mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156083 Approved by: https://github.com/jingsh ghstack dependencies: #156079, #156082
1017 lines
40 KiB
Python
1017 lines
40 KiB
Python
from __future__ import annotations
|
|
|
|
import itertools
|
|
import textwrap
|
|
from dataclasses import dataclass
|
|
from typing import Literal, TYPE_CHECKING
|
|
from typing_extensions import assert_never
|
|
|
|
import torchgen.api.cpp as cpp
|
|
import torchgen.api.meta as meta
|
|
import torchgen.api.structured as structured
|
|
from torchgen.api.translate import translate
|
|
from torchgen.api.types import (
|
|
BaseCType,
|
|
Binding,
|
|
ConstRefCType,
|
|
CppSignature,
|
|
CppSignatureGroup,
|
|
DispatcherSignature,
|
|
Expr,
|
|
kernel_signature,
|
|
MutRefCType,
|
|
NamedCType,
|
|
NativeSignature,
|
|
tensorT,
|
|
)
|
|
from torchgen.context import method_with_native_function, native_function_manager
|
|
from torchgen.model import (
|
|
Argument,
|
|
BackendIndex,
|
|
DeviceCheckType,
|
|
DispatchKey,
|
|
gets_generated_out_inplace_wrapper,
|
|
is_cuda_dispatch_key,
|
|
NativeFunction,
|
|
NativeFunctionsGroup,
|
|
SchemaKind,
|
|
TensorOptionsArguments,
|
|
)
|
|
from torchgen.utils import mapMaybe, Target
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torchgen.selective_build.selector import SelectiveBuilder
|
|
|
|
|
|
def gen_registration_headers(
|
|
backend_index: BackendIndex,
|
|
per_operator_headers: bool,
|
|
rocm: bool,
|
|
) -> list[str]:
|
|
if per_operator_headers:
|
|
headers = ["#include <ATen/ops/as_strided_native.h>"]
|
|
else:
|
|
headers = ["#include <ATen/NativeFunctions.h>"]
|
|
|
|
if backend_index.dispatch_key in (DispatchKey.CPU, DispatchKey.Meta):
|
|
headers.append("#include <ATen/EmptyTensor.h>")
|
|
elif backend_index.dispatch_key == DispatchKey.CUDA:
|
|
if rocm:
|
|
headers.append("#include <ATen/hip/EmptyTensor.h>")
|
|
else:
|
|
headers.append("#include <ATen/cuda/EmptyTensor.h>")
|
|
elif backend_index.dispatch_key == DispatchKey.MPS:
|
|
headers.append("#include <ATen/mps/EmptyTensor.h>")
|
|
elif backend_index.dispatch_key == DispatchKey.XPU:
|
|
# XPU specific, this header resides in third_party/torch-xpu-ops
|
|
headers.append("#include <ATen/xpu/EmptyTensor.h>")
|
|
elif backend_index.dispatch_key == DispatchKey.MTIA:
|
|
headers.append("#include <ATen/native/mtia/EmptyTensor.h>")
|
|
elif per_operator_headers:
|
|
headers += [
|
|
"#include <ATen/ops/empty.h>",
|
|
"#include <ATen/ops/empty_strided.h>",
|
|
"#include <ATen/ops/_copy_from_and_resize.h>",
|
|
"#include <ATen/ops/_copy_from.h>",
|
|
]
|
|
else:
|
|
headers.append("#include <ATen/Functions.h>")
|
|
|
|
headers.append("#include <c10/macros/Macros.h>")
|
|
return headers
|
|
|
|
|
|
def gen_empty_impl_names(
|
|
backend_index: BackendIndex,
|
|
) -> tuple[str | None, str | None]:
|
|
empty_impl = None
|
|
empty_strided_impl = None
|
|
|
|
if backend_index.dispatch_key in (
|
|
DispatchKey.Meta,
|
|
DispatchKey.CPU,
|
|
DispatchKey.CUDA,
|
|
DispatchKey.MPS,
|
|
DispatchKey.XPU,
|
|
DispatchKey.MTIA,
|
|
):
|
|
dispatch = str(backend_index.dispatch_key).lower()
|
|
empty_impl = f"at::detail::empty_{dispatch}"
|
|
empty_strided_impl = f"at::detail::empty_strided_{dispatch}"
|
|
elif backend_index.dispatch_key in (
|
|
DispatchKey.CompositeExplicitAutogradNonFunctional,
|
|
DispatchKey.QuantizedCPU,
|
|
DispatchKey.QuantizedCUDA,
|
|
DispatchKey.XPU,
|
|
):
|
|
empty_impl = "at::empty"
|
|
empty_strided_impl = "at::empty_strided"
|
|
|
|
return empty_impl, empty_strided_impl
|
|
|
|
|
|
def gen_create_out_helper(backend_index: BackendIndex) -> list[str]:
|
|
if backend_index.dispatch_key == DispatchKey.Meta:
|
|
empty_options = "options.device(at::kMeta)"
|
|
else:
|
|
empty_options = "options"
|
|
|
|
empty_impl, empty_strided_impl = gen_empty_impl_names(backend_index)
|
|
if empty_impl is None:
|
|
return []
|
|
|
|
return [
|
|
f"""
|
|
Tensor create_out(IntArrayRef sizes, IntArrayRef strides, const TensorOptions &options) {{
|
|
if (strides.empty()) {{
|
|
return {empty_impl}(sizes, {empty_options});
|
|
}} else {{
|
|
return {empty_strided_impl}(sizes, strides, {empty_options});
|
|
}}
|
|
}}
|
|
"""
|
|
]
|
|
|
|
|
|
def gen_maybe_create_proxy_helper(backend_index: BackendIndex) -> list[str]:
|
|
_, empty_strided_impl = gen_empty_impl_names(backend_index)
|
|
return (
|
|
[]
|
|
if empty_strided_impl is None
|
|
else [
|
|
f"""
|
|
std::optional<Tensor> maybe_create_proxy(const Tensor &out, IntArrayRef sizes, IntArrayRef strides, const TensorOptions &options) {{
|
|
if (out.strides() != strides) {{
|
|
return {empty_strided_impl}(sizes, strides, options);
|
|
}}
|
|
return std::nullopt;
|
|
}}
|
|
"""
|
|
]
|
|
)
|
|
|
|
|
|
def gen_resize_out_helper(backend_index: BackendIndex) -> list[str]:
|
|
if backend_index.dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional:
