mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 21:49:24 +08:00
This PR introduces a way to compile a region of FX graph using `fx.traceback.annotate`. ### UX 1) In the user code, mark the region that you want to be compiled with inductor using `with fx_traceback.annotate({"compile_with_inductor": 0})`. As of now, we just rely on the string `compile_with_inductor` and ignore the integer. As the needs arise, we can update the logic. Example ``` def fn(x, y): sin = torch.sin(x) with fx_traceback.annotate({"compile_with_inductor": 0}): mul = sin * y add = mul + 1 return torch.sin(add) ``` 2) You have to instruct the compiler to use the annotations with `compile_fx_annotated_nodes_with_inductor` transformation. This is somewhat controversial, and a user might expect that just setting annotation is enough. But for now to control the blast radius, we need to explicitly do this. One such example is ``` # Set the fw and bw compiler of aot_autograd to `compile_fx_annotated_nodes_with_inductor` def aot_eager_regional_inductor(): return aot_autograd( fw_compiler=compile_fx_annotated_nodes_with_inductor, bw_compiler=compile_fx_annotated_nodes_with_inductor, ) ``` 3) Fixable in short-term - You have to wrap the user code in `torch.fx.traceback.preserve_node_meta` to ensure that annotations are propagated to the compiler. This is fixable, just need to make CI happy. ### Implementation 1) Relies on `CapabilityBasedPartitioner` to "scoop" out regions based on annotations, and then create subgraphs in the main graph. 2) Call `torch._inductor.standalone_compile` on these subgraphs, and jam the returned callable into the FX graph at the place of call_module Resulting graph looks something like this - search for `torch__inductor_standalone_compile_inner` Forward graph ``` class GraphModule(torch.nn.Module): def forward(self, primals_1: "f32[10]", primals_2: "f32[10]"): # File: /data/users/anijain/pytorch2/test/dynamo/test_regional_inductor.py:64 in fn, code: sin = torch.sin(x) sin: "f32[10]" = torch.ops.aten.sin.default(primals_1) # No stacktrace found for following nodes inner = torch__inductor_standalone_compile_inner(sin, primals_2) # File: /data/users/anijain/pytorch2/test/dynamo/test_regional_inductor.py:68 in fn, code: add = mul + 1 getitem: "f32[10]" = inner[0]; inner = None # File: /data/users/anijain/pytorch2/test/dynamo/test_regional_inductor.py:70 in fn, code: return torch.sin(add) sin_1: "f32[10]" = torch.ops.aten.sin.default(getitem) return (sin_1, primals_1, primals_2, sin, getitem) ``` Backward graph ``` class GraphModule(torch.nn.Module): def forward(self, primals_1: "f32[10]", primals_2: "f32[10]", sin: "f32[10]", add: "f32[10]", tangents_1: "f32[10]"): # File: /data/users/anijain/pytorch2/test/dynamo/test_regional_inductor.py:64 in fn, code: sin = torch.sin(x) cos_1: "f32[10]" = torch.ops.aten.cos.default(primals_1); primals_1 = None # File: /data/users/anijain/pytorch2/test/dynamo/test_regional_inductor.py:70 in fn, code: return torch.sin(add) cos: "f32[10]" = torch.ops.aten.cos.default(add); add = None mul_1: "f32[10]" = torch.ops.aten.mul.Tensor(tangents_1, cos); tangents_1 = cos = None # No stacktrace found for following nodes inner = torch__inductor_standalone_compile_inner(mul_1, sin, primals_2); mul_1 = sin = primals_2 = None # File: /data/users/anijain/pytorch2/test/dynamo/test_regional_inductor.py:67 in fn, code: mul = sin * y getitem: "f32[10]" = inner[0] getitem_1: "f32[10]" = inner[1]; inner = None # File: /data/users/anijain/pytorch2/test/dynamo/test_regional_inductor.py:64 in fn, code: sin = torch.sin(x) mul_4: "f32[10]" = torch.ops.aten.mul.Tensor(getitem_1, cos_1); getitem_1 = cos_1 = None return (mul_4, getitem) ``` ### Some issue raised in the HOP meeting 1) CSE will not differentiate different meta custom nodes and do wrong thing. 2) SAC - The recomputed forward will be smaller than the forward. Will we compile a smaller region than? 3) What happens if you have a op in the middle which does not disturb the topology, is it still 1 subgraph? 4) What happens with the nesting of `fx_traceback.annotate`? Are there any ordering requirements? 5) What are we going to use the annotations for? a) compile flex b) streams c) nn.Module info to organize MoE components for pipelining d) PP stages e) Rename graph nodes for more debugging f) No nested regional compile Pull Request resolved: https://github.com/pytorch/pytorch/pull/164776 Approved by: https://github.com/SherlockNoMad ghstack dependencies: #165188
3551 lines
96 KiB
Python
3551 lines
96 KiB
Python
#
|
|
# PyTorch documentation build configuration file, created by
|
|
# sphinx-quickstart on Fri Dec 23 13:31:47 2016.
|
|
#
|
|
# This file is execfile()d with the current directory set to its
|
|
# containing dir.
|
|
#
|
|
# Note that not all possible configuration values are present in this
|
|
# autogenerated file.
|
|
#
|
|
# All configuration values have a default; values that are commented out
|
|
# serve to show the default.
|
|
|
|
import inspect
|
|
import os
|
|
|
|
# import sys
|
|
import pkgutil
|
|
import re
|
|
from os import path
|
|
|
|
# source code directory, relative to this file, for sphinx-autobuild
|
|
# sys.path.insert(0, os.path.abspath('../..'))
|
|
import torch
|
|
|
|
|
|
# If extensions (or modules to document with autodoc) are in another directory,
|
|
# add these directories to sys.path here. If the directory is relative to the
|
|
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
|
|
|
|
|
try:
|
|
import torchvision # noqa: F401
|
|
except ImportError:
|
|
import warnings
|
|
|
|
warnings.warn('unable to load "torchvision" package')
|
|
|
|
RELEASE = os.environ.get("RELEASE", False)
|
|
|
|
import pytorch_sphinx_theme2
|
|
|
|
|
|
html_theme = "pytorch_sphinx_theme2"
|
|
html_theme_path = [pytorch_sphinx_theme2.get_html_theme_path()]
|
|
|
|
|
|
# -- General configuration ------------------------------------------------
|
|
|
|
# Add any Sphinx extension module names here, as strings. They can be
|
|
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
|
# ones.
|
|
extensions = [
|
|
"sphinx.ext.autodoc",
|
|
"sphinx.ext.autosummary",
|
|
"sphinx.ext.doctest",
|
|
"sphinx.ext.intersphinx",
|
|
"sphinx.ext.todo",
|
|
"sphinx.ext.coverage",
|
|
"sphinx.ext.napoleon",
|
|
"sphinx.ext.autosectionlabel",
|
|
"sphinxcontrib.katex",
|
|
"sphinx_copybutton",
|
|
"sphinx_design",
|
|
"myst_nb",
|
|
"sphinx.ext.linkcode",
|
|
"sphinxcontrib.mermaid",
|
|
"sphinx_sitemap",
|
|
]
|
|
|
|
myst_enable_extensions = [
|
|
"colon_fence",
|
|
"deflist",
|
|
"html_image",
|
|
]
|
|
|
|
html_baseurl = "https://docs.pytorch.org/docs/stable/" # needed for sphinx-sitemap
|
|
sitemap_locales = [None]
|
|
sitemap_excludes = [
|
|
"search.html",
|
|
"genindex.html",
|
|
]
|
|
sitemap_url_scheme = "{link}"
|
|
|
|
html_additional_pages = {
|
|
"404": "404.html",
|
|
}
|
|
|
|
# build the templated autosummary files
|
|
autosummary_generate = True
|
|
numpydoc_show_class_members = False
|
|
|
|
# autosectionlabel throws warnings if section names are duplicated.
|
|
# The following tells autosectionlabel to not throw a warning for
|
|
# duplicated section names that are in different documents.
|
|
autosectionlabel_prefix_document = True
|
|
|
|
# katex options
|
|
#
|
|
#
|
|
|
|
katex_prerender = True
|
|
|
|
# General information about the project.
|
|
project = "PyTorch"
|
|
copyright = "PyTorch Contributors"
|
|
author = "PyTorch Contributors"
|
|
torch_version = str(torch.__version__)
|
|
|
|
# The version info for the project you're documenting, acts as replacement for
|
|
# |version| and |release|, also used in various other places throughout the
|
|
# built documents.
|
|
#
|
|
# The short X.Y version.
|
|
# TODO: change to [:2] at v1.0
|
|
version = "main (" + torch_version + " )"
|
|
# The full version, including alpha/beta/rc tags.
|
|
release = "main"
|
|
|
|
# Customized html_title here.
|
|
# Default is " ".join(project, release, "documentation") if not set
|
|
if RELEASE:
|
|
# Turn 1.11.0aHASH into 1.11
|
|
# Note: the release candidates should no longer have the aHASH suffix, but in any
|
|
# case we wish to leave only major.minor, even for rc builds.
|
|
version = ".".join(torch_version.split(".")[:2])
|
|
html_title = " ".join((project, version, "documentation"))
|
|
release = version
|
|
|
|
switcher_version = "main" if not RELEASE else version
|
|
|
|
html_static_path = ["_static"]
|
|
html_theme_options = {
|
|
"logo": {"text": "Home"},
|
|
"analytics_id": "GTM-T8XT4PS",
|
|
"canonical_url": "https://docs.pytorch.org/docs/stable/",
|
|
"switcher": {
|
|
"json_url": "https://docs.pytorch.org/docs/pytorch-versions.json",
|
|
"version_match": switcher_version,
|
|
},
|
|
"show_toc_level": 2,
|
|
"navigation_with_keys": False,
|
|
"external_links": [
|
|
{
|
|
"name": "Tutorials",
|
|
"url": "https://docs.pytorch.org/tutorials/",
|
|
},
|
|
],
|
|
"show_version_warning_banner": True,
|
|
"icon_links": [
|
|
{
|
|
"name": "X",
|
|
"url": "https://x.com/PyTorch",
|
|
"icon": "fa-brands fa-x-twitter",
|
|
},
|
|
{
|
|
"name": "GitHub",
|
|
"url": "https://github.com/pytorch/pytorch",
|
|
"icon": "fa-brands fa-github",
|
|
},
|
|
{
|
|
"name": "PyTorch Forum",
|
|
"url": "https://discuss.pytorch.org/",
|
|
"icon": "fa-brands fa-discourse",
|
|
},
|
|
{
|
|
"name": "PyPi",
|
|
"url": "https://pypi.org/project/torch/",
|
|
"icon": "fa-brands fa-python",
|
|
},
|
|
],
|
|
"navbar_align": "left",
|
|
"navbar_start": ["version-switcher", "navbar-logo"],
|
|
"navbar_center": ["navbar-nav"],
|
|
"navbar_end": ["search-field-custom", "theme-switcher", "navbar-icon-links"],
|
|
"header_links_before_dropdown": 6,
|
|
"navbar_persistent": [],
|
|
"use_edit_page_button": True,
|
|
"pytorch_project": "docs",
|
|
}
|
|
|
|
theme_variables = pytorch_sphinx_theme2.get_theme_variables()
|
|
html_context = {
|
|
"github_url": "https://github.com",
|
|
"github_user": "pytorch",
|
|
"github_repo": "pytorch",
|
|
"feedback_url": "https://github.com/pytorch/pytorch",
|
|
"github_version": "main",
|
|
"pytorch_project": "docs",
|
|
"doc_path": "docs/source",
|
|
"theme_variables": theme_variables,
|
|
# library links are defined in
|
|
# pytorch_sphinx_theme2/pytorch_sphinx_theme2/links.json
|
|
"library_links": theme_variables.get("library_links", []),
|
|
"version": version,
|
|
"date_info": {
|
|
"paths_to_skip": ["generated/", "index"],
|
|
},
|
|
}
|
|
|
|
napoleon_use_ivar = True
|
|
|
|
# Add any paths that contain templates here, relative to this directory.
|
|
templates_path = [
|
|
"_templates",
|
|
os.path.join(os.path.dirname(pytorch_sphinx_theme2.__file__), "templates"),
|
|
]
