Files
pytorch/torch/csrc/jit/python/init.cpp
Ksenija Stanojevic af5d0bff00 [ONNX] Add pass that fuses Conv and BatchNormalization (#40547)
Summary:
Add pass that fuses Conv and Batchnormalization nodes into one node Conv.
This pass is only applied in inference mode (training is None or TrainingMode.Eval).
Since this pass needs access to param_dict it is written outside peephole file where these kind of passes (fusing multiple nodes into one) is usually placed.

This PR also adds wrapper skipIfNoEmbed to skip debug_embed_params test:
Pass that fuses Conv and Batchnorm changes the params of resnet model and parameters of onnx and pytorch model won't match. Since parameters are not matching, debug_embed_params test for test_resnet will fail and that is expected, therefore debug_embed_params test for test_resnet should be skipped.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40547

Reviewed By: gchanan

Differential Revision: D22631687

Pulled By: bzinodev

fbshipit-source-id: fe45812400398a32541e797f727fd8697eb6d8c0
2020-07-22 14:59:27 -07:00

1084 lines
42 KiB
C++

#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/backends/backend_init.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/canonicalize_graph_fuser_ops.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/create_functional_graphs.h>
#include <torch/csrc/jit/passes/cuda_graph_fuser.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/passes/erase_number_types.h>
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/fuse_relu.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/inline_fork_wait.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_graph.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/normalize_ops.h>
#include <torch/csrc/jit/passes/onnx.h>
#include <torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.h>
#include <torch/csrc/jit/passes/onnx/constant_fold.h>
#include <torch/csrc/jit/passes/onnx/eval_peephole.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_conditionals.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_loop.h>
#include <torch/csrc/jit/passes/onnx/function_substitution.h>
#include <torch/csrc/jit/passes/onnx/peephole.h>
#include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/prepare_inplace_ops_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/scalar_type_analysis.h>
#include <torch/csrc/jit/passes/onnx/unpack_quantized_weights.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/quantization/dedup_module_uses.h>
#include <torch/csrc/jit/passes/quantization/finalize.h>
#include <torch/csrc/jit/passes/quantization/fusion_passes.h>
#include <torch/csrc/jit/passes/quantization/insert_observers.h>
#include <torch/csrc/jit/passes/quantization/insert_quant_dequant.h>
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
#include <torch/csrc/jit/passes/remove_dropout.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/remove_inplace_ops.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
#include <torch/csrc/jit/passes/utils/check_alias_annotation.h>
#include <torch/csrc/jit/passes/vulkan_rewrite.h>
#include <torch/csrc/jit/passes/xnnpack_rewrite.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/jit/python/python_arg_flatten.h>
#include <torch/csrc/jit/python/python_custom_class.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/jit/python/python_tree_views.h>
#include <torch/csrc/jit/python/script_init.h>
#include <torch/csrc/jit/runtime/argument_spec.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/jit/runtime/print_handler.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/tensorexpr/execution_counter.h>
#include <torch/csrc/jit/tensorexpr/kernel.h>
#include <c10/macros/Export.h>
#include <caffe2/serialize/inline_container.h>
#include <ATen/core/function_schema.h>
#include <pybind11/functional.h>
#include <pybind11/iostream.h>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>
namespace torch {
namespace jit {
using ::c10::Argument;
using ::c10::FunctionSchema;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::PyTorchStreamWriter;
namespace {
using autograd::variable_list;
bool loadPythonClasses() {
// Leaving this code here, because it will likely be useful at some point