|
|
# The function isn't used by this key (since only functional ops have a kernel for this key),
|
|
# so we need to not include it to avoid a defined-but-not-used error.
|
|
return []
|
|
return [
|
|
"""
|
|
void resize_out(const Tensor &out, IntArrayRef sizes, IntArrayRef strides, const TensorOptions &options) {
|
|
TORCH_CHECK(options.dtype() == out.dtype(),
|
|
"Expected out tensor to have dtype ", options.dtype(), ", but got ", out.dtype(), " instead");
|
|
TORCH_CHECK(options.device() == out.device(),
|
|
"Expected out tensor to have device ", options.device(), ", but got ", out.device(), " instead");
|
|
const bool resized = at::native::resize_output(out, sizes);
|
|
// Only restride if a resize occurred; otherwise we ignore the (advisory)
|
|
// strides from the meta function and directly use the output tensor's
|
|
// preexisting strides
|
|
if (resized) {
|
|
if (!strides.empty()) {
|
|
TORCH_INTERNAL_ASSERT(!options.memory_format_opt().has_value());
|
|
// TODO: avoid the redispatch here
|
|
out.as_strided_(sizes, strides);
|
|
} else if (options.memory_format_opt().has_value()) {
|
|
out.unsafeGetTensorImpl()->empty_tensor_restride(*options.memory_format_opt());
|
|
}
|
|
}
|
|
}
|
|
"""
|
|
]
|
|
|
|
|
|
def gen_check_inplace_helper(backend_index: BackendIndex) -> list[str]:
|
|
return [
|
|
"""
|
|
void check_inplace(const Tensor &self, IntArrayRef sizes, const TensorOptions &options) {
|
|
// These checks are needed on those operators that:
|
|
// 1) don't use 'TensorIterator' (e.g. 'addmm' and 'baddbmm')
|
|
// 2) have particular typing rules (e.g. 'cumsum' and 'cumprod')
|
|
// For other operators (e.g. 'add'), 'TensorIterator' already checks
|
|
// these things separately.
|
|
TORCH_CHECK(options.dtype() == self.dtype(),
|
|
"Bad in-place call: ",
|
|
"input tensor dtype ", self.dtype(), " and output tensor dtype ", options.dtype(), " should match");
|
|
TORCH_CHECK(options.device() == self.device(),
|
|
"Bad in-place call: ",
|
|
"input tensor device ", self.device(), " and output tensor device ", options.device(), " should match");
|
|
TORCH_CHECK(sizes == self.sizes(),
|
|
"Bad in-place call: ",
|
|
"input tensor size ", self.sizes(), " and output tensor size ", sizes, " should match");
|
|
}
|
|
"""
|
|
]
|
|
|
|
|
|
def gen_registration_helpers(backend_index: BackendIndex) -> list[str]:
|
|
return [
|
|
'C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-function")',
|
|
*gen_create_out_helper(backend_index),
|
|
*gen_resize_out_helper(backend_index),
|
|
*gen_check_inplace_helper(backend_index),
|
|
*gen_maybe_create_proxy_helper(backend_index),
|
|
"C10_DIAGNOSTIC_POP()",
|
|
]
|
|
|
|
|
|
# Generates Register{dispatch}.cpp (e.g., RegisterCPU.cpp).
|
|
#
|
|
# - The primary function of this file is to register all of the
|
|
# implementations for the given dispatch key to the dispatcher,
|
|
# so they are available for use in PyTorch. If dispatch is
|
|
# None, we generate schema (def) registrations and catchall
|
|
# registrations.
|
|
# - The secondary function of this file is to generate a wrapper
|
|
# around functions. In CPUType these wrappers do nothing
|
|
# (and should be removed), but in other cases they handle
|
|
# DeviceGuard. A small extra benefit of wrappers is they
|
|
# are not overloaded, so they can be used in the registration
|
|
# API without having to disambiguate which overload you want
|
|
# (as would be the case if you directly registered native::
|
|
# functions).
|
|
# - The tertiary function of this file is to generate *static*
|
|
# cpp API bindings which can be used to bypass dispatcher
|
|
# directly to kernels, but with user-friendly cpp-style API
|
|
@dataclass(frozen=True)
|
|
class RegisterDispatchKey:
|
|
backend_index: BackendIndex
|
|
|
|
target: Literal[
|
|
Target.ANONYMOUS_DEFINITION,
|
|
Target.NAMESPACED_DEFINITION,
|
|
Target.NAMESPACED_DECLARATION,
|
|
Target.REGISTRATION,
|
|
]
