|
|
variables.ConstantVariable,
|
|
variables.UserDefinedClassVariable,
|
|
variables.UserDefinedObjectVariable,
|
|
),
|
|
):
|
|
try:
|
|
return (
|
|
obj.var_getattr(tx, name).clone(source=source).add_options(options)
|
|
)
|
|
except NotImplementedError:
|
|
return GetAttrVariable(obj, name, **options)
|
|
elif isinstance(obj, TorchVariable):
|
|
member = getattr(obj.value, name)
|
|
if is_allowed(member):
|
|
return TorchVariable(member, **options)
|
|
elif ConstantVariable.is_literal(member):
|
|
return ConstantVariable(member, **options)
|
|
else:
|
|
return VariableBuilder(tx, source)(member).add_guards(guards)
|
|
elif isinstance(obj, (PythonModuleVariable, DummyModule)):
|
|
member = obj.value.__dict__[name]
|
|
|
|
if config.replay_record_enabled:
|
|
tx.exec_recorder.record_module_access(obj.value, name, member)
|
|
|
|
return VariableBuilder(tx, source)(member).add_guards(guards)
|
|
elif istype(obj, UserFunctionVariable) and name in ("__name__", "__module__"):
|
|
return ConstantVariable(
|
|
getattr(obj.fn, name), **VariableTracker.propagate(obj)
|
|
)
|
|
else:
|
|
try:
|
|
return (
|
|
obj.var_getattr(tx, name).clone(source=source).add_options(options)
|
|
)
|
|
except NotImplementedError:
|
|
return GetAttrVariable(obj, name, **options)
|
|
|
|
def call_setattr(
|
|
self, tx, obj: VariableTracker, name_var: VariableTracker, val: VariableTracker
|
|
):
|
|
if isinstance(obj, variables.DataClassVariable):
|
|
return obj.call_method(tx, "__setattr__", [name_var, val], {})
|
|
elif (
|
|
tx.output.side_effects.is_attribute_mutation(obj)
|
|
and name_var.is_python_constant()
|
|
):
|
|
tx.output.side_effects.store_attr(obj, name_var.as_python_constant(), val)
|
|
return val.add_options(self, obj, name_var)
|
|
elif isinstance(obj, variables.UserDefinedObjectVariable):
|
|
unimplemented(
|
|
f"setattr(UserDefinedObjectVariable) {type(obj.value).__setattr__}"
|
|
)
|
|
elif isinstance(obj, variables.NNModuleVariable):
|
|
obj.convert_to_unspecialized(tx)
|
|
|
|
def call_type(self, tx, obj: VariableTracker):
|
|
from .builder import VariableBuilder
|
|
|
|
try:
|
|
py_type = obj.python_type()
|
|
except NotImplementedError:
|
|
py_type = None
|
|
|
|
if istype(obj, variables.TupleVariable):
|
|
return BuiltinVariable(py_type).add_options(self, obj)
|
|
|
|
if py_type is not None and obj.source:
|
|
return VariableBuilder(tx, TypeSource(obj.source))(py_type).add_options(
|
|
self, obj
|
|
)
|
|
|
|
raise UserError(
|
|
UserErrorType.ANTI_PATTERN,
|
|
"Can't call type() on generated custom object. "
|
|
"Please use __class__ instead",
|
|
)
|
|
|
|
def call_reversed(self, tx, obj: VariableTracker):
|
|
if obj.has_unpack_var_sequence(tx):
|
|
items = list(reversed(obj.unpack_var_sequence(tx)))
|
|
return variables.TupleVariable(
|
|
items, **VariableTracker.propagate(self, obj)
|
|
)
|
|
|
|
def call_sorted(self, tx, obj: VariableTracker, **kwargs):
|
|
if (
|
|
obj.has_unpack_var_sequence(tx)
|
|
and not isinstance(obj, variables.TensorVariable)
|
|
and all(x.is_python_constant() for x in obj.unpack_var_sequence(tx))
|
|
):
|
|
function = kwargs.pop("key", None)
|
|
reverse = kwargs.pop(
|
|
"reverse", ConstantVariable(False)
|
|
).as_python_constant()
|
|
assert len(kwargs) == 0
|
|
if function:
|
|
items = sorted(
|
|
obj.unpack_var_sequence(tx),
|
|
key=lambda x: function.call_function(
|
|
tx, [x], {}
|
|
).as_python_constant(),
|
|
reverse=reverse,
|
|
)
|
|
else:
|
|
items = sorted(
|
|
obj.unpack_var_sequence(tx),
|
|
key=lambda x: x.as_python_constant(),
|
|
reverse=reverse,
|
|
)
|
|
return variables.ListVariable(items, **VariableTracker.propagate(self, obj))
|
|
|
|
def call_chain(self, tx, *args):
|
|
if all(obj.has_unpack_var_sequence(tx) for obj in args):
|
|
items = []
|
|
for obj in args:
|
|
items.extend(obj.unpack_var_sequence(tx))
|
|
return variables.TupleVariable(
|
|
items, **VariableTracker.propagate(self, *args)
|
|
)
|
|
|
|
def call_islice(self, tx, iterable, *args):
|
|
if iterable.has_unpack_var_sequence(tx) and all(
|
|
x.is_python_constant() for x in args
|
|
):
|
|
const_args = [x.as_python_constant() for x in args]
|
|
items = iterable.unpack_var_sequence(tx)
|
|
items = list(itertools.islice(items, *const_args))
|
|
return variables.TupleVariable(
|
|
items, **VariableTracker.propagate(self, iterable, *args)
|
|
)
|
|
|
|
# neg is a constant fold function, so we only get here if constant fold is not valid
|
|
def call_neg(self, tx, a):
|
|
if isinstance(a, SymNodeVariable):
|
|
return SymNodeVariable.create(
|
|
tx,
|
|
(operator.neg)(a.as_proxy()),
|
|
sym_num=None,
|
|
)
|
|
# None no-ops this handler and lets the driving function proceed
|
|
return None
|
|
|
|
def call_id(self, tx, *args):
|
|
if len(args) > 0 and isinstance(args[0], variables.NNModuleVariable):
|
|
nn_mod_variable = args[0]
|
|
mod = tx.output.get_submodule(nn_mod_variable.module_key)
|
|
return variables.ConstantVariable(id(mod))
|
|
else:
|
|
unimplemented(f"call_id with args {args}")
|
|
|
|
def _comparison(self, tx, left, right):
|
|
"""
|
|
Used to implement comparison operators for different types.