// PyObject *jit_module = PyImport_ImportModule("torch.jit");
// THPUtils_assert(jit_module, "class loader couldn't access "
//"torch.jit module");
// PyObject *jit_dict = PyModule_GetDict(jit_module);
return true;
}
} // anonymous namespace
#if !defined(__HIP_PLATFORM_HCC__)
TORCH_API void runJITCPPTests(bool runCuda);
TORCH_API void runTENSOREXPRCPPTests(bool runCuda);
#endif
void initJITBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::register_exception<JITException>(m, "JITException");
py::class_<python::IODescriptor> iodescriptor(
m, "IODescriptor"); // NOLINT(bugprone-unused-raii)
m.def("_jit_init", loadPythonClasses)
.def(
"_jit_debug_fuser_num_cached_kernel_specs",
torch::jit::fuser::debugNumCachedKernelSpecs)
.def("_jit_pass_onnx_remove_print", RemovePrintOps)
.def("_jit_pass_onnx_preprocess_caffe2", PreprocessCaffe2Ops)
.def("_jit_pass_onnx", ToONNX)
.def("_jit_pass_lower_all_tuples", LowerAllTuples)
.def("_jit_pass_onnx_function_substitution", ONNXFunctionCallSubstitution)
.def(
"_jit_pass_onnx_peephole",
[](std::shared_ptr<Graph>& graph,
int opset_version,
bool fixed_batch_size) {
return PeepholeOptimizeONNX(graph, opset_version, fixed_batch_size);
})
.def(
"_jit_pass_onnx_eval_peephole",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict) {
EvalPeepholeONNX(graph->block(), paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move)
.def(
"_jit_pass_onnx_cast_all_constant_to_floating",
CastAllConstantToFloating)
.def(
"_jit_pass_onnx_constant_fold",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict,
int opset_version) {
ConstantFoldONNX(
graph->block(),
paramsDict,
opset_version); // overload resolution
return paramsDict;
},
pybind11::return_value_policy::move)
.def("_jit_pass_onnx_scalar_type_analysis", ScalarTypeAnalysisForONNX)
.def(
"_jit_pass_onnx_prepare_inplace_ops_for_onnx",
PrepareInplaceOpsForONNX)
.def("_jit_pass_fuse", FuseGraph)
.def(
"_jit_pass_dce",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(g->block()); // overload resolution
})
.def(
"_jit_pass_dce_allow_deleting_nodes_with_side_effects",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(
g->block(),
true,
DCESideEffectPolicy::
ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); // overload
// resolution
})
.def(
"_jit_pass_cse",
[](std::shared_ptr<Graph>& g) {
return EliminateCommonSubexpression(g); // overload resolution
})
.def(
"_jit_pass_fuse_quantized_add_relu",
[](std::shared_ptr<Graph>& g) {
return FuseQuantizedAddRelu(g); // overload resolution
})
.def(
"_jit_pass_insert_observers",
[](Module& module,
const std::string& method_name,
const py::dict& qconfig_dict,
bool inplace,
int quant_type_int) {
auto dict = py::cast<std::unordered_map<
std::string,
c10::optional<std::tuple<Module, Module>>>>(qconfig_dict);
auto quant_type = static_cast<QuantType>(quant_type_int);
return InsertObservers(
module, method_name, dict, inplace, quant_type);
},
py::arg("module"),
py::arg("method_name"),
py::arg("qconfig_dict"),
py::arg("inplace"),
py::arg("quant_type_int") = 1)
.def(
"_jit_pass_insert_quant_dequant",
[](Module& module,
const std::string& method_name,
bool inplace,
bool debug,
int quant_type_int) {
auto quant_type = static_cast<QuantType>(quant_type_int);
return InsertQuantDeQuant(
module, method_name, inplace, debug, quant_type);
},
py::arg("module"),
py::arg("method_name"),
py::arg("inplace"),
py::arg("debug"),
py::arg("quant_type_int") = 1)
.def(
"_jit_pass_insert_prepack_unpack",
[](std::shared_ptr<Graph>& g) { return InsertPrepackUnpack(g); })
.def(
"_jit_pass_insert_prepack_unpack",
[](Module& module) { return InsertPrepackUnpack(module); })
.def(
"_jit_pass_quant_fusion",
[](std::shared_ptr<Graph>& g) { return QuantFusion(g); })
.def("_jit_pass_fold_convbn", &FoldConvBatchNorm)
.def(
"_freeze_module",
[](Module& module, std::vector<std::string>& preservedAttrs) {
return freeze_module(module, preservedAttrs);
},
py::arg("module"),
py::arg("preservedAttrs") = std::vector<std::string>())
.def("_jit_pass_fuse_linear", &FuseLinear)
.def(
"_jit_pass_fuse_add_relu",
[](std::shared_ptr<Graph>& graph) { FuseAddRelu(graph); })
.def("_jit_pass_dedup_module_uses", &DedupModuleUses)