|
|
|
|
# Selector object to determine which operators to generate
|
|
# registration code for.
|
|
selector: SelectiveBuilder
|
|
|
|
# Whether or not we are actually code-genning for ROCm
|
|
rocm: bool
|
|
|
|
# Whether or not to generate symint registrations or not. External users
|
|
# of codegen who don't care about symints can set this to false to get
|
|
# non-SymInt codegen
|
|
symint: bool
|
|
|
|
# The class that all unstructured native functions live under. This is used to improve
|
|
# compiler error messages when a kernel writer adds a native function with the wrong signature.
|
|
# This is only used in unstructured kernels, since structured kernels already live in a class.
|
|
# Finally, this field is currently Optional because it is only used by external backends.
|
|
# It would be nice if we can add the same logic to in-tree kernels too, but that requires updating
|
|
# all of the existing kernel signatures scattered across aten/src/ATen/native.
|
|
class_method_name: str | None
|
|
|
|
# Only set to true in lightweight dispatch. If lightweight dispatch is enabled we are registering
|
|
# operators into JIT op registry, thus we need to avoid generating code to register into the dispatcher.
|
|
skip_dispatcher_op_registration: bool
|
|
|
|
@staticmethod
|
|
def gen_device_check(
|
|
type: DeviceCheckType, args: list[Argument], method_name: str
|
|
) -> str:
|
|
if type == DeviceCheckType.NoCheck:
|
|
return " // No device check\n"
|
|
|
|
device_check = "std::optional<Device> common_device = std::nullopt;\n"
|
|
device_check += "(void)common_device; // Suppress unused variable warning\n"
|
|
for arg in args:
|
|
# Only tensor like arguments are eligible
|
|
if arg.type.is_tensor_like():
|
|
device_check += f"""
|
|
c10::impl::check_and_update_common_device(common_device, {arg.name}, "{method_name}", "{arg.name}");"""
|
|
return device_check
|
|
|
|
@method_with_native_function
|
|
def __call__(self, f: NativeFunctionsGroup | NativeFunction) -> list[str]:
|
|
if isinstance(f, NativeFunctionsGroup):
|
|
g: NativeFunctionsGroup = f
|
|
# Note: We call gen_structured() if the operator is marked structured, regardless of the backend.
|
|
# gen_structured() has special logic to handle auto-generated kernels.
|
|
if g.structured:
|
|
return self.gen_structured(g)
|
|
else:
|
|
return list(
|
|
mapMaybe(lambda f: self.gen_unstructured(f, g), g.functions())
|
|
)
|
|
elif isinstance(f, NativeFunction):
|
|
r = self.gen_unstructured(f)
|
|
return [] if r is None else [r]
|
|
else:
|
|
assert_never(f)
|
|
|
|
def wrapper_kernel_sig(
|
|
self, f: NativeFunction
|
|
) -> NativeSignature | DispatcherSignature:
|
|
# The prefix is just to ensure uniqueness. The Dispatcher API doesn't guarantee unique kernel names.
|
|
return DispatcherSignature.from_schema(
|
|
f.func,
|
|
prefix=f"wrapper_{self.backend_index.dispatch_key}_{f.func.name.overload_name}_",
|
|
symint=self.symint,
|
|
)
|
|
|
|
def gen_out_inplace_wrapper(
|
|
self, f: NativeFunction, g: NativeFunctionsGroup | None
|
|
) -> str | None:
|
|
if g is None:
|
|
return None
|
|
k = f.func.kind()
|
|
if k is SchemaKind.inplace:
|
|
copy_op = "at::_copy_from"
|
|
elif k is SchemaKind.out:
|
|
copy_op = "at::_copy_from_and_resize"
|
|
else:
|
|
raise AssertionError("gen_out_inplace_wrapper called on a functional op")
|
|
|
|
sig = self.wrapper_kernel_sig(f)
|
|
name = sig.name()
|
|
|
|
func_res = f"{name}_tmp"
|
|
return_names = cpp.return_names(f)
|
|
if len(return_names) > 1:
|
|
updates = "\n ".join(
|
|
f"{copy_op}(std::get<{i}>({func_res}), {ret_name});"
|
|
for i, ret_name in enumerate(return_names)
|
|
)
|
|
returns = f"{sig.returns_type().cpp_type()}({', '.join(return_names)})"
|
|
elif len(return_names) == 1:
|
|
ret_name = return_names[0]
|
|
updates = f"{copy_op}({func_res}, {ret_name});"
|
|
returns = ret_name
|
|
else:
|
|
assert len(f.func.arguments.out) == 1
|
|
returns = ""
|
|
out_arg = f.func.arguments.out[0]
|
|
if out_arg.type.is_list_like():
|
|
updates = f"""\
|
|
for (int64_t i = 0; i < {func_res}.size(); ++i) {{
|
|
{copy_op}({func_res}[i], {out_arg.name}[i]);
|
|
}}"""
|
|
else:
|
|
updates = f"{copy_op}({func_res}, {out_arg.name});"
|
|
|
|
functional_sig = self.wrapper_kernel_sig(g.functional)
|
|
wrapper_name = sig.name()
|
|
|
|
return f"""\
|
|
{sig.defn(name=wrapper_name)} {{
|
|
auto {func_res} = {functional_sig.name()}({", ".join(e.expr for e in translate(sig.arguments(), functional_sig.arguments()))});