|
|
# TODO: document these and remove them from here.
|
|
|
|
coverage_ignore_functions = [
|
|
# torch
|
|
"typename",
|
|
# torch.cuda._sanitizer
|
|
"zip_arguments",
|
|
"zip_by_key",
|
|
# torch.distributed.autograd
|
|
"is_available",
|
|
# torch.distributed.checkpoint.state_dict
|
|
"gc_context",
|
|
# torch.distributed.elastic.events
|
|
"record_rdzv_event",
|
|
# torch.distributed.elastic.metrics
|
|
"initialize_metrics",
|
|
# torch.distributed.elastic.rendezvous.registry
|
|
"get_rendezvous_handler",
|
|
# torch.distributed.launch
|
|
"launch",
|
|
"main",
|
|
"parse_args",
|
|
# torch.distributed.rpc
|
|
"is_available",
|
|
# torch.distributed.run
|
|
"config_from_args",
|
|
"determine_local_world_size",
|
|
"get_args_parser",
|
|
"get_rdzv_endpoint",
|
|
"get_use_env",
|
|
"main",
|
|
"parse_args",
|
|
"parse_min_max_nnodes",
|
|
"run",
|
|
"run_script_path",
|
|
# torch.distributions.constraints
|
|
"is_dependent",
|
|
# torch.hub
|
|
"import_module",
|
|
# torch.jit
|
|
"export_opnames",
|
|
# torch.jit.unsupported_tensor_ops
|
|
"execWrapper",
|
|
# torch.onnx
|
|
"unregister_custom_op_symbolic",
|
|
# torch.ao.quantization
|
|
"default_eval_fn",
|
|
# torch.backends
|
|
"disable_global_flags",
|
|
"flags_frozen",
|
|
# torch.distributed.algorithms.ddp_comm_hooks
|
|
"register_ddp_comm_hook",
|
|
# torch.nn.parallel
|
|
"DistributedDataParallelCPU",
|
|
# torch.utils
|
|
"set_module",
|
|
"burn_in_info",
|
|
"get_info_and_burn_skeleton",
|
|
"get_inline_skeleton",
|
|
"get_model_info",
|
|
"get_storage_info",
|
|
"hierarchical_pickle",
|
|
# torch.amp.autocast_mode
|
|
"autocast_decorator",
|
|
# torch.ao.nn.quantized.dynamic.modules.rnn
|
|
"apply_permutation",
|
|
"pack_weight_bias",
|
|
# torch.ao.nn.quantized.reference.modules.rnn
|
|
"get_quantized_weight",
|
|
# torch.ao.ns.fx.graph_matcher
|
|
"get_matching_subgraph_pairs",
|
|
# torch.ao.ns.fx.graph_passes
|
|
"add_loggers_to_model",
|
|
"create_a_shadows_b",
|
|
# torch.ao.ns.fx.mappings
|
|
"add_op_to_sets_of_related_ops",
|
|
"get_base_name_for_op",
|
|
"get_base_name_to_sets_of_related_ops",
|
|
"get_node_type_to_io_type_map",
|
|
"get_unmatchable_types_map",
|
|
# torch.ao.ns.fx.n_shadows_utils
|
|
"create_add_loggers_graph",
|
|
"create_n_transformed_and_logged_copies_of_subgraph",
|
|
"create_one_transformed_and_logged_copy_of_subgraph",
|
|
"create_results_comparison",
|
|
"create_submodule_from_subgraph",
|
|
"extract_weight_comparison",
|
|
"group_results_by_subgraph",
|
|
"print_n_shadows_summary",
|
|
# torch.ao.ns.fx.pattern_utils
|
|
"end_node_matches_reversed_fusion",
|
|
"get_reversed_fusions",
|
|
"get_type_a_related_to_b",
|
|
# torch.ao.ns.fx.utils
|
|
"get_arg_indices_of_inputs_to_log",
|
|
"get_node_first_input_and_output_type",
|
|
"get_node_input_qparams",
|
|
"get_normalized_nth_input",
|
|
"get_number_of_non_param_args",
|
|
"get_target_type_str",
|
|
"maybe_add_missing_fqns",
|
|
"maybe_dequantize_first_two_tensor_args_and_handle_tuples",
|
|
"op_type_supports_shadowing",
|
|
"rekey_logger_info_on_node_name_of_model",
|
|
"return_first_non_observer_node",
|
|
# torch.ao.ns.fx.weight_utils
|
|
"extract_weight_from_node",
|
|
"get_conv_fun_weight",
|
|
"get_conv_mod_weight",
|
|
"get_linear_fun_weight",
|
|
"get_linear_mod_weight",
|
|
"get_lstm_mod_weights",
|
|
"get_lstm_weight",
|
|
"get_op_to_type_to_weight_extraction_fn",
|
|
"get_qconv_fun_weight",
|
|
"get_qlinear_fun_weight",
|
|
"get_qlstm_weight",
|
|
"mod_0_weight_detach",
|
|
"mod_weight_bias_0",
|
|
"mod_weight_detach",
|
|
# torch.ao.pruning.sparsifier.utils
|
|
"fqn_to_module",
|
|
"get_arg_info_from_tensor_fqn",
|
|
"module_contains_param",
|
|
"module_to_fqn",
|
|
"swap_module",
|
|
# torch.ao.quantization.backend_config.executorch
|
|
"get_executorch_backend_config",
|
|
# torch.ao.quantization.backend_config.fbgemm
|
|
"get_fbgemm_backend_config",
|
|
# torch.ao.quantization.backend_config.native
|
|
"get_native_backend_config",
|
|
"get_native_backend_config_dict",
|
|
"get_test_only_legacy_native_backend_config",
|
|
"get_test_only_legacy_native_backend_config_dict",
|
|
# torch.ao.quantization.backend_config.onednn
|
|
"get_onednn_backend_config",
|
|
# torch.ao.quantization.backend_config.qnnpack
|
|
"get_qnnpack_backend_config",
|
|
# torch.ao.quantization.backend_config.tensorrt
|
|
"get_tensorrt_backend_config",
|
|
"get_tensorrt_backend_config_dict",
|
|
# torch.ao.quantization.backend_config.utils
|
|
"entry_to_pretty_str",
|
|
"get_fused_module_classes",
|
|
"get_fuser_method_mapping",
|
|
"get_fusion_pattern_to_extra_inputs_getter",
|
|
"get_fusion_pattern_to_root_node_getter",
|
|
"get_module_to_qat_module",
|
|
"get_pattern_to_dtype_configs",
|
|
"get_pattern_to_input_type_to_index",
|
|
"get_qat_module_classes",
|
|
"get_root_module_to_quantized_reference_module",
|
|
"pattern_to_human_readable",
|
|
"remove_boolean_dispatch_from_name",
|
|
# torch.ao.quantization.backend_config.x86
|
|
"get_x86_backend_config",
|
|
# torch.ao.quantization.fuse_modules
|
|
"fuse_known_modules",
|
|
"fuse_modules_qat",
|
|
# torch.ao.quantization.fuser_method_mappings
|
|
"fuse_conv_bn",
|
|
"fuse_conv_bn_relu",
|
|
"fuse_convtranspose_bn",
|
|
"fuse_linear_bn",
|
|
"get_fuser_method",
|
|
"get_fuser_method_new",
|
|
# torch.ao.quantization.fx.convert
|
|
"convert",
|
|
"convert_custom_module",
|
|
"convert_standalone_module",
|
|
"convert_weighted_module",
|
|
# torch.ao.quantization.fx.fuse
|
|
"fuse",
|
|
# torch.ao.quantization.fx.lower_to_fbgemm
|
|
"lower_to_fbgemm",
|
|
# torch.ao.quantization.fx.lower_to_qnnpack
|
|
"lower_to_qnnpack",
|
|
# torch.ao.quantization.fx.pattern_utils
|
|
"get_default_fusion_patterns",
|
|
"get_default_output_activation_post_process_map",
|
|
"get_default_quant_patterns",
|
|
# torch.ao.quantization.fx.prepare
|
|
"insert_observers_for_model",
|
|
"prepare",
|
|
"propagate_dtypes_for_known_nodes",
|
|
# torch.ao.quantization.fx.utils
|
|
"all_node_args_except_first",
|
|
"all_node_args_have_no_tensors",
|
|
"assert_and_get_unique_device",
|
|
"collect_producer_nodes",
|
|
"create_getattr_from_value",
|
|
"create_node_from_old_node_preserve_meta",
|
|
"get_custom_module_class_keys",
|
|
"get_linear_prepack_op_for_dtype",
|
|
"get_new_attr_name_with_prefix",
|
|
"get_non_observable_arg_indexes_and_types",
|
|
"get_qconv_prepack_op",
|
|
"get_skipped_module_name_and_classes",
|
|
"graph_module_from_producer_nodes",
|
|
"maybe_get_next_module",
|
|
"node_arg_is_bias",
|
|
"node_arg_is_weight",
|
|
"return_arg_list",
|
|
# torch.ao.quantization.pt2e.graph_utils
|
|
"bfs_trace_with_node_process",
|
|
"find_sequential_partitions",
|
|
"get_equivalent_types",
|
|
"update_equivalent_types_dict",
|
|
# torch.ao.quantization.pt2e.prepare
|
|
"prepare",
|
|
# torch.ao.quantization.pt2e.representation.rewrite
|
|
"reference_representation_rewrite",
|
|
# torch.ao.quantization.pt2e.utils
|
|
"fold_bn_weights_into_conv_node",
|
|
"remove_tensor_overload_for_qdq_ops",
|
|
# torch.ao.quantization.qconfig
|
|
"get_default_qat_qconfig",
|
|
"get_default_qat_qconfig_dict",
|
|
"get_default_qconfig",
|
|
"get_default_qconfig_dict",
|
|
"qconfig_equals",
|
|
# torch.ao.quantization.quantization_mappings
|
|
"get_default_dynamic_quant_module_mappings",
|
|
"get_default_dynamic_sparse_quant_module_mappings",
|
|
"get_default_float_to_quantized_operator_mappings",
|
|
"get_default_qat_module_mappings",
|
|
"get_default_qconfig_propagation_list",
|
|
"get_default_static_quant_module_mappings",
|
|
"get_default_static_quant_reference_module_mappings",
|
|
"get_default_static_sparse_quant_module_mappings",
|
|
"get_dynamic_quant_module_class",
|
|
"get_embedding_qat_module_mappings",
|
|
"get_embedding_static_quant_module_mappings",
|
|
"get_quantized_operator",
|
|
"get_static_quant_module_class",
|
|
"no_observer_set",
|
|
# torch.ao.quantization.quantize
|
|
"get_default_custom_config_dict",
|
|
# torch.ao.quantization.quantize_fx
|
|
"attach_preserved_attrs_to_model",
|
|
"convert_to_reference_fx",
|
|
# torch.ao.quantization.quantize_jit
|
|
"convert_dynamic_jit",
|
|
"convert_jit",
|
|
"fuse_conv_bn_jit",
|
|
"prepare_dynamic_jit",
|
|
"prepare_jit",
|
|
"quantize_dynamic_jit",
|
|
"quantize_jit",
|
|
"script_qconfig",
|
|
"script_qconfig_dict",
|
|
# torch.ao.quantization.quantize_pt2e
|
|
"convert_pt2e",
|
|
"prepare_pt2e",
|
|
"prepare_qat_pt2e",
|
|
# torch.ao.quantization.quantizer.embedding_quantizer
|
|
"get_embedding_operators_config",
|
|
# torch.ao.quantization.quantizer.xnnpack_quantizer_utils
|
|
"get_bias_qspec",
|
|
"get_input_act_qspec",
|
|
"get_output_act_qspec",
|
|
"get_weight_qspec",
|
|
"propagate_annotation",
|
|
"register_annotator",
|
|
"activation_dtype",
|
|
"check_node",
|
|
"has_no_children_ignoring_parametrizations",
|
|
"is_per_channel",
|
|
"is_per_tensor",
|
|
"op_is_int8_dynamically_quantized",
|
|
"to_underlying_dtype",
|
|
"weight_dtype",
|
|
"weight_is_quantized",
|
|
"weight_is_statically_quantized",
|
|
# torch.backends.cudnn.rnn
|
|
"get_cudnn_mode",
|
|
"init_dropout_state",
|
|
# torch.backends.xeon.run_cpu
|
|
"create_args",
|
|
# torch.cuda.amp.autocast_mode
|
|
"custom_bwd",
|
|
"custom_fwd",
|
|
# torch.cuda.amp.common
|
|
"amp_definitely_not_available",
|
|
# torch.mtia.memory
|
|
"reset_peak_memory_stats",
|
|
# torch.cuda.nccl
|
|
"all_gather",
|
|
"all_reduce",
|
|
"broadcast",
|
|
"init_rank",
|
|
"reduce",
|
|
"reduce_scatter",
|
|
"unique_id",
|
|
"version",
|
|
# torch.cuda.profiler
|
|
"init",
|
|
"profile",
|
|
"start",
|
|
"stop",
|
|
# torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook
|
|
"hook_with_zero_step",
|
|
"hook_with_zero_step_interleaved",
|
|
# torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook
|
|