.def("_jit_pass_replicate_dequantize", &ReplicateDeQuant)
.def(
"_jit_pass_swap_functional_linear",
[](std::shared_ptr<Graph>& graph) { SwapFunctionalLinear(graph); })
.def(
"_jit_pass_swap_functional_linear",
[](Module& module) { SwapFunctionalLinear(module); })
.def(
"_jit_pass_quant_finalize",
[](Module& module, int quant_type_int) {
auto quant_type = static_cast<QuantType>(quant_type_int);
return Finalize(module, quant_type);
},
py::arg("module"),
py::arg("quant_type_int") = 1)
.def(
"_jit_pass_pattern_based_rewrite",
[](const Module& m) { return PatternBasedRewrite(m); })
.def(
"_jit_pass_custom_pattern_based_rewrite",
[](const std::string& pattern,
const std::string& fused_node_name,
const Module& m) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnModule(m);
})
.def(
"_jit_pass_custom_pattern_based_rewrite_graph",
[](const std::string& pattern,
const std::string& fused_node_name,
std::shared_ptr<Graph> g) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnGraph(g);
})
.def(
"_jit_pass_remove_inplace_ops",
[](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); })
.def("_jit_pass_constant_pooling", ConstantPooling)
.def(
"_jit_pass_create_functional_graphs",
[](std::shared_ptr<Graph>& g) { return CreateFunctionalGraphs(g); })
.def(
"_jit_pass_remove_mutation",
[](std::shared_ptr<Graph>& g) {
RemoveListMutation(g);
return RemoveTensorMutation(g);
})
.def(
"_jit_pass_inline_functional_graphs",
[](std::shared_ptr<Graph>& g) { return InlineFunctionalGraphs(g); })
.def(
"_jit_pass_peephole",
[](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) {
return PeepholeOptimize(g, addmm_fusion_enabled);
},
py::arg("graph"),
py::arg("addmm_fusion_enabled") = false)
.def(
"_jit_pass_fuse_addmm",
[](std::shared_ptr<Graph>& g) { return FuseAddMM(g); })
.def(
"_jit_pass_canonicalize",
[](const std::shared_ptr<Graph>& g) { return Canonicalize(g); })
.def("_jit_pass_lint", LintGraph)
.def(
"_jit_pass_complete_shape_analysis",
[](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) {
ArgumentSpecCreator arg_spec_creator(*graph);
Stack stack;
stack.reserve(inputs.size()); // captures?
for (auto& obj : inputs) {
stack.push_back(toTypeInferredIValue(obj));
}
ArgumentSpec spec = arg_spec_creator.create(with_grad, stack);
arg_spec_creator.specializeTypes(*graph, spec);
// We only get partial specialization from the arg_spec_creator, but
// we want full shape specialization. The alternative would be to
// have a "complete type inference" function in ArguemntSpecCreator.
auto g_inputs = graph->inputs();
for (size_t i = 0; i < inputs.size(); ++i) {
if (stack[i].isTensor()) {
g_inputs[i]->setType(stack[i].type());
}
}
PropagateInputShapes(graph);
})
.def("_jit_pass_remove_expands", RemoveExpands)
.def("_jit_pass_erase_number_types", EraseNumberTypes)
.def("_jit_pass_inline_fork_wait", InlineForkWait)
.def("_jit_pass_inline", Inline)
.def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX)
.def(
"_jit_pass_lower_graph",
[](std::shared_ptr<Graph>& graph, const Module& self) {
return LowerGraph(*graph, self._ivalue());
})
.def("_jit_pass_loop_unrolling", UnrollLoops)
.def(
"_jit_pass_constant_propagation",
[](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); })
.def("_jit_pass_erase_shape_information", EraseShapeInformation)
.def(
"_jit_pass_create_autodiff_subgraphs",
[](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); })
#if defined(BUILDING_TESTS) && !defined(__HIP_PLATFORM_HCC__)
.def(
"_jit_run_cpp_tests",
[](bool runCuda) {
// We have to release the GIL inside this method, because if we
// happen to initialize the autograd engine in these tests, the
// newly spawned worker threads will try to initialize their
// PyThreadState*, and they need the GIL for this.
pybind11::gil_scoped_release _no_gil;
return runJITCPPTests(runCuda);
},
py::arg("run_cuda"))
.def("_jit_has_cpp_tests", []() { return true; })
.def(
"_run_tensorexpr_cpp_tests",
[](bool runCuda) {
// We have to release the GIL inside this method, because if we
// happen to initialize the autograd engine in these tests, the
// newly spawned worker threads will try to initialize their
// PyThreadState*, and they need the GIL for this.