|
|
{updates}
|
|
return {returns};
|
|
}}
|
|
"""
|
|
|
|
def gen_structured(self, g: NativeFunctionsGroup) -> list[str]:
|
|
metadata = self.backend_index.get_kernel(g)
|
|
if self.backend_index.dispatch_key == DispatchKey.Meta:
|
|
assert not self.backend_index.has_kernel(g.out), (
|
|
"Do not explicitly specify Meta dispatch key on structured "
|
|
"functions, they will be automatically generated for you"
|
|
)
|
|
elif (
|
|
self.backend_index.dispatch_key
|
|
== DispatchKey.CompositeExplicitAutogradNonFunctional
|
|
):
|
|
assert not self.backend_index.has_kernel(g.out), (
|
|
"Do not explicitly specify CompositeExplicitAutograd dispatch key on structured "
|
|
"functions, they will be automatically generated for you"
|
|
)
|
|
elif metadata is None or not metadata.structured:
|
|
return list(mapMaybe(lambda f: self.gen_unstructured(f, g), g.functions()))
|
|
structured_gen = StructuredRegisterDispatchKey(
|
|
self.backend_index,
|
|
self.target,
|
|
self.selector,
|
|
self.rocm,
|
|
self.symint,
|
|
self.class_method_name,
|
|
self.skip_dispatcher_op_registration,
|
|
g,
|
|
)
|
|
return list(mapMaybe(structured_gen.gen_one, g.functions()))
|
|
|
|
def gen_unstructured(
|
|
self, f: NativeFunction, g: NativeFunctionsGroup | None = None
|
|
) -> str | None:
|
|
with native_function_manager(f):
|
|
inplace_meta = False
|
|
gets_out_inplace_wrapper = False
|
|
if not self.backend_index.has_kernel(f):
|
|
if (
|
|
self.backend_index.dispatch_key == DispatchKey.Meta
|
|
and f.func.kind() is SchemaKind.inplace
|
|
and
|
|
# Defer to composites for meta implementation
|
|
not f.has_composite_kernel
|
|
and
|
|
# Inplace list operations are not supported
|
|
len(f.func.returns) == 1
|
|
):
|
|
inplace_meta = True
|
|
elif (
|
|
not self.backend_index.use_out_as_primary
|
|
and g is not None
|
|
and gets_generated_out_inplace_wrapper(f, g, self.backend_index)
|
|
):
|
|
# We want to generate inplace/out wrappers, that don't have a kernel for the backend.
|
|
gets_out_inplace_wrapper = True
|
|
else:
|
|
return None
|
|
if f.manual_kernel_registration:
|
|
return None
|
|
|
|
if (
|
|
self.target is Target.REGISTRATION
|
|
and not self.selector.is_native_function_selected(f)
|
|
):
|
|
return None
|
|
|
|
sig = self.wrapper_kernel_sig(f)
|
|
|
|
name = sig.name()
|
|
returns_type = sig.returns_type().cpp_type()
|
|
args = sig.arguments()
|
|
args_str = ", ".join(a.defn() for a in args)
|
|
|
|
# See Note [Direct dispatch bindings]
|
|
cpp_sig_group = CppSignatureGroup.from_native_function(
|
|
f, method=False, fallback_binding=False
|
|
)
|
|
|
|
# TODO: dedupe this with the structured codegen
|
|
if self.target is Target.NAMESPACED_DECLARATION:
|
|
result = ""
|
|
for cpp_sig in cpp_sig_group.signatures(symint=self.symint):
|
|
result += f"TORCH_API {cpp_sig.decl()};\n"
|
|
return result
|
|
elif self.target is Target.NAMESPACED_DEFINITION:
|
|
|
|
def generate_defn(cpp_sig: CppSignature) -> str:
|
|
return f"""
|
|
{cpp_sig.defn()} {{
|
|
return {sig.name()}({", ".join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))});
|
|
}}
|
|
"""
|
|
|
|
result = ""
|
|
for cpp_sig in cpp_sig_group.signatures(symint=self.symint):
|
|
result += generate_defn(cpp_sig)
|
|
return result
|
|
|
|
elif self.target is Target.ANONYMOUS_DEFINITION:
|
|
# short circuit for inplace_meta
|
|
if inplace_meta:
|
|
assert f.func.arguments.self_arg is not None
|
|
self_arg_name = f.func.arguments.self_arg.argument.name
|
|
# TODO: handle in place on tensor list
|
|
return f"""
|
|
{returns_type} {name}({args_str}) {{
|
|
TORCH_CHECK_NOT_IMPLEMENTED({self_arg_name}.is_meta(),
|
|
"Cannot inplace into non-meta tensor with meta tensor argument");
|
|
return {self_arg_name};
|
|
}}
|
|
"""
|
|
|
|
# short circuit for generated inplace/out wrappers
|
|
if gets_out_inplace_wrapper:
|
|
return self.gen_out_inplace_wrapper(f, g)
|
|
|
|
metadata = self.backend_index.get_kernel(f)
|
|
if metadata is None:
|
|
return None
|
|
if self.class_method_name is None:
|
|
impl_name = f"{metadata.cpp_namespace}::{metadata.kernel}"
|
|
else:
|
|
impl_name = f"{metadata.cpp_namespace}::{self.class_method_name}::{metadata.kernel}"
|
|
|
|
kernel_sig = kernel_signature(f, self.backend_index)
|
|
|
|
args_exprs_str = ", ".join(
|
|
e.expr
|
|
for e in translate(
|
|
sig.arguments(), kernel_sig.arguments(), method=False
|
|
)
|
|
)
|
|
|
|
device_check = " // No device check\n"