|
|
For example, list1 < list2 is implemented differently from tensor1 < tensor2
|
|
"""
|
|
from . import (
|
|
BaseListVariable,
|
|
ConstantVariable,
|
|
TensorVariable,
|
|
UserFunctionVariable,
|
|
)
|
|
from .lists import SizeVariable
|
|
from .tensor import (
|
|
supported_const_comparison_ops,
|
|
supported_tensor_comparison_ops,
|
|
)
|
|
|
|
op = self.fn
|
|
|
|
def _unimplemented():
|
|
unimplemented(f"comparison {typestr(left)} {op} {typestr(right)}")
|
|
|
|
if isinstance(left, UserFunctionVariable):
|
|
if op not in supported_const_comparison_ops.values():
|
|
_unimplemented()
|
|
if not isinstance(right, UserFunctionVariable):
|
|
_unimplemented()
|
|
return ConstantVariable(op(left.fn, right.fn))
|
|
|
|
# Note, we have a rare BaseListVariable subtype mismatch with valid comparison
|
|
# x = torch.randn([3, 3])
|
|
# x.size() == (3, 3) # True
|
|
# (3, 3) == x.size() # True
|
|
if isinstance(left, (SizeVariable, TupleVariable)) and isinstance(
|
|
right, (TupleVariable, SizeVariable)
|
|
):
|
|
return BaseListVariable.list_compare(tx, op, left, right)
|
|
|
|
if isinstance(left, BaseListVariable):
|
|
if not type(left) == type(right): # Mismatch in BaseListVariable subclasses
|
|
_unimplemented()
|
|
return BaseListVariable.list_compare(tx, op, left, right)
|
|
|
|
if isinstance(left, TensorVariable):
|
|
from .builder import wrap_fx_proxy
|
|
|
|
if op not in supported_tensor_comparison_ops.values():
|
|
_unimplemented()
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
op(left.as_proxy(), right.as_proxy()),
|
|
)
|
|
|
|
if isinstance(left, SymNodeVariable) or isinstance(right, SymNodeVariable):
|
|
if op not in supported_tensor_comparison_ops.values():
|
|
_unimplemented()
|
|
|
|
return SymNodeVariable.create(
|
|
tx,
|
|
op(left.as_proxy(), right.as_proxy()),
|
|
sym_num=None,
|
|
)
|
|
|
|
_unimplemented()
|
|
|
|
# and_ is a constant fold function, so we only get here if constant fold is not valid
|
|
def call_and_(self, tx, a, b):
|
|
if isinstance(a, SymNodeVariable) and isinstance(b, SymNodeVariable):
|
|
return SymNodeVariable.create(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function", operator.and_, *proxy_args_kwargs([a, b], {})
|
|
),
|
|
sym_num=None,
|
|
)
|
|
# None no-ops this handler and lets the driving function proceed
|
|
return None
|
|
|
|
# or_ is a constant fold function, so we only get here if constant fold is not valid
|
|
def call_or_(self, tx, a, b):
|
|
if isinstance(a, SymNodeVariable) and isinstance(b, SymNodeVariable):
|
|
return SymNodeVariable.create(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function", operator.or_, *proxy_args_kwargs([a, b], {})
|
|
),
|
|
sym_num=None,
|
|
)
|
|
# None no-ops this handler and lets the driving function proceed
|
|
return None
|
|
|
|
def call_not_(self, tx, a):
|
|
if isinstance(a, SymNodeVariable):
|
|
return SymNodeVariable.create(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function", operator.not_, *proxy_args_kwargs([a], {})
|
|
),
|
|
sym_num=None,
|
|
)
|
|
return None
|
|
|
|
call_eq = _comparison
|
|
call_gt = _comparison
|
|
call_lt = _comparison
|
|
call_ge = _comparison
|
|
call_le = _comparison
|
|
call_ne = _comparison
|
|
call_is_ = _comparison
|
|
call_is_not = _comparison
|