"post_localSGD_hook",
|
|
# torch.distributed.algorithms.ddp_comm_hooks.quantization_hooks
|
|
"quantization_perchannel_hook",
|
|
"quantization_pertensor_hook",
|
|
# torch.distributed.algorithms.model_averaging.utils
|
|
"average_parameters",
|
|
"average_parameters_or_parameter_groups",
|
|
"get_params_to_average",
|
|
# torch.distributed.checkpoint.default_planner
|
|
"create_default_global_load_plan",
|
|
"create_default_global_save_plan",
|
|
"create_default_local_load_plan",
|
|
"create_default_local_save_plan",
|
|
# torch.distributed.checkpoint.optimizer
|
|
"load_sharded_optimizer_state_dict",
|
|
# torch.distributed.checkpoint.planner_helpers
|
|
"create_read_items_for_chunk_list",
|
|
# torch.distributed.checkpoint.state_dict_loader
|
|
"load_state_dict",
|
|
# torch.distributed.checkpoint.state_dict_saver
|
|
"save_state_dict",
|
|
# torch.distributed.checkpoint.utils
|
|
"find_state_dict_object",
|
|
"find_tensor_shard",
|
|
"isend",
|
|
"monitored_barrier",
|
|
"new_group",
|
|
"new_subgroups",
|
|
"new_subgroups_by_enumeration",
|
|
"recv",
|
|
"reduce",
|
|
"reduce_scatter",
|
|
"reduce_scatter_tensor",
|
|
"scatter",
|
|
"scatter_object_list",
|
|
"send",
|
|
"supports_complex",
|
|
# torch.distributed.elastic.events.handlers
|
|
"get_logging_handler",
|
|
# torch.distributed.elastic.metrics.api
|
|
"configure",
|
|
"getStream",
|
|
"get_elapsed_time_ms",
|
|
"prof",
|
|
"profile",
|
|
"publish_metric",
|
|
"put_metric",
|
|
# torch.distributed.elastic.multiprocessing.api
|
|
"get_std_cm",
|
|
"to_map",
|
|
# torch.distributed.elastic.multiprocessing.errors.handlers
|
|
"get_error_handler",
|
|
# torch.distributed.elastic.multiprocessing.redirects
|
|
"get_libc",
|
|
"redirect",
|
|
# torch.distributed.elastic.multiprocessing.tail_log
|
|
"tail_logfile",
|
|
# torch.distributed.elastic.rendezvous.dynamic_rendezvous
|
|
"get_method_name",
|
|
# torch.distributed.elastic.rendezvous.etcd_rendezvous
|
|
"create_rdzv_handler",
|
|
# torch.distributed.elastic.rendezvous.etcd_server
|
|
"find_free_port",
|
|
"stop_etcd",
|
|
# torch.distributed.elastic.rendezvous.etcd_store
|
|
"cas_delay",
|
|
# torch.distributed.elastic.rendezvous.static_tcp_rendezvous
|
|
"create_rdzv_handler",
|
|
# torch.distributed.elastic.rendezvous.utils
|
|
"parse_rendezvous_endpoint",
|
|
# torch.distributed.elastic.timer.api
|
|
"configure",
|
|
"expires",
|
|
# torch.distributed.elastic.utils.api
|
|
"get_env_variable_or_raise",
|
|
"get_socket_with_port",
|
|
# torch.distributed.elastic.utils.distributed
|
|
"create_c10d_store",
|
|
"get_free_port",
|
|
"get_socket_with_port",
|
|
# torch.distributed.elastic.utils.log_level
|
|
"get_log_level",
|
|
# torch.distributed.elastic.utils.logging
|
|
"get_logger",
|
|
# torch.distributed.elastic.utils.store
|
|
"barrier",
|
|
"get_all",
|
|
"synchronize",
|
|
"store_timeout",
|
|
# torch.distributed.fsdp.wrap
|
|
"always_wrap_policy",
|
|
"enable_wrap",
|
|
"lambda_auto_wrap_policy",
|
|
"size_based_auto_wrap_policy",
|
|
"transformer_auto_wrap_policy",
|
|
"wrap",
|
|
# torch.distributed.nn.functional
|
|
"all_to_all",
|
|
"all_to_all_single",
|
|
# torch.distributed.nn.jit.instantiator
|
|
"get_arg_return_types_from_interface",
|
|
"instantiate_non_scriptable_remote_module_template",
|
|
"instantiate_scriptable_remote_module_template",
|
|
# torch.distributed.nn.jit.templates.remote_module_template
|
|
"get_remote_module_template",
|
|
# torch.distributed.optim.utils
|
|
"as_functional_optim",
|
|
"register_functional_optim",
|
|
# torch.distributed.rendezvous
|
|
"register_rendezvous_handler",
|
|
"rendezvous",
|
|
# torch.distributed.rpc.api
|
|
"get_worker_info",
|
|
"method_factory",
|
|
"new_method",
|
|
"remote",
|
|
"rpc_async",
|
|
"rpc_sync",
|
|
"shutdown",
|
|
# torch.distributed.rpc.backend_registry
|
|
"backend_registered",
|
|
"construct_rpc_backend_options",
|
|
"init_backend",
|
|
"register_backend",
|
|
# torch.distributed.rpc.internal
|
|
"deserialize",
|
|
"serialize",
|
|
# torch.distributed.tensor.parallel.api
|
|
"parallelize_module",
|
|
# torch.distributed.tensor.parallel.input_reshard
|
|
"input_reshard",
|
|
# torch.distributed.tensor.parallel.loss
|
|
"loss_parallel",
|
|
# torch.distributed.tensor.parallel.style
|
|
"make_sharded_output_tensor",
|
|
# torch.distributions.utils
|
|
"broadcast_all",
|
|
"clamp_probs",
|
|
"logits_to_probs",
|
|
"probs_to_logits",
|
|
"tril_matrix_to_vec",
|
|
"vec_to_tril_matrix",
|
|
# torch.fx.annotate
|
|
"annotate",
|
|
# torch.fx.experimental.accelerator_partitioner
|
|
"check_dependency",
|
|
"combine_two_partitions",
|
|
"get_bfs_level_partition",
|
|
"get_device_partition_stats",
|
|
"get_device_to_partitions_mapping",
|
|
"get_logical_id_to_device",
|
|
"get_node_to_partition_mapping",
|
|
"reorganize_partitions",
|
|
"reset_partition_device",
|
|
"set_parents_and_children",
|
|
# torch.fx.experimental.const_fold
|
|
"get_unique_attr_name_in_module",
|
|
"split_const_subgraphs",
|
|
# torch.fx.experimental.debug
|
|
"set_trace",
|
|
# torch.fx.experimental.graph_gradual_typechecker
|
|
"adaptiveavgpool2d_check",
|
|
"adaptiveavgpool2d_inference_rule",
|
|
"add_inference_rule",
|
|
"all_eq",
|
|
"bn2d_inference_rule",
|
|
"broadcast_types",
|
|
"calculate_out_dimension",
|
|
"conv2d_inference_rule",
|
|
"conv_refinement_rule",
|
|
"conv_rule",
|
|
"element_wise_eq",
|
|
"expand_to_tensor_dim",
|
|
"first_two_eq",
|
|
"flatten_check",
|
|
"flatten_inference_rule",
|
|
"flatten_refinement_rule",
|
|
"get_attr_inference_rule",
|
|
"get_greatest_upper_bound",
|
|
"get_parameter",
|
|
"linear_check",
|
|
"linear_inference_rule",
|
|
"linear_refinement_rule",
|
|
"maxpool2d_check",
|
|
"maxpool2d_inference_rule",
|
|
"register_algebraic_expressions_inference_rule",
|
|
"register_inference_rule",
|
|
"register_refinement_rule",
|
|
"relu_inference_rule",
|
|
"reshape_inference_rule",
|
|
"transpose_inference_rule",
|
|
# torch.fx.experimental.merge_matmul
|
|
"are_nodes_independent",
|
|
"may_depend_on",
|
|
"merge_matmul",
|
|
"split_result_tensors",
|
|
# torch.fx.experimental.meta_tracer
|
|
"embedding_override",
|
|
"functional_relu_override",
|
|
"gen_constructor_wrapper",
|
|
"nn_layernorm_override",
|
|
"proxys_to_metas",
|
|
"symbolic_trace",
|
|
"torch_abs_override",
|
|
"torch_nn_relu_override",
|
|
"torch_relu_override",
|
|
"torch_where_override",
|
|
# torch.fx.experimental.migrate_gradual_types.constraint
|
|
"is_algebraic_expression",
|
|
"is_bool_expr",
|
|
"is_dim",
|
|
# torch.fx.experimental.migrate_gradual_types.constraint_generator
|
|
"adaptive_inference_rule",
|
|
"add_layer_norm_constraints",
|
|
"add_linear_constraints",
|
|
"arange_inference_rule",
|
|
"assert_inference_rule",
|
|
"batchnorm_inference_rule",
|
|
"bmm_inference_rule",
|
|
"broadcasting_inference_rule",
|
|
"conv2d_inference_rule",
|
|
"cumsum_inference_rule",
|
|
"embedding_inference_rule",
|
|
"embedding_inference_rule_functional",
|
|
"eq_inference_rule",
|
|
"equality_inference_rule",
|
|
"expand_inference_rule",
|
|
"flatten_inference_rule",
|
|
"full_inference_rule",
|
|
"gen_broadcasting_constraints",
|
|
"gen_embedding_rules",
|
|
"gen_layer_norm_constraints",
|
|
"generate_flatten_constraints",
|
|
"get_attr_inference_rule",
|
|
"getitem_inference_rule",
|
|
"gt_inference_rule",
|
|
"index_select_inference_rule",
|
|
"layer_norm_functional",
|
|
"layer_norm_inference_rule",
|
|
"linear_constraints",
|
|
"linear_inference_rule",
|
|
"lt_inference_rule",
|
|
"masked_fill_inference_rule",
|
|
"maxpool_inference_rule",
|
|
"neq_inference_rule",
|
|
"range_check",
|
|
"register_inference_rule",
|
|
"relu_inference_rule",
|
|
"reshape_inference_rule",
|
|
"size_inference_rule",
|
|
"tensor_inference_rule",
|
|
"torch_dim_inference_rule",
|
|
"torch_linear_inference_rule",
|
|
"transpose_inference_rule",
|
|
"type_inference_rule",
|
|
"view_inference_rule",
|
|
# torch.fx.experimental.migrate_gradual_types.constraint_transformation
|
|
"apply_padding",
|
|
"broadcast_dim",
|
|
"calc_last_two_dims",
|
|
"create_equality_constraints_for_broadcasting",
|
|
"gen_all_reshape_possibilities",
|
|
"gen_broadcasting_constraints",
|
|
"gen_consistency_constraints",
|
|
"gen_greatest_upper_bound",
|
|
"gen_lists_of_dims",
|
|
"generate_all_broadcasting_possibilities_no_padding",
|
|
"generate_all_int_dyn_dim_possibilities",
|
|
"generate_binconstraint_d",
|
|
"generate_binconstraint_t",
|
|
"generate_broadcasting",
|
|
"generate_calc_conv",
|
|
"generate_calc_maxpool",
|
|
"generate_calc_product",
|
|
"generate_conj",
|
|
"generate_d_gub",
|
|
"generate_disj",
|
|
"generate_gub",
|
|
"generate_reshape",
|
|
"is_dim_div_by_target",
|
|
"is_target_div_by_dim",
|
|
"no_broadcast_dim_with_index",
|
|
"register_transformation_rule",
|
|
"transform_constraint",
|
|
"transform_get_item",
|
|
"transform_get_item_tensor",
|
|
"transform_index_select",
|
|
"transform_transpose",
|
|
"valid_index",
|
|
"valid_index_tensor",
|
|
# torch.fx.experimental.migrate_gradual_types.transform_to_z3
|
|
"evaluate_conditional_with_constraints",
|
|
# torch.fx.experimental.migrate_gradual_types.util
|
|
"gen_bvar",
|
|
"gen_dvar",
|
|
"gen_nat_constraints",
|
|
"gen_tensor_dims",
|
|
"gen_tvar",
|
|
# torch.fx.experimental.optimization
|
|
"extract_subgraph",
|
|
"fuse",
|
|
"gen_mkl_autotuner",
|
|
"matches_module_pattern",
|
|
"modules_to_mkldnn",
|
|
"optimize_for_inference",
|
|
"remove_dropout",
|
|
"replace_node_module",
|
|
"reset_modules",
|
|
"use_mkl_length",
|
|
# torch.fx.experimental.partitioner_utils
|
|
"get_comm_latency_between",
|
|
"get_extra_size_of",
|
|
"get_latency_of_one_partition",
|
|
"get_latency_of_partitioned_graph",
|
|
"get_partition_to_latency_mapping",
|
|
# torch.fx.experimental.proxy_tensor
|
