Files
pytorch/torchgen/shape_functions/gen_jit_shape_functions.py
2025-06-17 19:25:50 +00:00

183 lines
5.1 KiB
Python

#!/usr/bin/env python3
import os
import sys
from importlib.util import module_from_spec, spec_from_file_location
from itertools import chain
from pathlib import Path
# Manually importing the shape function module based on current directory
# instead of torch imports to avoid needing to recompile Pytorch before
# running the script
file_path = Path.cwd() / "torch" / "jit" / "_shape_functions.py"
module_name = "torch.jit._shape_functions"
err_msg = """Could not find shape functions file, please make sure
you are in the root directory of the Pytorch git repo"""
if not file_path.exists():
raise Exception(err_msg) # noqa: TRY002
spec = spec_from_file_location(module_name, file_path)
assert spec is not None
module = module_from_spec(spec)
sys.modules[module_name] = module
assert spec.loader is not None
assert module is not None
spec.loader.exec_module(module)
bounded_compute_graph_mapping = module.bounded_compute_graph_mapping
shape_compute_graph_mapping = module.shape_compute_graph_mapping
SHAPE_HEADER = r"""
/**
* @generated
* This is an auto-generated file. Please do not modify it by hand.
* To re-generate, please run:
* cd ~/pytorch && python
* torchgen/shape_functions/gen_jit_shape_functions.py
*/
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/serialized_shape_function_registry.h>
// clang-format off
namespace torch {
namespace jit {
std::string shape_funcs = ""
"""
DECOMP_CENTER = r"""
const std::string& GetSerializedShapeFunctions() {
return shape_funcs;
}
"""
DECOMP_END = r"""
// clang-format on
} // namespace jit
} // namespace torch
"""
SERIALIZED_SHAPE_UTIL_FILE_NAME = "serialized_shape_function_registry.cpp"
def gen_serialized_decompisitions() -> str:
already_serialized_names = set()
unique_funcs = []
all_funcs = chain(
shape_compute_graph_mapping.values(), *bounded_compute_graph_mapping.values()
)
for scripted_func in all_funcs:
if scripted_func.name in already_serialized_names:
continue
already_serialized_names.add(scripted_func.name)
unique_funcs.append(scripted_func)
output_strs = []
curr_str = ""
for scripted_func in unique_funcs:
serialized_code = scripted_func.code
# technically its higher but give a buffer bc there are weird rules
# around some characters
# TODO: this was the limit I found by googling but it seems way
# too short ?
MAX_MSFT_STR_LEN = 2000
if len(curr_str) + len(serialized_code) <= MAX_MSFT_STR_LEN:
curr_str += "\n" + serialized_code
else:
output_strs.append(curr_str)
curr_str = scripted_func.code
output_strs.append(curr_str)
final_output = ""
# Windows compiler doesn't correctly handle adjacent
# string literals
for output_str in output_strs:
start = '+ std::string(R"=====('
end = '\n)=====")\n'
final_output += start + output_str + end
final_output += ";"
return final_output
SHAPE_SCHEMA_START = r"""
const OperatorMap<std::string>& GetShapeFunctionMappings() {
static const OperatorMap<std::string> shape_mappings {
"""
SHAPE_SCHEMA_END = r"""
};
return shape_mappings;
}
"""
def gen_shape_mappings() -> str:
shape_mappings = []
for schema, scripted_func in shape_compute_graph_mapping.items():
shape_mappings.append(' {"' + schema + '", "' + scripted_func.name + '"},')
return SHAPE_SCHEMA_START + "\n".join(shape_mappings) + SHAPE_SCHEMA_END
BOUNDED_SCHEMA_START = r"""
const OperatorMap<std::pair<std::string, std::string>>& GetBoundedShapeMappings() {
static const OperatorMap<std::pair<std::string, std::string>> shape_mappings {
"""
def gen_bounded_mappings() -> str:
bounded_mappings = []
for schema, (lower_func, upper_func) in bounded_compute_graph_mapping.items():
map_str = (
' {"'
+ schema
+ '", {"'
+ lower_func.name
+ '", "'
+ upper_func.name
+ '"}},'
)
bounded_mappings.append(map_str)
return BOUNDED_SCHEMA_START + "\n".join(bounded_mappings) + SHAPE_SCHEMA_END
def write_decomposition_util_file(path: str) -> None:
decomposition_str = gen_serialized_decompisitions()
shape_mappings = gen_shape_mappings()
bounded_mappings = gen_bounded_mappings()
file_components = [
SHAPE_HEADER,
decomposition_str,
DECOMP_CENTER,
shape_mappings,
bounded_mappings,
DECOMP_END,
]
print("writing file to : ", path + "/" + SERIALIZED_SHAPE_UTIL_FILE_NAME)
with open(os.path.join(path, SERIALIZED_SHAPE_UTIL_FILE_NAME), "wb") as out_file:
final_output = "".join(file_components)
out_file.write(final_output.encode("utf-8"))
def main() -> None:
pytorch_dir = Path(__file__).resolve().parents[2]
upgrader_path = pytorch_dir / "torch" / "csrc" / "jit" / "runtime"
write_decomposition_util_file(str(upgrader_path))
if __name__ == "__main__":
main()