|
|
# Backends that require device guards presumably also require device checks.
|
|
if self.backend_index.device_guard:
|
|
device_check_args = itertools.chain(
|
|
f.func.arguments.out, f.func.arguments.flat_positional
|
|
)
|
|
device_check = RegisterDispatchKey.gen_device_check(
|
|
f.device_check, list(device_check_args), name
|
|
)
|
|
|
|
device_guard = "// DeviceGuard omitted" # default
|
|
if f.device_guard and self.backend_index.device_guard:
|
|
has_tensor_options = any(
|
|
isinstance(a, TensorOptionsArguments)
|
|
for a in f.func.arguments.non_out
|
|
)
|
|
if has_tensor_options:
|
|
# kernel is creating a tensor
|
|
device_guard = """
|
|
const DeviceGuard device_guard(device_or_default(device));"""
|
|
|
|
# CUDA requires special handling
|
|
if is_cuda_dispatch_key(self.backend_index.dispatch_key):
|
|
device_guard = f"globalContext().lazyInitDevice(c10::DeviceType::CUDA);\n{device_guard}"
|
|
else:
|
|
# kernel is operating on existing tensors
|
|
|
|
# There is precedence for which argument we use to do
|
|
# device guard. This describes the precedence order.
|
|
self_arg = (
|
|
[f.func.arguments.self_arg.argument]
|
|
if f.func.arguments.self_arg is not None
|
|
else []
|
|
)
|
|
candidate_args = itertools.chain(
|
|
self_arg,
|
|
f.func.arguments.out,
|
|
f.func.arguments.flat_positional,
|
|
)
|
|
|
|
# Only tensor like arguments are eligible
|
|
device_of = next(
|
|
(
|
|
f"{a.name}"
|
|
for a in candidate_args
|
|
if a.type.is_tensor_like()
|
|
),
|
|
None,
|
|
)
|
|
if device_of is not None:
|
|
device_guard = f"const OptionalDeviceGuard device_guard(device_of({device_of}));"
|
|
|
|
return f"""\
|
|
namespace {{
|
|
|
|
{returns_type} {name}({args_str}) {{
|
|
{device_check}
|
|
|
|
{device_guard}
|
|
return {impl_name}({args_exprs_str});
|
|
}}
|
|
|
|
}} // anonymous namespace
|
|
"""
|
|
|
|
elif self.target is Target.REGISTRATION:
|
|
if f.manual_kernel_registration or self.skip_dispatcher_op_registration:
|
|
return None
|
|
else:
|
|
payload = f"TORCH_FN({name})"
|
|
return f'm.impl("{f.func.name}",\n{payload});\n'
|
|
else:
|
|
assert_never(self.target)
|
|
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# STRUCTURED
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class StructuredRegisterDispatchKey(RegisterDispatchKey):
|
|
g: NativeFunctionsGroup
|
|
|
|
def gen_class_set_output_functions(
|
|
self, k: SchemaKind, parent_class: str, generate_super: bool
|
|
) -> str:
|
|
if generate_super:
|
|
set_output_super = f"{parent_class}::set_output_raw_strided(output_idx, sizes, strides, options, names);"
|
|
else:
|
|
set_output_super = ""
|
|
|
|
def gen_set_output_function(name: str, maybe_create_proxy: bool) -> str:
|
|
return f"""
|
|
void set_output_{name}(
|
|
int64_t output_idx, IntArrayRef sizes, IntArrayRef strides,
|
|
TensorOptions options, DimnameList names
|
|
) override {{
|
|
{textwrap.indent(self.gen_class_set_output_body(k, maybe_create_proxy), " ")}
|
|
if (!names.empty()) {{
|
|
namedinference::propagate_names(outputs_[output_idx], names);
|
|
}}
|
|
// super must happen after, so that downstream can use maybe_get_output
|
|
// to retrieve the output
|
|
{textwrap.indent(set_output_super, " ")}
|
|
}}
|
|
"""
|
|
|
|
return f"""
|
|
{gen_set_output_function("strided", maybe_create_proxy=True)}
|
|
{gen_set_output_function("raw_strided", maybe_create_proxy=False)}
|
|
"""
|
|
|
|
def gen_class_set_output_body(self, k: SchemaKind, maybe_create_proxy: bool) -> str:
|
|
if self.backend_index.dispatch_key in [
|
|
DispatchKey.CUDA,
|
|
DispatchKey.MPS,
|
|
DispatchKey.XPU,
|
|
DispatchKey.CompositeExplicitAutogradNonFunctional,
|
|
]:
|
|
maybe_set_guard = """
|
|
auto current_device = guard_.current_device();
|
|
if (C10_UNLIKELY(current_device.has_value())) {
|
|
TORCH_INTERNAL_ASSERT(*current_device == options.device(),
|
|
"structured kernels don't support multi-device outputs");
|
|
} else {
|
|
guard_.reset_device(options.device());
|
|
}
|
|
"""
|
|
maybe_set_guard_line = maybe_set_guard + "\n"
|
|
else:
|
|
maybe_set_guard_line = maybe_set_guard = ""
|
|
|
|
if maybe_create_proxy:
|
|
create_proxy = """
|
|
auto maybe_proxy = maybe_create_proxy(out, sizes, strides, options);
|
|
if (C10_UNLIKELY(maybe_proxy.has_value())) {
|
|
proxy_outputs_[output_idx] = std::move(maybe_proxy).value();
|
|
}
|
|
"""
|
|
else:
|
|
create_proxy = ""
|
|
|
|
if k is SchemaKind.functional:
|
|
assert self.backend_index.dispatch_key in (
|
|
DispatchKey.Meta,
|
|