pybind11::gil_scoped_release _no_gil;
return runTENSOREXPRCPPTests(runCuda);
},
py::arg("run_cuda"))
.def("_has_tensorexpr_cpp_tests", []() { return true; })
#else
.def("_jit_run_cpp_tests", []() { throw std::exception(); })
.def("_jit_has_cpp_tests", []() { return false; })
.def("_run_tensorexpr_cpp_tests", []() { throw std::exception(); })
.def("_has_tensorexpr_cpp_tests", []() { return false; })
#endif
.def(
"_jit_flatten",
[](py::handle& obj) {
auto res = python::flatten(obj);
return std::make_pair(res.vars, res.desc);
})
.def(
"_jit_unflatten",
[](autograd::variable_list vars, python::IODescriptor& desc) {
return py::reinterpret_steal<py::object>(
python::unflatten(vars, desc));
})
.def("_jit_pass_onnx_block", BlockToONNX)
.def("_jit_pass_fixup_onnx_loops", FixupONNXLoops)
.def("_jit_pass_fixup_onnx_conditionals", FixupONNXConditionals)
.def("_jit_pass_canonicalize_graph_fuser_ops", CanonicalizeOps)
.def("_jit_pass_decompose_ops", DecomposeOps)
.def("_jit_pass_specialize_autogradzero", specializeAutogradZero)
.def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU)
.def("_jit_override_can_fuse_on_gpu", &overrideCanFuseOnGPU)
.def("_jit_can_fuse_on_cpu", &canFuseOnCPU)
.def("_jit_can_fuse_on_gpu", &canFuseOnGPU)
.def(
"_jit_differentiate",
[](Graph& g) {
// the python binding slightly differs in semantics
// it makes a copy of the input Graph, and works on that
// jit::differentiate mutates the input Graph
auto g_clone = g.copy();
return differentiate(g_clone);
})
.def(
"_jit_check_alias_annotation",
[](std::shared_ptr<Graph> g,
py::tuple args,
const std::string& unqualified_op_name) {
auto stack = toTraceableStack(args);
checkAliasAnnotation(g, std::move(stack), unqualified_op_name);
})
.def("_jit_set_nvfuser_enabled", &RegisterCudaFuseGraph::registerPass)
.def("_jit_nvfuser_enabled", &RegisterCudaFuseGraph::isRegistered)
.def(
"_jit_set_profiling_mode",
[](bool profiling_flag) {
bool oldState = getProfilingMode();
getProfilingMode() = profiling_flag;
return oldState;
})
.def(
"_jit_set_profiling_executor",
[](bool profiling_flag) {
bool oldState = getExecutorMode();
getExecutorMode() = profiling_flag;
return oldState;
})
.def(
"_jit_set_num_profiled_runs",
[](size_t num) {
size_t old_num = getNumProfiledRuns();
getNumProfiledRuns() = num;
return old_num;
})
.def(
"_jit_set_bailout_depth",
[](size_t depth) {
size_t old_depth = getBailoutDepth();
getBailoutDepth() = depth;
return old_depth;
})
.def(
"_jit_set_inline_everything_mode",
[](bool enabled) { getInlineEverythingMode() = enabled; })
.def(
"_jit_get_inline_everything_mode",
[]() { return getInlineEverythingMode(); })
.def(
"_jit_try_infer_type",
[](py::object obj) -> TypePtr {
auto match = tryToInferType(obj);
if (match.success()) {
return match.type();
}
return nullptr;
})
.def(
"_jit_get_trigger_value",
[](const std::string& trigger_name) {
using namespace torch::jit::tensorexpr;
ExecutionTrigger* trigger =
ExecutionTriggerList::GetInstance().FindByName(trigger_name);
return trigger->value();
})
.def(
"_jit_get_te_cuda_pointwise_loop_levels",
[]() -> int {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseLoopLevels();
})
.def(
"_jit_set_te_cuda_pointwise_loop_levels",
[](int level) {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseLoopLevels() = level;
})
.def(
"_jit_get_te_cuda_pointwise_block_count",
[]() -> int {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseBlockCount();
})
.def(
"_jit_set_te_cuda_pointwise_block_count",
[](int block_count) {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseBlockCount() = block_count;
})
.def(
"_jit_get_te_cuda_pointwise_block_size",
[]() -> int {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseBlockSize();
})
.def(
"_jit_set_te_cuda_pointwise_block_size",
[](int block_size) {
using namespace torch::jit::tensorexpr;
return getTECudaPointwiseBlockSize() = block_size;
})
.def("_jit_set_texpr_fuser_enabled", &setTensorExprFuserEnabled)
.def("_jit_texpr_fuser_enabled", &tensorExprFuserEnabled)
.def("_jit_texpr_fallback_allowed", &tensorexpr::fallbackAllowed)
.def("_jit_texpr_set_fallback_allowed", &tensorexpr::setFallbackAllowed)
.def(
"_jit_pass_fuse_tensorexprs",