|
"decompose",
|
|
"disable_autocast_cache",
|
|
"disable_proxy_modes_tracing",
|
|
"dispatch_trace",
|
|
"extract_val",
|
|
"fake_signature",
|
|
"fetch_sym_proxy",
|
|
"fetch_object_proxy",
|
|
"get_innermost_proxy_mode",
|
|
"get_isolated_graphmodule",
|
|
"get_proxy_slot",
|
|
"get_torch_dispatch_modes",
|
|
"has_proxy_slot",
|
|
"is_sym_node",
|
|
"maybe_handle_decomp",
|
|
"proxy_call",
|
|
"set_meta",
|
|
"set_original_aten_op",
|
|
"set_proxy_slot",
|
|
"snapshot_fake",
|
|
"thunkify",
|
|
"track_tensor",
|
|
"track_tensor_tree",
|
|
"wrap_key",
|
|
"wrapper_and_args_for_make_fx",
|
|
# torch.fx.experimental.recording
|
|
"record_shapeenv_event",
|
|
"replay_shape_env_events",
|
|
"shape_env_check_state_equal",
|
|
# torch.fx.experimental.sym_node
|
|
"ceil_impl",
|
|
"floor_ceil_helper",
|
|
"floor_impl",
|
|
"method_to_operator",
|
|
"sympy_is_channels_last_contiguous_2d",
|
|
"sympy_is_channels_last_contiguous_3d",
|
|
"sympy_is_channels_last_strides_2d",
|
|
"sympy_is_channels_last_strides_3d",
|
|
"sympy_is_channels_last_strides_generic",
|
|
"sympy_is_contiguous",
|
|
"sympy_is_contiguous_generic",
|
|
"to_node",
|
|
"wrap_node",
|
|
"sym_sqrt",
|
|
# torch.fx.experimental.symbolic_shapes
|
|
"bind_symbols",
|
|
"cast_symbool_to_symint_guardless",
|
|
"create_contiguous",
|
|
"error",
|
|
"eval_guards",
|
|
"eval_is_non_overlapping_and_dense",
|
|
"expect_true",
|
|
"find_symbol_binding_fx_nodes",
|
|
"free_symbols",
|
|
"free_unbacked_symbols",
|
|
"fx_placeholder_targets",
|
|
"fx_placeholder_vals",
|
|
"guard_bool",
|
|
"guard_float",
|
|
"guard_int",
|
|
"guard_scalar",
|
|
"has_hint",
|
|
"has_symbolic_sizes_strides",
|
|
"is_channels_last_contiguous_2d",
|
|
"is_channels_last_contiguous_3d",
|
|
"is_channels_last_strides_2d",
|
|
"is_channels_last_strides_3d",
|
|
"is_contiguous",
|
|
"is_non_overlapping_and_dense_indicator",
|
|
"is_nested_int",
|
|
"is_symbol_binding_fx_node",
|
|
"is_symbolic",
|
|
# torch.fx.experimental.unification.core
|
|
"reify",
|
|
# torch.fx.experimental.unification.match
|
|
"edge",
|
|
"match",
|
|
"ordering",
|
|
"supercedes",
|
|
# torch.fx.experimental.unification.more
|
|
"reify_object",
|
|
"unifiable",
|
|
"unify_object",
|
|
# torch.fx.experimental.unification.multipledispatch.conflict
|
|
"ambiguities",
|
|
"ambiguous",
|
|
"consistent",
|
|
"edge",
|
|
"ordering",
|
|
"super_signature",
|
|
"supercedes",
|
|
# torch.fx.experimental.unification.multipledispatch.core
|
|
"dispatch",
|
|
"ismethod",
|
|
# torch.fx.experimental.unification.multipledispatch.dispatcher
|
|
"ambiguity_warn",
|
|
"halt_ordering",
|
|
"restart_ordering",
|
|
"source",
|
|
"str_signature",
|
|
"variadic_signature_matches",
|
|
"variadic_signature_matches_iter",
|
|
"warning_text",
|
|
# torch.fx.experimental.unification.multipledispatch.utils
|
|
"expand_tuples",
|
|
"groupby",
|
|
"raises",
|
|
"reverse_dict",
|
|
# torch.fx.experimental.unification.multipledispatch.variadic
|
|
"isvariadic",
|
|
# torch.fx.experimental.unification.unification_tools
|
|
"assoc",
|
|
"assoc_in",
|
|
"dissoc",
|
|
"first",
|
|
"get_in",
|
|
"getter",
|
|
"groupby",
|
|
"itemfilter",
|
|
"itemmap",
|
|
"keyfilter",
|
|
"keymap",
|
|
"merge",
|
|
"merge_with",
|
|
"update_in",
|
|
"valfilter",
|
|
"valmap",
|
|
# torch.fx.experimental.unification.utils
|
|
"freeze",
|
|
"hashable",
|
|
"raises",
|
|
"reverse_dict",
|
|
"transitive_get",
|
|
"xfail",
|
|
# torch.fx.experimental.unification.variable
|
|
"var",
|
|
"vars",
|
|
# torch.fx.experimental.unify_refinements
|
|
"check_for_type_equality",
|
|
"convert_eq",
|
|
"infer_symbolic_types",
|
|
"infer_symbolic_types_single_pass",
|
|
"substitute_all_types",
|
|
"substitute_solution_one_type",
|
|
"unify_eq",
|
|
# torch.fx.experimental.validator
|
|
"bisect",
|
|
"translation_validation_enabled",
|
|
"translation_validation_timeout",
|
|
"z3op",
|
|
"z3str",
|
|
# torch.fx.graph_module
|
|
"reduce_graph_module",
|
|
"reduce_package_graph_module",
|
|
# torch.fx.node
|
|
"has_side_effect",
|
|
"map_aggregate",
|
|
"map_arg",
|
|
# torch.fx.operator_schemas
|
|
"check_for_mutable_operation",
|
|
"create_type_hint",
|
|
"get_signature_for_torch_op",
|
|
"normalize_function",
|
|
"normalize_module",
|
|
"type_matches",
|
|
# torch.fx.passes.annotate_getitem_nodes
|
|
"annotate_getitem_nodes",
|
|
# torch.fx.passes.backends.cudagraphs
|
|
"partition_cudagraphs",
|
|
# torch.fx.passes.dialect.common.cse_pass
|
|
"get_CSE_banned_ops",
|
|
# torch.fx.passes.graph_manipulation
|
|
"get_size_of_all_nodes",
|
|
"get_size_of_node",
|
|
"get_tensor_meta",
|
|
"replace_target_nodes_with",
|
|
# torch.fx.passes.infra.pass_manager
|
|
"pass_result_wrapper",
|
|
"this_before_that_pass_constraint",
|
|
# torch.fx.passes.operator_support
|
|
"any_chain",
|
|
"chain",
|
|
"create_op_support",
|
|
# torch.fx.passes.param_fetch
|
|
"default_matching",
|
|
"extract_attrs_for_lowering",
|
|
"lift_lowering_attrs_to_nodes",
|
|
# torch.fx.passes.pass_manager
|
|
"inplace_wrapper",
|
|
"log_hook",
|
|
"loop_pass",
|
|
"these_before_those_pass_constraint",
|
|
"this_before_that_pass_constraint",
|
|
# torch.fx.passes.regional_inductor
|
|
"regional_inductor",
|
|
# torch.fx.passes.reinplace
|
|
"reinplace",
|
|
# torch.fx.passes.split_module
|
|
"split_module",
|
|
# torch.fx.passes.split_utils
|
|
"getattr_recursive",
|
|
"setattr_recursive",
|
|
"split_by_tags",
|
|
# torch.fx.passes.splitter_base
|
|
"generate_inputs_for_submodules",
|
|
# torch.fx.passes.tools_common
|
|
"get_acc_ops_name",
|
|
"get_node_target",
|
|
"is_node_output_tensor",
|
|
"legalize_graph",
|
|
# torch.fx.passes.utils.common
|
|
"compare_graphs",
|
|
"lift_subgraph_as_module",
|
|
# torch.fx.passes.utils.fuser_utils
|
|
"erase_nodes",
|
|
"fuse_as_graphmodule",
|
|
"fuse_by_partitions",
|
|
"insert_subgm",
|
|
"topo_sort",
|
|
"validate_partition",
|
|
# torch.fx.passes.utils.source_matcher_utils
|
|
"check_subgraphs_connected",
|
|
"get_source_partitions",
|
|
# torch.fx.proxy
|
|
"assert_fn",
|
|
# torch.fx.subgraph_rewriter
|
|
"replace_pattern",
|
|
"replace_pattern_with_filters",
|
|
# torch.fx.tensor_type
|
|
"is_consistent",
|
|
"is_more_precise",
|
|
# torch.fx.traceback
|
|
"format_stack",
|
|
"get_current_meta",
|
|
"has_preserved_node_meta",
|
|
"preserve_node_meta",
|
|
"reset_grad_fn_seq_nr",
|
|
"set_current_meta",
|
|
"set_grad_fn_seq_nr",
|
|
"set_stack_trace",
|
|
# torch.jit.annotations
|
|
"ann_to_type",
|
|
"check_fn",
|
|
"get_enum_value_type",
|
|
"get_param_names",
|
|
"get_signature",
|
|
"get_type_line",
|
|
"is_function_or_method",
|
|
"is_tensor",
|
|
"is_vararg",
|
|
"parse_type_line",
|
|
"split_type_line",
|
|
"try_ann_to_type",
|
|
"try_real_annotations",
|
|
# torch.jit.frontend
|
|
"build_class_def",
|
|
"build_def",
|
|
"build_ignore_context_manager",
|
|
"build_param",
|
|
"build_param_list",
|
|
"build_stmts",
|
|
"build_withitems",
|
|
"find_before",
|
|
"get_class_assigns",
|
|
"get_class_properties",
|
|
"get_default_args",
|
|
"get_default_args_for_class",
|
|
"get_jit_class_def",
|
|
"get_jit_def",
|
|
"is_reserved_name",
|
|
"is_torch_jit_ignore_context_manager",
|
|
# torch.jit.generate_bytecode
|
|
"format_bytecode",
|
|
"generate_upgraders_bytecode",
|
|
# torch.jit.quantized
|
|
"apply_permutation",
|
|
"quantize_linear_modules",
|
|
"quantize_rnn_cell_modules",
|
|
"quantize_rnn_modules",
|
|
# torch.library
|
|
"define",
|
|
"get_ctx",
|
|
"impl",
|
|
"impl_abstract",
|
|
# torch.masked.maskedtensor.core
|
|
"is_masked_tensor",
|
|
# torch.masked.maskedtensor.creation
|
|
"as_masked_tensor",
|
|
"masked_tensor",
|
|
# torch.multiprocessing.pool
|
|
"clean_worker",
|
|
# torch.multiprocessing.reductions
|
|
"fd_id",
|
|
"init_reductions",
|
|
"rebuild_cuda_tensor",
|
|
"rebuild_meta_tensor",
|
|
"rebuild_event",
|
|
"rebuild_nested_tensor",
|
|
"rebuild_sparse_coo_tensor",
|
|
"rebuild_sparse_compressed_tensor",
|
|
"rebuild_storage_empty",
|
|
"rebuild_storage_fd",
|
|
"rebuild_storage_filename",
|
|
"rebuild_tensor",
|
|
"rebuild_typed_storage",
|
|
"rebuild_typed_storage_child",
|
|
"reduce_event",
|
|
"reduce_storage",
|
|
"reduce_tensor",
|
|
"reduce_typed_storage",
|
|
"reduce_typed_storage_child",
|
|
"storage_from_cache",
|
|
# torch.multiprocessing.spawn
|
|
"start_processes",
|
|
# torch.nn.functional
|
|
"adaptive_max_pool1d_with_indices", # documented as adaptive_max_pool1d
|
|
"adaptive_max_pool2d_with_indices", # documented as adaptive_max_pool2d
|
|
"adaptive_max_pool3d_with_indices", # documented as adaptive_max_pool3d
|
|
"assert_int_or_pair", # looks unintentionally public
|
|
"fractional_max_pool2d_with_indices", # documented as fractional_max_pool2d
|
|
"fractional_max_pool3d_with_indices", # documented as fractional_max_pool3d
|
|
"max_pool1d_with_indices", # documented as max_pool1d
|
|
"max_pool2d_with_indices", # documented as max_pool2d
|
|
"max_pool3d_with_indices", # documented as max_pool3d
|
|
"multi_head_attention_forward",
|
|
# torch.nn.grad
|
|
"conv1d_input", # legacy helper for gradient computation
|
|
"conv1d_weight", # legacy helper for gradient computation
|
|
"conv2d_input", # legacy helper for gradient computation
|
|
"conv2d_weight", # legacy helper for gradient computation
|
|
"conv3d_input", # legacy helper for gradient computation
|
|
"conv3d_weight", # legacy helper for gradient computation
|
|
# torch.nn.init
|
|
"constant", # deprecated
|
|
"dirac", # deprecated
|
|
"eye", # deprecated
|
|
"kaiming_normal", # deprecated
|
|
"kaiming_uniform", # deprecated
|
|
"normal", # deprecated
|
|
"orthogonal", # deprecated
|
|
"sparse", # deprecated
|
|
"uniform", # deprecated
|
|
"xavier_normal", # deprecated
|
|
"xavier_uniform", # deprecated
|
|