DispatchKey.CPU,
|
|
DispatchKey.CUDA,
|
|
DispatchKey.MPS,
|
|
DispatchKey.XPU,
|
|
DispatchKey.MTIA,
|
|
DispatchKey.CompositeExplicitAutogradNonFunctional,
|
|
)
|
|
return f"""{maybe_set_guard_line}
|
|
outputs_[output_idx] = create_out(sizes, strides, options);"""
|
|
elif k is SchemaKind.inplace:
|
|
return f"""{maybe_set_guard_line}
|
|
const auto& out = outputs_[output_idx].get();
|
|
check_inplace(out, sizes, options);
|
|
{create_proxy}"""
|
|
elif k is SchemaKind.out:
|
|
return f"""{maybe_set_guard_line}
|
|
const auto& out = outputs_[output_idx].get();
|
|
resize_out(out, sizes, strides, options);
|
|
{create_proxy}"""
|
|
elif k is SchemaKind.mutable or k is SchemaKind.scratch:
|
|
raise AssertionError(
|
|
f"{k} structured operators are currently not supported"
|
|
)
|
|
else:
|
|
assert_never(k)
|
|
|
|
# returns the definition of a ctor, as well as how to construct
|
|
# this class to a variable named op
|
|
def gen_class_ctor(self, k: SchemaKind, class_name: str, returns: int) -> str:
|
|
if k is SchemaKind.functional:
|
|
return ""
|
|
elif k is SchemaKind.inplace:
|
|
# TODO: Make sure out argument is guaranteed to be self
|
|
return f"{class_name}(Tensor& self) : outputs_{{std::ref(self)}} {{}}"
|
|
elif k is SchemaKind.out:
|
|
out_args = ", ".join(f"Tensor& out{i}" for i in range(returns))
|
|
out_refs = ", ".join(f"std::ref(out{i})" for i in range(returns))
|
|
return f"{class_name}({out_args}) : outputs_{{ {out_refs} }} {{}}"
|
|
elif k is SchemaKind.mutable or k is SchemaKind.scratch:
|
|
raise AssertionError(
|
|
f"{k} structured operators are currently not supported"
|
|
)
|
|
else:
|
|
assert_never(k)
|
|
|
|
def gen_class(
|
|
self,
|
|
f: NativeFunction,
|
|
k: SchemaKind,
|
|
*,
|
|
class_name: str,
|
|
parent_class: str,
|
|
generate_super: bool,
|
|
) -> str:
|
|
if k is SchemaKind.functional:
|
|
output_type = "Tensor"
|
|
output_value = "outputs_[output_idx]"
|
|
proxy_field = ""
|
|
elif k is SchemaKind.inplace:
|
|
output_type = "std::reference_wrapper<Tensor>"
|
|
output_value = "proxy_outputs_[output_idx].has_value() ? *proxy_outputs_[output_idx] : outputs_[output_idx].get()"
|
|
proxy_field = f"std::array<::std::optional<Tensor>, {len(f.func.returns)}> proxy_outputs_;"
|
|
elif k is SchemaKind.out:
|
|
output_type = "std::reference_wrapper<Tensor>"
|
|
output_value = "proxy_outputs_[output_idx].has_value() ? *proxy_outputs_[output_idx] : outputs_[output_idx].get()"
|
|
proxy_field = f"std::array<::std::optional<Tensor>, {len(f.func.returns)}> proxy_outputs_;"
|
|
else:
|
|
raise RuntimeError(f"Unsupported SchemaKind {k}")
|
|
|
|
if self.backend_index.dispatch_key == DispatchKey.CUDA:
|
|
if self.rocm:
|
|
guard_field = "c10::hip::OptionalHIPGuardMasqueradingAsCUDA guard_;"
|
|
else:
|
|
guard_field = "c10::cuda::OptionalCUDAGuard guard_;"
|
|
elif (
|
|
self.backend_index.dispatch_key
|
|
== DispatchKey.CompositeExplicitAutogradNonFunctional
|
|
):
|
|
guard_field = "c10::OptionalDeviceGuard guard_;"
|
|
elif self.backend_index.dispatch_key == DispatchKey.MPS:
|
|
# TODO: Move to OptionalMPSGuard.
|
|
guard_field = "c10::OptionalDeviceGuard guard_;"
|
|
elif self.backend_index.dispatch_key == DispatchKey.XPU:
|
|
guard_field = "c10::OptionalDeviceGuard guard_;"
|
|
elif self.backend_index.dispatch_key == DispatchKey.MTIA:
|
|
guard_field = "c10::OptionalDeviceGuard guard_;"
|
|
else:
|
|
guard_field = ""
|
|
|
|
indent = " " * 4
|
|
class_ctor_str = self.gen_class_ctor(k, class_name, len(f.func.returns))
|
|
lines = (
|
|
f"struct {class_name} final : public {parent_class} {{",
|
|
f"{textwrap.indent(class_ctor_str, indent)}",
|
|
f"{textwrap.indent(self.gen_class_set_output_functions(k, parent_class, generate_super), indent)}",
|
|
" const Tensor& maybe_get_output(int64_t output_idx) override {",
|
|
f" return {output_value};\n", # type: ignore[possibly-undefined] # TODO: audit
|
|
" }",
|
|
# type: ignore[possibly-undefined] # TODO: audit
|
|
f" std::array<{output_type}, {len(f.func.returns)}> outputs_;",
|
|
f"{textwrap.indent(proxy_field, indent)}", # type: ignore[possibly-undefined] # TODO: audit
|
|
f"{textwrap.indent(guard_field, indent)}",
|
|
"};",
|
|
)
|
|
return "\n".join(line for line in lines if line)
|
|
|
|
@method_with_native_function
|
|
def gen_one(self, f: NativeFunction) -> str | None:
|
|
assert not f.manual_kernel_registration
|
|
|
|
if (
|
|
self.target is Target.REGISTRATION
|
|
and not self.selector.is_native_function_selected(f)
|
|
):