[](std::shared_ptr<Graph>& g) { return FuseTensorExprs(g); })
.def(
"_jit_fuser_get_fused_kernel_code",
[](Graph& g, std::vector<at::Tensor> inps) {
return debugGetFusedKernelCode(g, inps);
})
.def(
"_jit_pass_remove_dropout",
[](script::Module& module) { return removeDropout(module); })
.def(
"_jit_pass_insert_prepacked_ops",
[](std::shared_ptr<Graph>& graph) {
return insertPrePackedOps(graph);
})
.def(
"_jit_pass_insert_prepacked_ops",
[](script::Module& module) { return insertPrePackedOps(module); })
.def(
"_jit_pass_fuse_clamp_w_prepacked_linear_conv",
[](script::Module& module) {
return fusePrePackedLinearConvWithClamp(module);
})
.def(
"_jit_pass_fold_prepacking_ops",
[](script::Module& module) { return FoldPrePackingOps(module); })
.def(
"_jit_pass_optimize_for_mobile",
[](script::Module& module,
std::set<MobileOptimizerType>& optimization_blocklist,
std::vector<std::string>& preserved_methods) {
return optimizeForMobile(
module, optimization_blocklist, preserved_methods);
})
.def(
"_jit_pass_vulkan_insert_prepacked_ops",
[](std::shared_ptr<Graph>& graph) {
return vulkanInsertPrePackedOps(graph);
})
.def(
"_jit_pass_vulkan_insert_prepacked_ops",
[](script::Module& module) {
return vulkanInsertPrePackedOps(module);
})
.def(
"_jit_pass_vulkan_fuse_clamp_w_prepacked_conv",
[](script::Module& module) {
return vulkanFusePrePackedConvWithClamp(module);
})
.def(
"_jit_pass_vulkan_fold_prepacking_ops",
[](script::Module& module) {
return vulkanFoldPrePackingOps(module);
})
.def(
"_jit_pass_vulkan_optimize_for_mobile",
[](script::Module& module) {
return vulkanOptimizeForMobile(module);
})
.def(
"_jit_pass_onnx_unpack_quantized_weights",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict) {
UnpackQuantizedWeights(graph, paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move)
.def(
"_jit_pass_onnx_quantization_insert_permutes",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, IValue>& paramsDict) {
insertPermutes(graph, paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move)
.def(
"_jit_pass_filter_non_tensor_arguments",
[](std::map<std::string, IValue> params) {
std::map<std::string, at::Tensor> retval;
for (auto& kv : params) {
if (kv.second.isTensor()) {
retval[kv.first] = std::move(kv.second).toTensor();
}
}
return retval;
})
.def("_jit_decay_packed_param_input_types", [](Graph& g) {
for (Value* i : g.inputs()) {
if (i->type() ==
getCustomClass(
"__torch__.torch.classes.quantized.Conv2dPackedParamsBase") ||
i->type() ==
getCustomClass(
"__torch__.torch.classes.quantized.Conv3dPackedParamsBase") ||
i->type() ==
getCustomClass(
"__torch__.torch.classes.quantized.LinearPackedParamsBase")) {
// Dummy CompleteTensorType to appease ONNX validator.
i->setType(TensorType::create(
at::kQInt8,
c10::kCPU,
std::vector<int64_t>{1},
std::vector<int64_t>{1},
c10::nullopt));
}
}
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec")
.def("__repr__", [](CompleteArgumentSpec& self) {
std::ostringstream s;
s << self;
return s.str();
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ArgumentSpec>(m, "ArgumentSpec");
py::class_<Code>(m, "Code")
.def(
"grad_executor_states",
[](Code& c) {
std::vector<GraphExecutorState> states;
for (auto& e : c.grad_executors()) {
states.emplace_back(e->getDebugState());
}
return states;
})
.def("num_bailouts", [](Code& c) { return c.num_bailouts(); })
.def("request_bailout", [](Code& c, size_t index) {
c.request_bailout(index);
});
py::class_<ExecutionPlan>(m, "ExecutionPlan")
.def_property_readonly("graph", [](ExecutionPlan& s) { return s.graph; })
.def_property_readonly("code", [](ExecutionPlan& s) { return s.code; });
py::class_<Gradient>(m, "Gradient")
.def_property_readonly("f", [](Gradient& m) { return m.f; })
.def_property_readonly("df", [](Gradient& m) { return m.df; })
.def_property_readonly(
"f_real_outputs", [](Gradient& m) { return m.f_real_outputs; })
.def_property_readonly(
"df_input_vjps", [](Gradient& m) { return m.df_input_vjps; })
.def_property_readonly(
"df_input_captured_inputs",
[](Gradient& m) { return m.df_input_captured_inputs; })
.def_property_readonly(
"df_input_captured_outputs",
[](Gradient& m) { return m.df_input_captured_outputs; })