# torch.nn.modules.rnn
|
|
"apply_permutation", # deprecated
|
|
# torch.nn.modules.utils
|
|
"consume_prefix_in_state_dict_if_present",
|
|
# torch.nn.parallel.comm
|
|
"broadcast",
|
|
"broadcast_coalesced",
|
|
"gather",
|
|
"reduce_add",
|
|
"reduce_add_coalesced",
|
|
"scatter",
|
|
# torch.nn.parallel.data_parallel
|
|
"data_parallel",
|
|
# torch.nn.parallel.parallel_apply
|
|
"get_a_var",
|
|
"parallel_apply",
|
|
# torch.nn.parallel.replicate
|
|
"replicate",
|
|
# torch.nn.parallel.scatter_gather
|
|
"gather",
|
|
"is_namedtuple",
|
|
"scatter",
|
|
"scatter_kwargs",
|
|
# torch.nn.utils.rnn
|
|
"bind", # looks unintentionally public
|
|
# torch.onnx.operators
|
|
"reshape_from_tensor_shape",
|
|
"shape_as_tensor",
|
|
# torch.onnx.symbolic_caffe2
|
|
"add",
|
|
"avg_pool2d",
|
|
"cat",
|
|
"conv2d",
|
|
"conv2d_relu",
|
|
"conv_prepack",
|
|
"dequantize",
|
|
"linear",
|
|
"linear_prepack",
|
|
"max_pool2d",
|
|
"nchw2nhwc",
|
|
"nhwc2nchw",
|
|
"quantize_per_tensor",
|
|
"register_quantized_ops",
|
|
"relu",
|
|
"reshape",
|
|
"sigmoid",
|
|
"slice",
|
|
"upsample_nearest2d",
|
|
# torch.onnx.symbolic_helper
|
|
"args_have_same_dtype",
|
|
"check_training_mode",
|
|
"dequantize_helper",
|
|
"is_complex_value",
|
|
"quantize_helper",
|
|
"quantized_args",
|
|
"requantize_bias_helper",
|
|
# torch.onnx.symbolic_opset10
|
|
"dequantize",
|
|
"div",
|
|
"embedding_bag",
|
|
"fake_quantize_per_tensor_affine",
|
|
"flip",
|
|
"fmod",
|
|
"isfinite",
|
|
"isinf",
|
|
"nan_to_num",
|
|
"quantize_per_tensor",
|
|
"quantized_add",
|
|
"quantized_add_relu",
|
|
"quantized_cat",
|
|
"quantized_conv1d",
|
|
"quantized_conv1d_relu",
|
|
"quantized_conv2d",
|
|
"quantized_conv2d_relu",
|
|
"quantized_conv3d",
|
|
"quantized_conv3d_relu",
|
|
"quantized_conv_transpose1d",
|
|
"quantized_conv_transpose2d",
|
|
"quantized_conv_transpose3d",
|
|
"quantized_group_norm",
|
|
"quantized_hardswish",
|
|
"quantized_instance_norm",
|
|
"quantized_layer_norm",
|
|
"quantized_leaky_relu",
|
|
"quantized_linear",
|
|
"quantized_linear_relu",
|
|
"quantized_mul",
|
|
"quantized_sigmoid",
|
|
"slice",
|
|
"sort",
|
|
"topk",
|
|
# torch.onnx.symbolic_opset11
|
|
"Delete",
|
|
"add",
|
|
"append",
|
|
"arange",
|
|
"argsort",
|
|
"atleast_1d",
|
|
"atleast_2d",
|
|
"atleast_3d",
|
|
"cat",
|
|
"chunk",
|
|
"clamp",
|
|
"clamp_max",
|
|
"clamp_min",
|
|
"constant_pad_nd",
|
|
"cumsum",
|
|
"embedding_bag",
|
|
"embedding_renorm",
|
|
"flatten",
|
|
"gather",
|
|
"hardtanh",
|
|
"hstack",
|
|
"im2col",
|
|
"index",
|
|
"index_copy",
|
|
"index_fill",
|
|
"index_put",
|
|
"insert",
|
|
"linalg_det",
|
|
"linalg_vector_norm",
|
|
"logdet",
|
|
"masked_scatter",
|
|
"masked_select",
|
|
"mm",
|
|
"narrow",
|
|
"normal",
|
|
"pad",
|
|
"pixel_shuffle",
|
|
"pop",
|
|
"prim_constant_chunk",
|
|
"reflection_pad",
|
|
"relu6",
|
|
"remainder",
|
|
"replication_pad",
|
|
"round",
|
|
"scatter",
|
|
"select",
|
|
"size",
|
|
"sort",
|
|
"split",
|
|
"split_with_sizes",
|
|
"squeeze",
|
|
"stack",
|
|
"topk",
|
|
"unbind",
|
|
"unique_dim",
|
|
"unsqueeze",
|
|
"vstack",
|
|
# torch.onnx.symbolic_opset12
|
|
"argmax",
|
|
"argmin",
|
|
"binary_cross_entropy_with_logits",
|
|
"celu",
|
|
"cross_entropy_loss",
|
|
"dropout",
|
|
"einsum",
|
|
"ge",
|
|
"le",
|
|
"native_dropout",
|
|
"nll_loss",
|
|
"nll_loss2d",
|
|
"nll_loss_nd",
|
|
"outer",
|
|
"pow",
|
|
"tensordot",
|
|
"unfold",
|
|
# torch.onnx.symbolic_opset13
|
|
"diagonal",
|
|
"fake_quantize_per_channel_affine",
|
|
"fake_quantize_per_tensor_affine",
|
|
"frobenius_norm",
|
|
"log_softmax",
|
|
"nonzero_numpy",
|
|
"quantized_conv1d",
|
|
"quantized_conv1d_relu",
|
|
"quantized_conv2d",
|
|
"quantized_conv2d_relu",
|
|
"quantized_conv3d",
|
|
"quantized_conv3d_relu",
|
|
"quantized_conv_transpose1d",
|
|
"quantized_conv_transpose2d",
|
|
"quantized_conv_transpose3d",
|
|
"quantized_linear",
|
|
"quantized_linear_relu",
|
|
"repeat_interleave",
|
|
"softmax",
|
|
"split",
|
|
"split_with_sizes",
|
|
"tensor_split",
|
|
"tile",
|
|
"unbind",
|
|
"unflatten",
|
|
"unsafe_chunk",
|
|
"unsafe_split",
|
|
"unsafe_split_with_sizes",
|
|
"where",
|
|
# torch.onnx.symbolic_opset14
|
|
"batch_norm",
|
|
"hardswish",
|
|
"quantized_hardswish",
|
|
"reshape",
|
|
"scaled_dot_product_attention",
|
|
"tril",
|
|
"triu",
|
|
# torch.onnx.symbolic_opset15
|
|
"aten__is_",
|
|
"aten__isnot_",
|
|
"bernoulli",
|
|
"prim_unchecked_cast",
|
|
# torch.onnx.symbolic_opset16
|
|
"grid_sampler",
|
|
"scatter_add",
|
|
"scatter_reduce",
|
|
# torch.onnx.symbolic_opset17
|
|
"layer_norm",
|
|
"stft",
|
|
# torch.onnx.symbolic_opset18
|
|
"col2im",
|
|
# torch.onnx.symbolic_opset7
|
|
"max",
|
|
"min",
|
|
# torch.onnx.symbolic_opset8
|
|
"addmm",
|
|
"bmm",
|
|
"empty",
|
|
"empty_like",
|
|
"flatten",
|
|
"full",
|
|
"full_like",
|
|
"gt",
|
|
"lt",
|
|
"matmul",
|
|
"mm",
|
|
"ones",
|
|
"ones_like",
|
|
"prelu",
|
|
"repeat",
|
|
"zeros",
|
|
"zeros_like",
|
|
# torch.onnx.symbolic_opset9
|
|
"abs",
|
|
"acos",
|
|
"adaptive_avg_pool1d",
|
|
"adaptive_avg_pool2d",
|
|
"adaptive_avg_pool3d",
|
|
"adaptive_max_pool1d",
|
|
"adaptive_max_pool2d",
|
|
"adaptive_max_pool3d",
|
|
"add",
|
|
"addcmul",
|
|
"addmm",
|
|
"alias",
|
|
"amax",
|
|
"amin",
|
|
"aminmax",
|
|
"arange",
|
|
"argmax",
|
|
"argmin",
|
|
"as_strided",
|
|
"as_tensor",
|
|
"asin",
|
|
"atan",
|
|
"atan2",
|
|
"avg_pool1d",
|
|
"avg_pool2d",
|
|
"avg_pool3d",
|
|
"baddbmm",
|
|
"batch_norm",
|
|
"bernoulli",
|
|
"bitwise_not",
|
|
"bitwise_or",
|
|
"bmm",
|
|
"broadcast_tensors",
|
|
"broadcast_to",
|
|
"bucketize",
|
|
"cat",
|
|
"cdist",
|
|
"ceil",
|
|
"clamp",
|
|
"clamp_max",
|
|
"clamp_min",
|
|
"clone",
|
|
"constant_pad_nd",
|
|
"contiguous",
|
|
"conv1d",
|
|
"conv2d",
|
|
"conv3d",
|
|
"conv_tbc",
|
|
"conv_transpose1d",
|
|
"conv_transpose2d",
|
|
"conv_transpose3d",
|
|
"convert_element_type",
|
|
"convolution",
|
|
"cos",
|
|
"cosine_similarity",
|
|
"cross",
|
|
"cumsum",
|
|
"detach",
|
|
"dim",
|
|
"div",
|
|
"dot",
|
|
"dropout",
|
|
"elu",
|
|
"embedding",
|
|
"embedding_bag",
|
|
"empty",
|
|
"empty_like",
|
|
"eq",
|
|
"erf",
|
|
"exp",
|
|
"expand",
|
|
"expand_as",
|
|
"eye",
|
|
"fill",
|
|
"flatten",
|
|
"floor",
|
|
"floor_divide",
|
|
"floordiv",
|
|
"frobenius_norm",
|
|
"full",
|
|
"full_like",
|
|
"gather",
|
|
"ge",
|
|
"gelu",
|
|
"get_pool_ceil_padding",
|
|
"glu",
|
|
"group_norm",
|
|
"gru",
|
|
"gt",
|
|
"hann_window",
|
|
"hardshrink",
|
|
"hardsigmoid",
|
|
"hardswish",
|
|
"hardtanh",
|
|
"index",
|
|
"index_add",
|
|
"index_copy",
|
|
"index_fill",
|
|
"index_put",
|
|
"index_select",
|
|
"instance_norm",
|
|
"is_floating_point",
|
|
"is_pinned",
|
|
"isnan",
|
|
"item",
|
|
"kl_div",
|
|
"layer_norm",
|
|
"le",
|
|
"leaky_relu",
|
|
"lerp",
|
|
"lift",
|
|
"linalg_cross",
|
|
"linalg_matrix_norm",
|
|
"linalg_norm",
|
|
"linalg_vector_norm",
|
|
"linear",
|
|
"linspace",
|
|
"log",
|
|
"log10",
|
|
"log1p",
|
|
"log2",
|
|
"log_sigmoid",
|
|
"log_softmax",
|
|
"logical_and",
|
|
"logical_not",
|
|
"logical_or",
|
|
"logical_xor",
|
|
"logit",
|
|
"logsumexp",
|
|
"lstm",
|
|
"lstm_cell",
|
|
"lt",
|
|
"masked_fill",
|
|
"masked_fill_",
|
|
"matmul",
|
|
"max",
|
|
"max_pool1d",
|
|
"max_pool1d_with_indices",
|
|
"max_pool2d",
|
|
"max_pool2d_with_indices",
|
|
"max_pool3d",
|
|
"max_pool3d_with_indices",
|
|
"maximum",
|
|
"meshgrid",
|
|
"min",
|
|
"minimum",
|
|
"mish",
|
|
"mm",
|
|
"movedim",
|
|
"mse_loss",
|
|
"mul",
|
|
"multinomial",
|
|
"mv",
|
|
"narrow",
|
|
"native_layer_norm",
|
|
"ne",
|
|
"neg",
|
|
"new_empty",
|
|
"new_full",
|
|
"new_ones",
|
|
"new_zeros",
|
|
"nonzero",
|
|
"nonzero_numpy",
|
|
"noop_complex_operators",
|
|
"norm",
|
|
"numel",
|
|
"numpy_T",
|
|
"one_hot",
|
|
"ones",
|
|
"ones_like",
|
|
"onnx_placeholder",
|
|
"overload_by_arg_count",
|
|
"pad",
|
|
"pairwise_distance",
|
|
"permute",
|
|
"pixel_shuffle",
|
|
"pixel_unshuffle",
|
|
"pow",
|
|
"prelu",
|
|
"prim_constant",
|
|
"prim_constant_chunk",
|
|
"prim_constant_split",
|
|
"prim_data",
|
|
"prim_device",
|
|
"prim_dtype",
|
|
"prim_if",
|
|
"prim_layout",
|
|
"prim_list_construct",
|
|
"prim_list_unpack",
|
|
"prim_loop",
|
|
"prim_max",
|
|
"prim_min",
|
|
"prim_shape",
|
|
"prim_tolist",
|
|
"prim_tuple_construct",
|
|
"prim_type",
|
|
"prim_unchecked_cast",
|
|
"prim_uninitialized",
|
|
"rand",
|
|
"rand_like",
|
|
"randint",
|
|
"randint_like",
|
|
"randn",
|
|
"randn_like",
|
|
"reciprocal",
|
|
"reflection_pad",
|
|
"relu",
|
|
"relu6",
|
|
"remainder",
|
|
"repeat",
|
|
"repeat_interleave",
|
|
"replication_pad",
|
|
"reshape",
|
|
"reshape_as",
|
|
"rnn_relu",
|
|
"rnn_tanh",
|
|
"roll",
|
|
"rrelu",
|
|
"rsqrt",
|
|
"rsub",
|
|
"scalar_tensor",
|
|
"scatter",
|
|
"scatter_add",
|
|
"select",
|
|
"selu",
|
|
"sigmoid",
|
|
"sign",
|
|
"silu",
|
|
"sin",
|
|
"size",
|
|
"slice",
|
|
"softmax",
|
|
"softplus",
|
|
"softshrink",
|
|
"sort",
|
|
"split",
|
|
"split_with_sizes",
|
|
"sqrt",
|
|
"square",
|
|
"squeeze",
|
|
"stack",
|
|
"std",
|
|
"std_mean",
|
|
"sub",
|
|
"t",
|
|
"take",
|
|
"tan",
|
|
"tanh",
|
|
"tanhshrink",
|
|
"tensor",
|
|
"threshold",
|
|
"to",
|
|
"topk",
|
|
"transpose",
|
|
"true_divide",
|
|
"type_as",
|
|
"unbind",
|
|
"unfold",
|
|
"unsafe_chunk",
|
|
"unsafe_split",
|
|
"unsafe_split_with_sizes",
|
|
"unsqueeze",
|
|
"unsupported_complex_operators",
|
|
"unused",
|
|
"upsample_bilinear2d",
|
|
"upsample_linear1d",
|
|
"upsample_nearest1d",
|
|
"upsample_nearest2d",
|
|
"upsample_nearest3d",
|
|
"upsample_trilinear3d",
|
|
"var",
|
|
"var_mean",
|
|
"view",
|
|
"view_as",
|
|
"where",
|
|
"wrap_logical_op_with_cast_to",
|
|
"wrap_logical_op_with_negation",
|
|
"zero",
|
|
"zeros",
|
|
"zeros_like",
|
|
# torch.onnx.utils
|