|
|
return None
|
|
|
|
# TODO: Now, there is something interesting going on here. In the code below,
|
|
# we generate CompositeExplicitAutogradNonFunctional implementations of functional and inplace
|
|
# based on the out implementation. But in fact, out is definable by
|
|
# functional too (just not very efficiently), and this is honestly the
|
|
# MORE likely situation for a backend implementer. How do we pick?
|
|
# Well, taking a page from Haskell type classes and default methods,
|
|
# we could conceivably register a circular definition (out in terms
|
|
# of functional, and functional in terms of out) and just require
|
|
# someone to implement one or the other. We'd have to do a little bit
|
|
# of work to not register one of these "weak" definitions unless there
|
|
# is a strong definition somewhere in the DAG! So it's not implemented yet.
|
|
if (
|
|
self.backend_index.dispatch_key
|
|
== DispatchKey.CompositeExplicitAutogradNonFunctional
|
|
and f.func.kind() is SchemaKind.out
|
|
):
|
|
# Never generate a default implementation for out, that's what you
|
|
# have to define as a backend implementer
|
|
return None
|
|
|
|
# Note [Direct dispatch bindings]
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# Signature of the non-dispatched function we'll expose in a header
|
|
# (e.g., at::cpu::add). We don't generate methods (TODO: do this
|
|
# when CPUTensor class is a thing); nor do we generate fallback
|
|
# bindings for manual_cpp_binding functions.
|
|
cpp_sig_group = CppSignatureGroup.from_native_function(
|
|
f, method=False, fallback_binding=False
|
|
)
|
|
|
|
# Signature of the wrapper function we'll register to the dispatcher
|
|
kern = self.backend_index.get_kernel(f)
|
|
sig = NativeSignature(
|
|
f.func,
|
|
prefix=f"wrapper_{self.backend_index.dispatch_key}_",
|
|
symint=kern is not None and kern.supports_symint(),
|
|
)
|
|
|
|
if self.target is Target.NAMESPACED_DECLARATION:
|
|
result = ""
|
|
for cpp_sig in cpp_sig_group.signatures(symint=self.symint):
|
|
result += f"TORCH_API {cpp_sig.decl()};\n"
|
|
return result
|
|
|
|
elif self.target is Target.NAMESPACED_DEFINITION:
|
|
|
|
def generate_defn(cpp_sig: CppSignature) -> str:
|
|
return f"""
|
|
{cpp_sig.defn()} {{
|
|
return {sig.name()}({", ".join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))});
|
|
}}
|
|
"""
|
|
|
|
result = ""
|
|
for cpp_sig in cpp_sig_group.signatures(symint=self.symint):
|
|
result += generate_defn(cpp_sig)
|
|
return result
|
|
|
|
elif self.target is Target.ANONYMOUS_DEFINITION:
|
|
k = f.func.kind()
|
|
|
|
# Construct the body of the wrapper function with signature sig
|
|
sig_body = []
|
|
# We'll use context to keep track of any variables we've brought
|
|
# into scope while generating code
|
|
context: list[Binding | Expr] = list(sig.arguments())
|
|
|
|
# Initialize the class corresponding to this structured
|
|
# operator; feeding it the output argument(s) if it is known
|
|
if self.backend_index.dispatch_key is DispatchKey.Meta:
|
|
class_name = f"structured_{meta.name(self.g)}_meta_{k.name}"
|
|
parent_class = f"at::meta::structured_{meta.name(self.g)}"
|
|
elif (
|
|
self.backend_index.dispatch_key
|
|
is DispatchKey.CompositeExplicitAutogradNonFunctional
|
|
):
|
|
# TODO: dedup this branch
|
|
class_name = f"structured_{meta.name(self.g)}_default_backend_{k.name}"
|
|
parent_class = f"at::meta::structured_{meta.name(self.g)}"
|
|
else:
|
|
metadata = self.backend_index.get_kernel(self.g)
|
|
assert metadata is not None
|
|
class_name = f"structured_{metadata.kernel}_{k.name}"
|
|
parent_class = f"{metadata.cpp_namespace}::structured_{metadata.kernel}"
|
|
|
|
if self.backend_index.device_guard:
|
|
device_check_args = itertools.chain(
|
|
f.func.arguments.out, f.func.arguments.flat_positional
|
|
)
|
|
sig_body.append(
|
|
RegisterDispatchKey.gen_device_check(
|
|
f.device_check, list(device_check_args), sig.name()
|
|
)
|
|
)
|
|
|
|
if k is SchemaKind.functional:
|
|
sig_body.append(f"{class_name} op;")
|
|
elif k is SchemaKind.inplace:
|
|
sig_body.append(f"{class_name} op(self);")
|
|
elif k is SchemaKind.out:
|
|
out_args_str = ", ".join(a.name for a in f.func.arguments.out)
|
|
sig_body.append(f"{class_name} op({out_args_str});")
|
|
|
|
# Translate the input native arguments into structured
|
|
# arguments for the meta call
|
|
meta_exprs = ", ".join(
|
|
e.expr
|
|
for e in translate(
|
|
context, structured.meta_arguments(self.g), method=False
|
|
)
|
|
)
|
|
|
|
if self.g.out.precomputed:
|
|
# If this function group has precomputed elements, the meta function
|
|
# returns a struct containing them which must be saved so that it
|
|
# can be unpacked when generating code to call the impl.
|
|
sig_body.append(f"auto precompute = op.meta({meta_exprs});")