.def_property_readonly(
"df_output_vjps", [](Gradient& m) { return m.df_output_vjps; });
py::class_<GraphExecutorState>(m, "GraphExecutorState")
.def_property_readonly(
"graph", [](GraphExecutorState& s) { return s.graph; })
.def_property_readonly(
"execution_plans",
[](GraphExecutorState& s) { return s.execution_plans; })
.def_property_readonly(
"fallback", [](GraphExecutorState& s) { return s.fallback; });
py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter")
.def(py::init<std::string>())
.def(py::init([](const py::object& buffer) {
auto writer_func = [=](const void* data, size_t size) {
auto bytes = py::bytes(reinterpret_cast<const char*>(data), size);
buffer.attr("write")(std::move(bytes));
return size;
};
return std::make_unique<PyTorchStreamWriter>(std::move(writer_func));
}))
.def(py::init<const std::function<size_t(const void*, size_t)>&>())
.def(
"write_record",
[](PyTorchStreamWriter& self,
const std::string& name,
const char* data,
size_t size) { return self.writeRecord(name, data, size); })
.def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile)
.def(
"write_record",
[](PyTorchStreamWriter& self,
const std::string& name,
uintptr_t data,
size_t size) {
return self.writeRecord(
name, reinterpret_cast<const char*>(data), size);
});
py::enum_<MobileOptimizerType>(m, "MobileOptimizerType")
.value("CONV_BN_FUSION", MobileOptimizerType::CONV_BN_FUSION)
.value(
"INSERT_FOLD_PREPACK_OPS",
MobileOptimizerType::INSERT_FOLD_PREPACK_OPS)
.value("REMOVE_DROPOUT", MobileOptimizerType::REMOVE_DROPOUT)
.value("FUSE_ADD_RELU", MobileOptimizerType::FUSE_ADD_RELU)
.export_values();
// This allows PyTorchStreamReader to read from a Python buffer. It requires
// that the buffer implement `seek()`, `tell()`, and `read()`.
class BufferAdapter : public caffe2::serialize::ReadAdapterInterface {
public:
BufferAdapter(const py::object& buffer) : buffer_(buffer) {
// Jump to the end of the buffer to get its size
auto current = buffer.attr("tell")();
start_offset_ = py::cast<size_t>(current);
buffer.attr("seek")(current, py::module::import("os").attr("SEEK_END"));
size_ = py::cast<size_t>(buffer.attr("tell")()) - start_offset_;
buffer.attr("seek")(current);
// If we can read directly into a buffer, do that instead of an extra copy
use_readinto_ = py::hasattr(buffer, "readinto");
}
size_t size() const override {
return size_;
}
THPObjectPtr getMemview(void* buf, size_t n) const {
THPObjectPtr memview(PyMemoryView_FromMemory(
reinterpret_cast<char*>(buf), n, PyBUF_WRITE));
if (!memview) {
throw python_error();
}
return memview;
}
size_t read(uint64_t pos, void* buf, size_t n, const char* what)
const override {
// Seek to desired position (NB: this has to be a Py_ssize_t or Python
// throws a weird error)
Py_ssize_t absolute_pos = start_offset_ + pos;
buffer_.attr("seek")(absolute_pos);
if (use_readinto_) {
auto memview = getMemview(buf, n);
auto res =
PyObject_CallMethod(buffer_.ptr(), "readinto", "O", memview.get());
if (res) {
int64_t i = static_cast<int64_t>(PyLong_AsLongLong(res));
if (i > 0) {
return i;
}
}
}
// Read bytes into `buf` from the buffer
std::string bytes = py::cast<std::string>(buffer_.attr("read")(n));
std::copy(
bytes.data(),
bytes.data() + bytes.size(),
reinterpret_cast<char*>(buf));
return bytes.size();
}
py::object buffer_;
size_t size_;
size_t start_offset_;
bool use_readinto_;
};
py::class_<PyTorchStreamReader>(m, "PyTorchFileReader")
.def(py::init<std::string>())
.def(py::init([](const py::object& buffer) {
auto adapter = std::make_unique<BufferAdapter>(std::move(buffer));
return std::make_unique<PyTorchStreamReader>(std::move(adapter));
}))
.def(
"get_record",
[](PyTorchStreamReader& self, const std::string& key) {
at::DataPtr data;
size_t size;
std::tie(data, size) = self.getRecord(key);
return py::bytes(reinterpret_cast<const char*>(data.get()), size);
})
.def(
"get_storage_from_record",
[](PyTorchStreamReader& self,
const std::string& key,
size_t numel,
py::object data_type_obj) {
at::DataPtr data(std::get<0>(self.getRecord(key)));
auto scalar_type =
reinterpret_cast<THPDtype*>(data_type_obj.ptr())->scalar_type;
c10::Storage storage(