|
"disable_apex_o2_state_dict_hook",
|
|
"export",
|
|
"export_to_pretty_string",
|
|
"exporter_context",
|
|
"is_in_onnx_export",
|
|
"model_signature",
|
|
"register_custom_op_symbolic",
|
|
"select_model_mode_for_export",
|
|
"setup_onnx_logging",
|
|
"unconvertible_ops",
|
|
"unpack_quantized_tensor",
|
|
"warn_on_static_input_change",
|
|
# torch.onnx.verification
|
|
"check_export_model_diff",
|
|
"verify",
|
|
"verify_aten_graph",
|
|
# torch.optim.optimizer
|
|
"register_optimizer_step_post_hook",
|
|
"register_optimizer_step_pre_hook",
|
|
# torch.overrides
|
|
"enable_reentrant_dispatch",
|
|
# torch.package.analyze.find_first_use_of_broken_modules
|
|
"find_first_use_of_broken_modules",
|
|
# torch.package.analyze.is_from_package
|
|
"is_from_package",
|
|
# torch.package.analyze.trace_dependencies
|
|
"trace_dependencies",
|
|
# torch.profiler.itt
|
|
"range",
|
|
# torch.profiler.profiler
|
|
"schedule",
|
|
"supported_activities",
|
|
"tensorboard_trace_handler",
|
|
# torch.return_types
|
|
"pytree_register_structseq",
|
|
# torch.serialization
|
|
"check_module_version_greater_or_equal",
|
|
"default_restore_location",
|
|
"load",
|
|
"location_tag",
|
|
"mkdtemp",
|
|
"normalize_storage_type",
|
|
"save",
|
|
"storage_to_tensor_type",
|
|
"validate_cuda_device",
|
|
"validate_hpu_device",
|
|
# torch.signal.windows.windows
|
|
"bartlett",
|
|
"blackman",
|
|
"cosine",
|
|
"exponential",
|
|
"gaussian",
|
|
"general_cosine",
|
|
"general_hamming",
|
|
"hamming",
|
|
"hann",
|
|
"kaiser",
|
|
"nuttall",
|
|
# torch.sparse.semi_structured
|
|
"to_sparse_semi_structured",
|
|
# torch.utils.backend_registration
|
|
"generate_methods_for_privateuse1_backend",
|
|
"rename_privateuse1_backend",
|
|
# torch.utils.benchmark.examples.op_benchmark
|
|
"assert_dicts_equal",
|
|
# torch.utils.benchmark.op_fuzzers.spectral
|
|
"power_range",
|
|
# torch.utils.benchmark.utils.common
|
|
"ordered_unique",
|
|
"select_unit",
|
|
"set_torch_threads",
|
|
"trim_sigfig",
|
|
"unit_to_english",
|
|
# torch.utils.benchmark.utils.compare
|
|
"optional_min",
|
|
# torch.utils.benchmark.utils.compile
|
|
"bench_all",
|
|
"bench_loop",
|
|
"benchmark_compile",
|
|
# torch.utils.benchmark.utils.cpp_jit
|
|
"compile_callgrind_template",
|
|
"compile_timeit_template",
|
|
"get_compat_bindings",
|
|
# torch.utils.benchmark.utils.fuzzer
|
|
"dtype_size",
|
|
"prod",
|
|
# torch.utils.benchmark.utils.timer
|
|
"timer",
|
|
# torch.utils.benchmark.utils.valgrind_wrapper.timer_interface
|
|
"wrapper_singleton",
|
|
# torch.utils.bundled_inputs
|
|
"augment_many_model_functions_with_bundled_inputs",
|
|
"augment_model_with_bundled_inputs",
|
|
"bundle_inputs",
|
|
"bundle_large_tensor",
|
|
"bundle_randn",
|
|
# torch.utils.checkpoint
|
|
"check_backward_validity",
|
|
"detach_variable",
|
|
"get_device_states",
|
|
"noop_context_fn",
|
|
"set_checkpoint_early_stop",
|
|
"set_device_states",
|
|
# torch.utils.collect_env
|
|
"check_release_file",
|
|
"get_cachingallocator_config",
|
|
"get_clang_version",
|
|
"get_cmake_version",
|
|
"get_conda_packages",
|
|
"get_cpu_info",
|
|
"get_cuda_module_loading_config",
|
|
"get_cudnn_version",
|
|
"get_env_info",
|
|
"get_gcc_version",
|
|
"get_gpu_info",
|
|
"get_libc_version",
|
|
"get_lsb_version",
|
|
"get_mac_version",
|
|
"get_nvidia_driver_version",
|
|
"get_nvidia_smi",
|
|
"get_os",
|
|
"get_pip_packages",
|
|
"get_platform",
|
|
"get_pretty_env_info",
|
|
"get_python_platform",
|
|
"get_running_cuda_version",
|
|
"get_windows_version",
|
|
"is_xnnpack_available",
|
|
"pretty_str",
|
|
# torch.utils.cpp_backtrace
|
|
"get_cpp_backtrace",
|
|
# torch.utils.cpp_extension
|
|
"check_compiler_is_gcc",
|
|
"check_compiler_ok_for_platform",
|
|
"get_cxx_compiler",
|
|
"get_default_build_root",
|
|
"library_paths",
|
|
"remove_extension_h_precompiler_headers",
|
|
# torch.utils.data.backward_compatibility
|
|
"worker_init_fn",
|
|
# torch.utils.data.datapipes.dataframe.dataframe_wrapper
|
|
"concat",
|
|
"create_dataframe",
|
|
"get_columns",
|
|
"get_df_wrapper",
|
|
"get_item",
|
|
"get_len",
|
|
"is_column",
|
|
"is_dataframe",
|
|
"iterate",
|
|
"set_df_wrapper",
|
|
# torch.utils.data.datapipes.dataframe.dataframes
|
|
"disable_capture",
|
|
"get_val",
|
|
# torch.utils.data.datapipes.gen_pyi
|
|
"extract_class_name",
|
|
"extract_method_name",
|
|
"find_file_paths",
|
|
"gen_from_template",
|
|
"get_method_definitions",
|
|
"materialize_lines",
|
|
"parse_datapipe_file",
|
|
"parse_datapipe_files",
|
|
"process_signature",
|
|
"split_outside_bracket",
|
|
# torch.utils.data.datapipes.map.callable
|
|
"default_fn",
|
|
# torch.utils.data.datapipes.utils.common
|
|
"get_file_binaries_from_pathnames",
|
|
"get_file_pathnames_from_root",
|
|
"match_masks",
|
|
"validate_input_col",
|
|
"validate_pathname_binary_tuple",
|
|
# torch.utils.data.datapipes.utils.decoder
|
|
"audiohandler",
|
|
"basichandlers",
|
|
"extension_extract_fn",
|
|
"handle_extension",
|
|
"imagehandler",
|
|
"mathandler",
|
|
"videohandler",
|
|
# torch.utils.data.dataset
|
|
"random_split",
|
|
# torch.utils.data.graph
|
|
"traverse",
|
|
"traverse_dps",
|
|
# torch.utils.data.graph_settings
|
|
"apply_random_seed",
|
|
"apply_sharding",
|
|
"apply_shuffle_seed",
|
|
"apply_shuffle_settings",
|
|
"get_all_graph_pipes",
|
|
# torch.utils.flop_counter
|
|
"addmm_flop",
|
|
"baddbmm_flop",
|
|
"bmm_flop",
|
|
"conv_backward_flop",
|
|
"conv_flop",
|
|
"conv_flop_count",
|
|
"convert_num_with_suffix",
|
|
"get_shape",
|
|
"get_suffix_str",
|
|
"mm_flop",
|
|
"normalize_tuple",
|
|
"register_flop_formula",
|
|
"sdpa_backward_flop",
|
|
"sdpa_backward_flop_count",
|
|
"sdpa_flop",
|
|
"sdpa_flop_count",
|
|
"shape_wrapper",
|
|
"transpose_shape",
|
|
# torch.utils.hipify.hipify_python
|
|
"add_dim3",
|
|
"compute_stats",
|
|
"extract_arguments",
|
|
"file_add_header",
|
|
"file_specific_replacement",
|
|
"find_bracket_group",
|
|
"find_closure_group",
|
|
"find_parentheses_group",
|
|
"fix_static_global_kernels",
|
|
"get_hip_file_path",
|
|
"hip_header_magic",
|
|
"hipify",
|
|
"is_caffe2_gpu_file",
|
|
"is_cusparse_file",
|
|
"is_out_of_place",
|
|
"is_pytorch_file",
|
|
"is_special_file",
|
|
"match_extensions",
|
|
"matched_files_iter",
|
|
"openf",
|
|
"preprocess_file_and_save_result",
|
|
"preprocessor",
|
|
"processKernelLaunches",
|
|
"replace_extern_shared",
|
|
"replace_math_functions",
|
|
"str2bool",
|
|
# torch.utils.hooks
|
|
"unserializable_hook",
|
|
"warn_if_has_hooks",
|
|
# torch.utils.jit.log_extract
|
|
"extract_ir",
|
|
"load_graph_and_inputs",
|
|
"make_tensor_from_type",
|
|
"no_fuser",
|
|
"time_cpu",
|
|
"time_cuda",
|
|
# torch.utils.mkldnn
|
|
"to_mkldnn",
|
|
# torch.utils.mobile_optimizer
|
|
"generate_mobile_module_lints",
|
|
# torch.utils.tensorboard.summary
|
|
"audio",
|
|
"compute_curve",
|
|
"custom_scalars",
|
|
"draw_boxes",
|
|
"half_to_int",
|
|
"histogram",
|
|
"histogram_raw",
|
|
"hparams",
|
|
"image",
|
|
"image_boxes",
|
|
"int_to_half",
|
|
"make_histogram",
|
|
"make_image",
|
|
"make_video",
|
|
"mesh",
|
|
"pr_curve",
|
|
"pr_curve_raw",
|
|
"scalar",
|
|
"tensor_proto",
|
|
"text",
|
|
"video",
|
|
# torch.utils.throughput_benchmark
|
|
"format_time",
|
|
]
|
|
|
|
coverage_ignore_classes = [
|
|
# torch
|
|
"FatalError",
|
|
"QUInt2x4Storage",
|
|
"Size",
|
|
"Storage",
|
|
"Stream",
|
|
"Tensor",
|
|
"finfo",
|
|
"iinfo",
|
|
"qscheme",
|
|
"AggregationType",
|
|
"AliasDb",
|
|
"AnyType",
|
|
"Argument",
|
|
"ArgumentSpec",
|
|
"AwaitType",
|
|
"BenchmarkConfig",
|
|
"BenchmarkExecutionStats",
|
|
"Block",
|
|
"BoolType",
|
|
"BufferDict",
|
|
"CallStack",
|
|
"Capsule",
|
|
"ClassType",
|
|
"Code",
|
|
"CompleteArgumentSpec",
|
|
"ComplexType",
|
|
"ConcreteModuleType",
|
|
"ConcreteModuleTypeBuilder",
|
|
"DeepCopyMemoTable",
|
|
"DeserializationStorageContext",
|
|
"DeviceObjType",
|
|
"DictType",
|
|
"DispatchKey",
|
|
"DispatchKeySet",
|
|
"EnumType",
|
|
"ExcludeDispatchKeyGuard",
|
|
"ExecutionPlan",
|
|
"FileCheck",
|
|
"FloatType",
|
|
"FunctionSchema",
|
|
"Gradient",
|
|
"Graph",
|
|
"GraphExecutorState",
|
|
"IODescriptor",
|
|
"InferredType",
|
|
"IntType",
|
|
"InterfaceType",
|
|
"ListType",
|
|
"LockingLogger",
|
|
"MobileOptimizerType",
|
|
"ModuleDict",
|
|
"Node",
|
|
"NoneType",
|
|
"NoopLogger",
|
|
"NumberType",
|
|
"OperatorInfo",
|
|
"OptionalType",
|
|
"ParameterDict",
|
|
"PyObjectType",
|
|
"PyTorchFileReader",
|
|
"PyTorchFileWriter",
|
|
"RRefType",
|
|
"ScriptClass",
|
|
"ScriptClassFunction",
|
|
"ScriptDict",
|
|
"ScriptDictIterator",
|
|
"ScriptDictKeyIterator",
|
|
"ScriptList",
|
|
"ScriptListIterator",
|
|
"ScriptMethod",
|
|
"ScriptModule",
|
|
"ScriptModuleSerializer",
|
|
"ScriptObject",
|
|
"ScriptObjectProperty",
|
|
"SerializationStorageContext",
|
|
"StaticModule",
|
|
"StringType",
|
|
"SymIntType",
|
|
"SymBoolType",
|
|
"ThroughputBenchmark",
|
|
"TracingState",
|
|
"TupleType",
|
|
"Type",
|
|
"UnionType",
|
|
"Use",
|
|
"Value",
|
|
# torch.cuda
|
|
"BFloat16Storage",
|
|
"BFloat16Tensor",
|
|
"BoolStorage",
|
|
"BoolTensor",
|
|
"ByteStorage",
|
|
"ByteTensor",
|
|
"CharStorage",
|
|
"CharTensor",
|
|
"ComplexDoubleStorage",
|
|
"ComplexFloatStorage",
|
|
"CudaError",
|
|
"DeferredCudaCallError",
|
|
"DoubleStorage",
|
|
"DoubleTensor",
|
|
"FloatStorage",
|
|
"FloatTensor",
|
|
"HalfStorage",
|
|
"HalfTensor",
|
|
"IntStorage",
|
|
"IntTensor",
|
|
"LongStorage",
|
|
"LongTensor",
|
|
"ShortStorage",
|
|
"ShortTensor",
|
|
"cudaStatus",
|
|
# torch.cuda._sanitizer
|
|
"Access",
|
|
"AccessType",
|
|
"Await",
|
|
"CUDASanitizer",
|
|
"CUDASanitizerDispatchMode",
|
|
"CUDASanitizerErrors",
|
|
"EventHandler",
|
|
"SynchronizationError",
|
|
"UnsynchronizedAccessError",