|
|
|
|
# Put all of the contents of the precompute struct into the context
|
|
# so that translate will be able to return the correct args for the
|
|
# call to the impl.
|
|
precomputed_values = [
|
|
*self.g.out.precomputed.replace.values(),
|
|
self.g.out.precomputed.add,
|
|
]
|
|
for precomputed_elems in precomputed_values:
|
|
context.extend(
|
|
Expr(
|
|
expr=f"precompute.{arg.name}",
|
|
type=structured.argument_type(arg, binds=arg.name),
|
|
)
|
|
for arg in precomputed_elems
|
|
)
|
|
|
|
# Add a use of the precompute struct so FB internal compilers don't
|
|
# complain that there is an unused variable.
|
|
sig_body.append("(void)precompute;")
|
|
else:
|
|
sig_body.append(f"op.meta({meta_exprs});")
|
|
|
|
# After running meta, op.outputs_ is guaranteed to be valid;
|
|
# add it to the context
|
|
out_args = structured.out_arguments(self.g)
|
|
for i, out_arg in enumerate(out_args):
|
|
assert ConstRefCType(BaseCType(tensorT)) == out_arg.nctype.type
|
|
|
|
if k is SchemaKind.out:
|
|
expr = f"op.maybe_get_output({i})"
|
|
else:
|
|
expr = f"op.outputs_[{i}]"
|
|
|
|
context.append(
|
|
Expr(
|
|
expr=expr,
|
|
# TODO: Stop hardcoding that the output type is a Tensor. Note
|
|
# that for the codegen here this is fine because outputs_ is
|
|
# hardcoded to be tensor already
|
|
type=NamedCType(
|
|
out_arg.nctype.name, MutRefCType(BaseCType(tensorT))
|
|
),
|
|
)
|
|
)
|
|
|
|
# With the expanded context, do the impl call (if not a meta
|
|
# function)
|
|
if (
|
|
self.backend_index.dispatch_key
|
|
== DispatchKey.CompositeExplicitAutogradNonFunctional
|
|
):
|
|
# TODO: https://github.com/pytorch/pytorch/issues/53023
|
|
out_sig_group = CppSignatureGroup.from_native_function(
|
|
self.g.out, method=False, fallback_binding=f.manual_cpp_binding
|
|
)
|
|
out_sig = out_sig_group.most_faithful_signature()
|
|
api_name = out_sig.name()
|
|
out_exprs = ", ".join(
|
|
e.expr
|
|
for e in translate(context, out_sig.arguments(), method=False)
|
|
)
|
|
# TODO: I think this means structured won't work with method
|
|
# only functions (but maybe you're saved by faithful? iunno.)
|
|
# NB: Originally I wrote this as an at::redispatch call, but
|
|
# I got in trouble because that meant I needed a DispatchKeySet
|
|
# in the wrapper function, which meant I needed a DispatchKeySet
|
|
# in the DispatchKeyFunctions declarations, but the defined API
|
|
# there does NOT permit a dispatch key set. I think you can
|
|
# probably unwind this by calling some function to do the TLS
|
|
# fetch and get the DispatchKeySet when you don't have it, but
|
|
# I didn't do it for this version
|
|
sig_body.append(f"at::{api_name}({out_exprs});")
|
|
elif self.backend_index.dispatch_key != DispatchKey.Meta:
|
|
impl_exprs = ", ".join(
|
|
e.expr
|
|
for e in translate(
|
|
context, structured.impl_arguments(self.g), method=False
|
|
)
|
|
)
|
|
sig_body.append(f"op.impl({impl_exprs});")
|
|
|
|
# Go over each output, and check if there is a proxy created for it.
|
|
# If so, copy it over to the original output.
|
|
if k is SchemaKind.out or k is SchemaKind.inplace:
|
|
for i in range(len(f.func.returns)):
|
|
sig_body.append(
|
|
f"if (op.proxy_outputs_[{i}].has_value()) op.outputs_[{i}].get().copy_(*op.proxy_outputs_[{i}]);"
|
|
)
|
|
|
|
# Destructively return the final tensors
|
|
# TODO: Do this in translate instead
|
|
if k is SchemaKind.functional:
|
|
if len(f.func.returns) == 1:
|
|
ret_expr = "std::move(op.outputs_[0])" # small optimization
|
|
else:
|
|
moved = ", ".join(
|
|
f"std::move(op.outputs_[{i}])"
|
|
for i in range(len(f.func.returns))
|
|
)
|
|
ret_expr = f"std::make_tuple({moved})"
|
|
elif k is SchemaKind.inplace:
|
|
ret_expr = "self"
|
|
elif k is SchemaKind.out:
|
|
if len(f.func.returns) == 1:
|
|
ret_expr = f.func.arguments.out[0].name
|
|
else:
|
|
refs = ", ".join(a.name for a in f.func.arguments.out)
|
|
ret_expr = f"std::forward_as_tuple({refs})"
|
|
sig_body.append(f"return {ret_expr};") # type: ignore[possibly-undefined] # TODO: audit
|
|
|
|
sig_body_str = "\n".join(sig_body)
|
|
|
|
# For an overview of what this template code looks like, see
|
|
# https://github.com/pytorch/rfcs/pull/9
|
|
return f"""\
|
|
{
|
|
self.gen_class(
|
|
f,
|
|
k,
|
|
class_name=class_name,
|
|
parent_class=parent_class,
|
|
generate_super=self.g.out.structured_inherits is not None,
|
|
)
|
|
}
|
|
|
|
{sig.defn()} {{
|
|
{sig_body_str}
|
|
}}
|
|
"""
|
|
|
|
elif self.target is Target.REGISTRATION:
|
|
return f'm.impl("{f.func.name}", TORCH_FN({sig.name()}));'
|
|
else:
|
|
assert_never(self.target)
|
|
# Silence mypy's "Missing return statement" error
|
|
return None
|