c10::Storage::use_byte_size_t(),
numel * elementSize(scalar_type),
std::move(data),
/*allocator=*/nullptr,
/*resizable=*/false);
auto ptr =
c10::make_intrusive<at::TensorImpl, at::UndefinedTensorImpl>(
std::move(storage),
at::DispatchKeySet(),
at::CPU(scalar_type).typeMeta());
return at::Tensor(std::move(ptr));
})
.def("get_all_records", [](PyTorchStreamReader& self) {
return self.getAllRecords();
});
m.def(
"_jit_get_operation",
[](const std::string& op_name) {
try {
auto symbol = Symbol::fromQualString(op_name);
auto operations = getAllOperatorsFor(symbol);
TORCH_CHECK(!operations.empty(), "No such operator ", op_name);
std::ostringstream docstring;
docstring << "Automatically bound operator '" << op_name
<< "' with schema(s):\n";
for (const auto& op : operations) {
docstring << " " << op->schema() << "\n";
}
return py::cpp_function(
[operations](py::args args, py::kwargs kwargs) {
return invokeOperatorFromPython(
operations, std::move(args), std::move(kwargs));
},
py::name(symbol.toUnqualString()),
py::doc(docstring.str().c_str()));
} catch (const c10::Error& error) {
throw std::runtime_error(error.what_without_backtrace());
}
},
py::arg("qualified_name"));
m.def("parse_ir", [](const std::string& input) {
auto graph = std::make_shared<Graph>();
parseIR(input, &*graph);
return graph;
});
m.def("parse_schema", parseSchema);
m.def("unify_type_list", [](const std::vector<TypePtr>& types) {
std::ostringstream s;
auto type = unifyTypeList(types, s);
if (!type) {
throw std::runtime_error(s.str());
}
return type.value();
});
py::class_<FunctionSchema>(m, "FunctionSchema")
.def_property_readonly(
"name", [](FunctionSchema& self) { return self.name(); })
.def_property_readonly(
"overload_name",
[](FunctionSchema& self) { return self.overload_name(); })
.def_property_readonly(
"arguments", [](FunctionSchema& self) { return self.arguments(); })
.def_property_readonly(
"returns", [](FunctionSchema& self) { return self.returns(); })
.def(
"is_backward_compatible_with",
[](const FunctionSchema& self, const FunctionSchema& old_schema) {
return self.isBackwardCompatibleWith(old_schema);
})
.def(
"__eq__",
[](const FunctionSchema& self, const FunctionSchema& other) {
return self == other;
})
.def("__str__", [](FunctionSchema& self) {
std::stringstream ss;
ss << self;
return ss.str();
});
py::class_<Argument>(m, "Argument")
.def_property_readonly("name", [](Argument& self) { return self.name(); })
.def_property_readonly("type", [](Argument& self) { return self.type(); })
.def_property_readonly(
"N",
[](Argument& self) -> py::object {
return (self.N()) ? py::cast(*self.N()) : py::none();
})
.def_property_readonly(
"default_value",
[](Argument& self) -> py::object {
if (!self.default_value()) {
return py::none();
}
IValue v = *self.default_value();
return toPyObject(std::move(v));
})
.def("has_default_value", [](Argument& self) -> py::bool_ {
return self.default_value().has_value();
});
m.def("_jit_get_all_schemas", []() {
const std::vector<std::shared_ptr<Operator>>& operations =
getAllOperators();
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
m.def("_jit_get_custom_class_schemas", customClassSchemasForBCCheck);
m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) {
auto symbol = Symbol::fromQualString(qualified_name);
auto operations = getAllOperatorsFor(symbol);
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
m.def("_is_tracing", []() { return jit::tracer::isTracing(); });
py::class_<PythonFutureWrapper, std::shared_ptr<PythonFutureWrapper>>(
m, "Future")
.def(py::init([]() {
return std::make_shared<PythonFutureWrapper>(
c10::make_intrusive<c10::ivalue::Future>(PyObjectType::get()));
}))
.def(
"wait",
&PythonFutureWrapper::wait,
py::call_guard<py::gil_scoped_release>())
.def(
"then",
&PythonFutureWrapper::then,
py::call_guard<py::gil_scoped_release>())
.def(
"set_result",
// Intentionally not releasing GIL
&PythonFutureWrapper::markCompleted)
.def(
py::pickle(
/* __getstate__ */
[](const PythonFutureWrapper& /* unused */) {
TORCH_CHECK(false, "Can not pickle torch.futures.Future");
// Note that this return has no meaning since we always
// throw, it's only here to satisfy Pybind API's
// requirement.