|
|
# torch.distributed.elastic.multiprocessing.errors
|
|
"ChildFailedError",
|
|
"ProcessFailure",
|
|
# torch.distributions.constraints
|
|
"cat",
|
|
"greater_than",
|
|
"greater_than_eq",
|
|
"half_open_interval",
|
|
"independent",
|
|
"integer_interval",
|
|
"interval",
|
|
"less_than",
|
|
"multinomial",
|
|
"stack",
|
|
# torch.distributions.transforms
|
|
"AffineTransform",
|
|
"CatTransform",
|
|
"ComposeTransform",
|
|
"CorrCholeskyTransform",
|
|
"CumulativeDistributionTransform",
|
|
"ExpTransform",
|
|
"IndependentTransform",
|
|
"PowerTransform",
|
|
"ReshapeTransform",
|
|
"SigmoidTransform",
|
|
"SoftmaxTransform",
|
|
"SoftplusTransform",
|
|
"StackTransform",
|
|
"StickBreakingTransform",
|
|
"TanhTransform",
|
|
"Transform",
|
|
# torch.jit
|
|
"CompilationUnit",
|
|
"Error",
|
|
"Future",
|
|
"ScriptFunction",
|
|
# torch.onnx
|
|
"CheckerError",
|
|
"ExportTypes",
|
|
# torch.backends
|
|
"ContextProp",
|
|
"PropModule",
|
|
# torch.backends.cuda
|
|
"cuBLASModule",
|
|
"cuFFTPlanCache",
|
|
"cuFFTPlanCacheAttrContextProp",
|
|
"cuFFTPlanCacheManager",
|
|
# torch.distributed.algorithms.ddp_comm_hooks
|
|
"DDPCommHookType",
|
|
# torch.jit.mobile
|
|
"LiteScriptModule",
|
|
# torch.ao.nn.quantized.modules
|
|
"DeQuantize",
|
|
"Quantize",
|
|
# torch.utils.backcompat
|
|
"Warning",
|
|
# torch.ao.nn.intrinsic.modules.fused
|
|
"ConvAdd2d",
|
|
"ConvAddReLU2d",
|
|
"LinearBn1d",
|
|
"LinearLeakyReLU",
|
|
"LinearTanh",
|
|
# torch.ao.nn.intrinsic.qat.modules.conv_fused
|
|
"ConvBnReLU1d",
|
|
"ConvBnReLU2d",
|
|
"ConvBnReLU3d",
|
|
"ConvReLU1d",
|
|
"ConvReLU2d",
|
|
"ConvReLU3d",
|
|
# torch.ao.nn.intrinsic.qat.modules.linear_fused
|
|
"LinearBn1d",
|
|
# torch.ao.nn.intrinsic.qat.modules.linear_relu
|
|
"LinearReLU",
|
|
# torch.ao.nn.intrinsic.quantized.dynamic.modules.linear_relu
|
|
"LinearReLU",
|
|
# torch.ao.nn.intrinsic.quantized.modules.bn_relu
|
|
"BNReLU2d",
|
|
"BNReLU3d",
|
|
# torch.ao.nn.intrinsic.quantized.modules.conv_add
|
|
"ConvAdd2d",
|
|
"ConvAddReLU2d",
|
|
# torch.ao.nn.intrinsic.quantized.modules.conv_relu
|
|
"ConvReLU1d",
|
|
"ConvReLU2d",
|
|
"ConvReLU3d",
|
|
# torch.ao.nn.intrinsic.quantized.modules.linear_relu
|
|
"LinearLeakyReLU",
|
|
"LinearReLU",
|
|
"LinearTanh",
|
|
# torch.ao.nn.qat.modules.conv
|
|
"Conv1d",
|
|
"Conv2d",
|
|
"Conv3d",
|
|
# torch.ao.nn.qat.modules.embedding_ops
|
|
"Embedding",
|
|
"EmbeddingBag",
|
|
# torch.ao.nn.qat.modules.linear
|
|
"Linear",
|
|
# torch.ao.nn.quantizable.modules.activation
|
|
"MultiheadAttention",
|
|
# torch.ao.nn.quantizable.modules.rnn
|
|
"LSTM",
|
|
"LSTMCell",
|
|
# torch.ao.nn.quantized.dynamic.modules.conv
|
|
"Conv1d",
|
|
"Conv2d",
|
|
"Conv3d",
|
|
"ConvTranspose1d",
|
|
"ConvTranspose2d",
|
|
"ConvTranspose3d",
|
|
# torch.ao.nn.quantized.dynamic.modules.linear
|
|
"Linear",
|
|
# torch.ao.nn.quantized.dynamic.modules.rnn
|
|
"GRU",
|
|
"GRUCell",
|
|
"LSTM",
|
|
"LSTMCell",
|
|
"PackedParameter",
|
|
"RNNBase",
|
|
"RNNCell",
|
|
"RNNCellBase",
|
|
# torch.ao.nn.quantized.modules.activation
|
|
"ELU",
|
|
"Hardswish",
|
|
"LeakyReLU",
|
|
"MultiheadAttention",
|
|
"PReLU",
|
|
"ReLU6",
|
|
"Sigmoid",
|
|
"Softmax",
|
|
# torch.ao.nn.quantized.modules.batchnorm
|
|
"BatchNorm2d",
|
|
"BatchNorm3d",
|
|
# torch.ao.nn.quantized.modules.conv
|
|
"Conv1d",
|
|
"Conv2d",
|
|
"Conv3d",
|
|
"ConvTranspose1d",
|
|
"ConvTranspose2d",
|
|
"ConvTranspose3d",
|
|
# torch.ao.nn.quantized.modules.dropout
|
|
"Dropout",
|
|
# torch.ao.nn.quantized.modules.embedding_ops
|
|
"Embedding",
|
|
"EmbeddingBag",
|
|
"EmbeddingPackedParams",
|
|
# torch.ao.nn.quantized.modules.functional_modules
|
|
"FXFloatFunctional",
|
|
"FloatFunctional",
|
|
"QFunctional",
|
|
# torch.ao.nn.quantized.modules.linear
|
|
"Linear",
|
|
"LinearPackedParams",
|
|
# torch.ao.nn.quantized.modules.normalization
|
|
"GroupNorm",
|
|
"InstanceNorm1d",
|
|
"InstanceNorm2d",
|
|
"InstanceNorm3d",
|
|
"LayerNorm",
|
|
# torch.ao.nn.quantized.modules.rnn
|
|
"LSTM",
|
|
# torch.ao.nn.quantized.modules.utils
|
|
"WeightedQuantizedModule",
|
|
# torch.ao.nn.quantized.reference.modules.conv
|
|
"Conv1d",
|
|
"Conv2d",
|
|
"Conv3d",
|
|
"ConvTranspose1d",
|
|
"ConvTranspose2d",
|
|
"ConvTranspose3d",
|
|
# torch.ao.nn.quantized.reference.modules.linear
|
|
"Linear",
|
|
# torch.ao.nn.quantized.reference.modules.rnn
|
|
"GRU",
|
|
"GRUCell",
|
|
"LSTM",
|
|
"LSTMCell",
|
|
"RNNBase",
|
|
"RNNCell",
|
|
"RNNCellBase",
|
|
# torch.ao.nn.quantized.reference.modules.sparse
|
|
"Embedding",
|
|
"EmbeddingBag",
|
|
# torch.ao.nn.quantized.reference.modules.utils
|
|
"ReferenceQuantizedModule",
|
|
# torch.ao.nn.sparse.quantized.dynamic.linear
|
|
"Linear",
|
|
# torch.ao.nn.sparse.quantized.linear
|
|
"Linear",
|
|
"LinearPackedParams",
|
|
# torch.ao.nn.sparse.quantized.utils
|
|
"LinearBlockSparsePattern",
|
|
# torch.ao.ns.fx.graph_matcher
|
|
"SubgraphTypeRelationship",
|
|
# torch.ao.ns.fx.n_shadows_utils
|
|
"OutputProp",
|
|
# torch.ao.ns.fx.ns_types
|
|
"NSSingleResultValuesType",
|
|
"NSSubgraph",
|
|
# torch.ao.ns.fx.qconfig_multi_mapping
|
|
"QConfigMultiMapping",
|
|
# torch.ao.pruning.scheduler.base_scheduler
|
|
"BaseScheduler",
|
|
# torch.ao.pruning.scheduler.cubic_scheduler
|
|
"CubicSL",
|
|
# torch.ao.pruning.scheduler.lambda_scheduler
|
|
"LambdaSL",
|
|
# torch.ao.pruning.sparsifier.base_sparsifier
|
|
"BaseSparsifier",
|
|
# torch.ao.pruning.sparsifier.nearly_diagonal_sparsifier
|
|
"NearlyDiagonalSparsifier",
|
|
# torch.ao.pruning.sparsifier.utils
|
|
"FakeSparsity",
|
|
# torch.ao.pruning.sparsifier.weight_norm_sparsifier
|
|
"WeightNormSparsifier",
|
|
# torch.ao.quantization.backend_config.backend_config
|
|
"BackendConfig",
|
|
"BackendPatternConfig",
|
|
"DTypeConfig",
|
|
# torch.ao.quantization.fake_quantize
|
|
"FakeQuantize",
|
|
"FakeQuantizeBase",
|
|
"FixedQParamsFakeQuantize",
|
|
"FusedMovingAvgObsFakeQuantize",
|
|
# torch.ao.quantization.fx.fuse_handler
|
|
"DefaultFuseHandler",
|
|
"FuseHandler",
|
|
# torch.ao.quantization.fx.graph_module
|
|
"FusedGraphModule",
|
|
"ObservedGraphModule",
|
|
"ObservedStandaloneGraphModule",
|
|
# torch.ao.quantization.fx.quantize_handler
|
|
"BatchNormQuantizeHandler",
|
|
"BinaryOpQuantizeHandler",
|
|
"CatQuantizeHandler",
|
|
"ConvReluQuantizeHandler",
|
|
"CopyNodeQuantizeHandler",
|
|
"CustomModuleQuantizeHandler",
|
|
"DefaultNodeQuantizeHandler",
|
|
"EmbeddingQuantizeHandler",
|
|
"FixedQParamsOpQuantizeHandler",
|
|
"GeneralTensorShapeOpQuantizeHandler",
|
|
"LinearReLUQuantizeHandler",
|
|
"RNNDynamicQuantizeHandler",
|
|
"StandaloneModuleQuantizeHandler",
|
|
# torch.ao.quantization.fx.tracer
|
|
"QuantizationTracer",
|
|
"ScopeContextManager",
|
|
# torch.ao.quantization.fx.utils
|
|
"ObservedGraphModuleAttrs",
|
|
# torch.ao.quantization.observer
|
|
"FixedQParamsObserver",
|
|
"HistogramObserver",
|
|
"MinMaxObserver",
|
|
"MovingAverageMinMaxObserver",
|
|
"MovingAveragePerChannelMinMaxObserver",
|
|
"NoopObserver",
|
|
"ObserverBase",
|
|
"PerChannelMinMaxObserver",
|
|
"PlaceholderObserver",
|
|
"RecordingObserver",
|
|
"ReuseInputObserver",
|
|
"UniformQuantizationObserverBase",
|
|
"default_debug_observer",
|
|
"default_placeholder_observer",
|
|
"default_reuse_input_observer",
|
|
# torch.ao.quantization.pt2e.duplicate_dq_pass
|
|
"DuplicateDQPass",
|
|
# torch.ao.quantization.pt2e.port_metadata_pass
|
|
"PortNodeMetaForQDQ",
|
|
# torch.ao.quantization.qconfig
|
|
"QConfigDynamic",
|
|
# torch.ao.quantization.quant_type
|
|
"QuantType",
|
|
# torch.ao.quantization.quantizer.composable_quantizer
|
|
"ComposableQuantizer",
|
|
# torch.ao.quantization.quantizer.embedding_quantizer
|
|
"EmbeddingQuantizer",
|
|
# torch.ao.quantization.quantizer.quantizer
|
|
"DerivedQuantizationSpec",
|
|
"FixedQParamsQuantizationSpec",
|
|
"QuantizationAnnotation",
|
|
"QuantizationSpec",
|
|
"QuantizationSpecBase",
|
|
"SharedQuantizationSpec",
|
|
# torch.ao.quantization.quantizer.x86_inductor_quantizer
|
|
"X86InductorQuantizer",
|
|
# torch.ao.quantization.quantizer.xpu_inductor_quantizer
|
|
"XPUInductorQuantizer",
|
|
# torch.ao.quantization.quantizer.xnnpack_quantizer
|
|
"XNNPACKQuantizer",
|
|
# torch.ao.quantization.quantizer.xnnpack_quantizer_utils
|
|
"OperatorConfig",
|
|
"QuantizationConfig",
|
|
# torch.ao.quantization.stubs
|
|
"DeQuantStub",
|
|
"QuantStub",
|
|
"QuantWrapper",
|
|
# torch.ao.quantization.utils
|
|
"MatchAllNode",
|
|
# torch.backends.cudnn.rnn
|
|
"Unserializable",
|
|
# torch.amp.grad_scaler
|
|
"GradScaler",
|
|
"OptState",
|
|
# torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook
|
|
"PostLocalSGDState",
|
|
# torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook
|
|
"PowerSGDState",
|
|
# torch.distributed.algorithms.join
|
|
"Join",
|
|
"JoinHook",
|
|
"Joinable",
|
|
# torch.distributed.algorithms.model_averaging.averagers
|
|
"ModelAverager",
|
|
"PeriodicModelAverager",
|
|
# torch.distributed.algorithms.model_averaging.hierarchical_model_averager
|
|
"HierarchicalModelAverager",
|
|
# torch.distributed.argparse_util
|
|
"check_env",
|
|
"env",
|
|
# torch.distributed.checkpoint.api
|
|
"CheckpointException",
|
|
# torch.distributed.checkpoint.default_planner
|
|
"DefaultLoadPlanner",
|
|
"DefaultSavePlanner",
|
|
# torch.distributed.checkpoint.filesystem
|
|
"FileSystemReader",
|
|
"FileSystemWriter",
|
|
# torch.distributed.checkpoint.hf_storage
|
|
"HuggingFaceStorageReader",
|
|
"HuggingFaceStorageWriter",
|
|
# torch.distributed.checkpoint.quantized_hf_storage
|
|
"QuantizedHuggingFaceStorageReader",
|
|
# torch.distributed.checkpoint.metadata
|
|
"BytesStorageMetadata",
|
|
"ChunkStorageMetadata",
|
|
"Metadata",
|
|
"MetadataIndex",
|
|