return py::make_tuple();
},
/* __setstate__ */
[](const py::tuple& /* unused */) { // NOLINT
TORCH_CHECK(false, "Can not unpickle torch.futures.Future");
// Note that this return has no meaning since we always
// throw, it's only here to satisfy PyBind's API
// requirement.
return nullptr;
}),
py::call_guard<py::gil_scoped_release>());
m.def("fork", [](const py::args& args, const py::kwargs& kwargs) {
AT_ASSERT(args.size() >= 1);
py::function f = py::cast<py::function>(args[0]);
py::tuple args_tup(args.size() - 1);
for (size_t i = 1; i < args.size(); ++i) {
args_tup[i - 1] = args[i];
}
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
auto fork_node = graph->insertNode(graph->create(prim::TracedFork, 1));
auto body_block = fork_node->addBlock();
Value* node_output;
py::object py_func_output;
// Insert new trace ops into the fork op's sub-block
WithInsertPoint guard(body_block);
IValue output_ivalue;
{
tracer::WithNestedTracingFrame env_guard;
// Run the user-supplied function
py_func_output = f(*args_tup, **kwargs);
// Convert the output of the user-supplied function to IValue. The type
// information of this IValue is used both to record the correct type in
// the trace.
output_ivalue = toTypeInferredIValue(py_func_output);
Value* out_val = jit::tracer::getValueTrace(output_ivalue);
body_block->registerOutput(out_val);
node_output =
fork_node->output()->setType(FutureType::create(out_val->type()));
}
auto retval =
c10::make_intrusive<c10::ivalue::Future>(output_ivalue.type());
// Record the ivalue in the tracer
jit::tracer::setValueTrace(retval, node_output);
// stuff the ivalue output in the Future
retval->markCompleted(output_ivalue);
return std::make_shared<PythonFutureWrapper>(retval);
} else {
auto result = toTypeInferredIValue(f(*args_tup, **kwargs));
auto retval = c10::make_intrusive<c10::ivalue::Future>(result.type());
retval->markCompleted(std::move(result));
return std::make_shared<PythonFutureWrapper>(retval);
}
});
m.def("wait", [](const std::shared_ptr<PythonFutureWrapper>& fut) {
return fut->wait();
});
m.def(
"_collect_all",
[](const std::vector<std::shared_ptr<jit::PythonFutureWrapper>>& futures)
-> std::shared_ptr<jit::PythonFutureWrapper> {
auto typePtr =
futures.empty() ? AnyType::get() : futures[0]->fut->elementType();
c10::List<c10::intrusive_ptr<c10::ivalue::Future>> asList(
c10::FutureType::create(typePtr));
asList.reserve(futures.size());
for (const auto& f : futures) {
asList.push_back(f->fut);
}
return std::make_shared<jit::PythonFutureWrapper>(
c10::collectAll(asList),
/* unwrap_func */ [futures](const py::object& /*unused*/) {
// Throw errors when calling wait() on the returned Future if
// any of the original futures would throw.
// NB: PythonFutureWrapper takes an unwrap_func which serves as a
// callback to evalute the value in the Future. RPC uses this
// unwrap_func to check whether the returned py::object is a
// RemoteException object, and re-throw the exception if it is.
// By extracting the c10::ivalue::Future from PythonFutureWrapper
// the unwrap_func on the original PythonFutureWrapper objects are
// discarded, and hence it will return the RemoteException as an
// object instead of re-throwing it.
for (auto& fut : futures) {
fut->wait();
}
});
});
m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) {
toIValue(obj, type);
});
initPythonCustomClassBindings(module);
initPythonIRBindings(module);
tracer::initPythonTracerBindings(module);
initTreeViewBindings(module);
initJitScriptBindings(module);
initJitBackendBindings(module);
setPrintHandler([](const std::string& str) {
py::gil_scoped_acquire acquire;
try {
auto _stdout = py::module::import("sys").attr("stdout");
_stdout.attr("write")(str);
} catch (py::error_already_set& e) {
throw std::runtime_error(e.what());
}
});
}
} // namespace jit
} // namespace torch