# torch.distributed.checkpoint.planner
|
|
"LoadItemType",
|
|
"LoadPlanner",
|
|
"SavePlanner",
|
|
"WriteItemType",
|
|
# torch.distributed.checkpoint.state_dict
|
|
"DistributedStateDictOptions",
|
|
# torch.distributed.checkpoint.storage
|
|
"WriteResult",
|
|
# torch.distributed.collective_utils
|
|
"SyncPayload",
|
|
# torch.distributed.distributed_c10d
|
|
"AllToAllOptions",
|
|
"AllreduceCoalescedOptions",
|
|
"AllreduceOptions",
|
|
"Backend",
|
|
"BackendConfig",
|
|
"BarrierOptions",
|
|
"BroadcastOptions",
|
|
"DebugLevel",
|
|
"GatherOptions",
|
|
"GroupMember",
|
|
"ProcessGroup",
|
|
"ProcessGroupGloo",
|
|
"ProcessGroupNCCL",
|
|
"ReduceOptions",
|
|
"ReduceScatterOptions",
|
|
"ScatterOptions",
|
|
"Work",
|
|
"group",
|
|
# torch.distributed.elastic.agent.server.api
|
|
"ElasticAgent",
|
|
"RunResult",
|
|
"SimpleElasticAgent",
|
|
"WorkerSpec",
|
|
# torch.distributed.elastic.events.api
|
|
"Event",
|
|
"RdzvEvent",
|
|
# torch.distributed.elastic.metrics.api
|
|
"ConsoleMetricHandler",
|
|
"MetricData",
|
|
"MetricHandler",
|
|
"MetricStream",
|
|
"MetricsConfig",
|
|
"NullMetricHandler",
|
|
# torch.distributed.elastic.multiprocessing.api
|
|
"MultiprocessContext",
|
|
"PContext",
|
|
"RunProcsResult",
|
|
"SignalException",
|
|
"Std",
|
|
"SubprocessContext",
|
|
"SubprocessHandler",
|
|
# torch.distributed.elastic.multiprocessing.tail_log
|
|
"TailLog",
|
|
# torch.distributed.elastic.rendezvous.api
|
|
"RendezvousHandler",
|
|
"RendezvousHandlerRegistry",
|
|
"RendezvousParameters",
|
|
# torch.distributed.elastic.rendezvous.dynamic_rendezvous
|
|
"DynamicRendezvousHandler",
|
|
"RendezvousSettings",
|
|
# torch.distributed.elastic.rendezvous.etcd_rendezvous
|
|
"EtcdRendezvous",
|
|
"EtcdRendezvousHandler",
|
|
"EtcdRendezvousRetryImmediately",
|
|
"EtcdRendezvousRetryableFailure",
|
|
# torch.distributed.elastic.rendezvous.etcd_server
|
|
"EtcdServer",
|
|
# torch.distributed.elastic.rendezvous.static_tcp_rendezvous
|
|
"StaticTCPRendezvous",
|
|
# torch.distributed.elastic.timer.api
|
|
"RequestQueue",
|
|
"TimerClient",
|
|
"TimerServer",
|
|
# torch.distributed.elastic.timer.file_based_local_timer
|
|
"FileTimerClient",
|
|
"FileTimerRequest",
|
|
"FileTimerServer",
|
|
# torch.distributed.elastic.timer.local_timer
|
|
"LocalTimerClient",
|
|
"LocalTimerServer",
|
|
"MultiprocessingRequestQueue",
|
|
# torch.distributed.elastic.utils.api
|
|
"macros",
|
|
# torch.distributed.elastic.utils.data.cycling_iterator
|
|
"CyclingIterator",
|
|
# torch.distributed.elastic.utils.data.elastic_distributed_sampler
|
|
"ElasticDistributedSampler",
|
|
# torch.distributed.fsdp.api
|
|
"StateDictType",
|
|
# torch.distributed.fsdp.fully_sharded_data_parallel
|
|
"FullyShardedDataParallel",
|
|
"OptimStateKeyType",
|
|
# torch.distributed.fsdp.sharded_grad_scaler
|
|
"ShardedGradScaler",
|
|
# torch.distributed.fsdp.wrap
|
|
"CustomPolicy",
|
|
"ModuleWrapPolicy",
|
|
# torch.distributed.launcher.api
|
|
"LaunchConfig",
|
|
"elastic_launch",
|
|
# torch.distributed.optim.optimizer
|
|
"DistributedOptimizer",
|
|
# torch.distributed.optim.post_localSGD_optimizer
|
|
"PostLocalSGDOptimizer",
|
|
# torch.distributed.optim.zero_redundancy_optimizer
|
|
"ZeroRedundancyOptimizer",
|
|
# torch.distributed.rpc.api
|
|
"AllGatherStates",
|
|
"RRef",
|
|
# torch.distributed.rpc.backend_registry
|
|
"BackendValue",
|
|
# torch.distributed.rpc.internal
|
|
"PythonUDF",
|
|
"RPCExecMode",
|
|
"RemoteException",
|
|
# torch.distributed.rpc.rref_proxy
|
|
"RRefProxy",
|
|
# torch.distributed.tensor.parallel.fsdp
|
|
"DTensorExtensions",
|
|
# torch.distributed.tensor.parallel.style
|
|
"ParallelStyle",
|
|
# torch.distributions.logistic_normal
|
|
"LogisticNormal",
|
|
# torch.distributions.one_hot_categorical
|
|
"OneHotCategoricalStraightThrough",
|
|
# torch.distributions.relaxed_categorical
|
|
"ExpRelaxedCategorical",
|
|
# torch.distributions.utils
|
|
"lazy_property",
|
|
# torch.export.unflatten
|
|
"UnflattenedModule",
|
|
# torch.export.exported_program
|
|
"ConstantArgument",
|
|
"ExportedProgram",
|
|
# torch.fx.experimental.accelerator_partitioner
|
|
"DAG",
|
|
"DAGNode",
|
|
"PartitionResult",
|
|
"Partitioner",
|
|
# torch.fx.experimental.const_fold
|
|
"FoldedGraphModule",
|
|
# torch.fx.experimental.graph_gradual_typechecker
|
|
"Refine",
|
|
# torch.fx.experimental.meta_tracer
|
|
"MetaAttribute",
|
|
"MetaDeviceAttribute",
|
|
"MetaProxy",
|
|
"MetaTracer",
|
|
# torch.fx.experimental.migrate_gradual_types.constraint
|
|
"ApplyBroadcasting",
|
|
"BVar",
|
|
"BinConstraintD",
|
|
"BinConstraintT",
|
|
"BinaryConstraint",
|
|
"CalcConv",
|
|
"CalcMaxPool",
|
|
"CalcProduct",
|
|
"CanReshape",
|
|
"Conj",
|
|
"Constraint",
|
|
"DGreatestUpperBound",
|
|
"DVar",
|
|
"Disj",
|
|
"F",
|
|
"GetItem",
|
|
"GetItemTensor",
|
|
"IndexSelect",
|
|
"Prod",
|
|
"T",
|
|
"TGreatestUpperBound",
|
|
"TVar",
|
|
"Transpose",
|
|
# torch.fx.experimental.migrate_gradual_types.constraint_generator
|
|
"ConstraintGenerator",
|
|
# torch.fx.experimental.normalize
|
|
"NormalizeArgs",
|
|
"NormalizeOperators",
|
|
# torch.fx.experimental.optimization
|
|
"MklSubgraph",
|
|
"UnionFind",
|
|
# torch.fx.experimental.partitioner_utils
|
|
"Device",
|
|
"Partition",
|
|
"PartitionLatency",
|
|
"PartitionMode",
|
|
"PartitionerConfig",
|
|
# torch.fx.experimental.proxy_tensor
|
|
"DecompositionInterpreter",
|
|
"PreDispatchTorchFunctionMode",
|
|
"ProxySymDispatchMode",
|
|
"ProxyTorchDispatchMode",
|
|
"PythonKeyTracer",
|
|
# torch.fx.experimental.recording
|
|
"FakeTensorMeta",
|
|
"NotEqualError",
|
|
"ShapeEnvEvent",
|
|
# torch.fx.experimental.refinement_types
|
|
"Equality",
|
|
# torch.fx.experimental.rewriter
|
|
"AST_Rewriter",
|
|
"RewritingTracer",
|
|
# torch.fx.experimental.schema_type_annotation
|
|
"AnnotateTypesWithSchema",
|
|
# torch.fx.experimental.sym_node
|
|
"SymNode",
|
|
# torch.fx.experimental.symbolic_shapes
|
|
"Constraint",
|
|
"ConstraintViolationError",
|
|
"DynamicDimConstraintPrinter",
|
|
"GuardOnDataDependentSymNode",
|
|
"PendingUnbackedSymbolNotFound",
|
|
"LoggingShapeGuardPrinter",
|
|
"SymExprPrinter",
|
|
"RelaxedUnspecConstraint",
|
|
"RuntimeAssert",
|
|
"ShapeGuardPrinter",
|
|
"ShapeGuardPythonPrinter",
|
|
"SymDispatchMode",
|
|
"SymbolicContext",
|
|
# torch.fx.experimental.unification.match
|
|
"Dispatcher",
|
|
"VarDispatcher",
|
|
# torch.fx.experimental.unification.multipledispatch.conflict
|
|
"AmbiguityWarning",
|
|
# torch.fx.experimental.unification.multipledispatch.dispatcher
|
|
"Dispatcher",
|
|
"MDNotImplementedError",
|
|
"MethodDispatcher",
|
|
# torch.fx.experimental.unification.multipledispatch.variadic
|
|
"Variadic",
|
|
"VariadicSignatureMeta",
|
|
"VariadicSignatureType",
|
|
# torch.fx.experimental.unification.variable
|
|
"Var",
|
|
# torch.fx.experimental.validator
|
|
"BisectValidationException",
|
|
"PopulateValidator",
|
|
"SympyToZ3",
|
|
"ValidationException",
|
|
# torch.fx.graph
|
|
"PythonCode",
|
|
# torch.fx.immutable_collections
|
|
"immutable_dict",
|
|
"immutable_list",
|
|
# torch.fx.interpreter
|
|
"Interpreter",
|
|
# torch.fx.operator_schemas
|
|
"ArgsKwargsPair",
|
|
# torch.fx.passes.backends.cudagraphs
|
|
"CudaGraphsSupport",
|
|
# torch.fx.passes.dialect.common.cse_pass
|
|
"CSEPass",
|
|
# torch.fx.passes.fake_tensor_prop
|
|
"FakeTensorProp",
|
|
# torch.fx.passes.graph_drawer
|
|
"FxGraphDrawer",
|
|
# torch.fx.passes.graph_manipulation
|
|
"size_bytes",
|
|
# torch.fx.passes.infra.partitioner
|
|
"CapabilityBasedPartitioner",
|
|
"Partition",
|
|
# torch.fx.passes.infra.pass_base
|
|
"PassBase",
|
|
"PassResult",
|
|
# torch.fx.passes.infra.pass_manager
|
|
"PassManager",
|
|
# torch.fx.passes.net_min_base
|
|
"FxNetMinimizerBadModuleError",
|
|
"FxNetMinimizerResultMismatchError",
|
|
"FxNetMinimizerRunFuncError",
|
|
# torch.fx.passes.operator_support
|
|
"OpSupports",
|
|
"OperatorSupport",
|
|
"OperatorSupportBase",
|
|
# torch.fx.passes.pass_manager
|
|
"PassManager",
|
|
# torch.fx.passes.shape_prop
|
|
"ShapeProp",
|
|
# torch.fx.passes.split_module
|
|
"Partition",
|
|
# torch.fx.passes.split_utils
|
|
"Component",
|
|
# torch.fx.passes.splitter_base
|
|
"FxNetAccNodesFinder",
|
|
"FxNetSplitterInternalError",
|
|
"SplitResult",
|
|
"Subgraph",
|
|
# torch.fx.passes.tests.test_pass_manager
|
|
"TestPassManager",
|
|
# torch.fx.passes.tools_common
|
|
"FxNetAccFusionsFinder",
|
|
# torch.fx.passes.utils.common
|
|
"HolderModule",
|
|
# torch.fx.passes.utils.matcher_utils
|
|
"InternalMatch",
|
|
"SubgraphMatcher",
|
|
# torch.fx.passes.utils.source_matcher_utils
|
|
"SourcePartition",
|
|
# torch.fx.proxy
|
|
"Attribute",
|
|
"ParameterProxy",
|
|
"Proxy",
|
|
"Scope",
|
|
"ScopeContextManager",
|
|
"TraceError",
|
|
"TracerBase",
|
|
# torch.fx.subgraph_rewriter
|
|
"Match",
|
|
"ReplacedPatterns",
|
|
# torch.jit.annotations
|
|
"EvalEnv",
|
|
"Module",
|
|
# torch.jit.frontend
|
|
"Builder",
|
|
"ExprBuilder",
|
|
"FrontendError",
|
|
"FrontendTypeError",
|
|
"NotSupportedError",
|
|
"StmtBuilder",
|
|
"UnsupportedNodeError",
|
|
"WithItemBuilder",
|
|
# torch.masked.maskedtensor.core
|
|
"MaskedTensor",
|
|
# torch.multiprocessing.pool
|
|
"Pool",
|
|
# torch.multiprocessing.queue
|
|
"ConnectionWrapper",
|
|
"Queue",
|
|
"SimpleQueue",
|
|
# torch.multiprocessing.reductions
|
|
"SharedCache",
|
|
# torch.multiprocessing.spawn
|
|
"ProcessContext",
|
|
"ProcessException",
|
|
"ProcessExitedException",
|
|
"ProcessRaisedException",
|
|
"SpawnContext",
|
|
# torch.nn.cpp
|
|
"ModuleWrapper",
|
|
"OrderedDictWrapper",
|
|
# torch.nn.modules.container
|
|
"Container", # deprecated
|
|
# torch.nn.modules.linear
|
|
"NonDynamicallyQuantizableLinear",
|
|
# torch.nn.modules.module
|
|
# TODO: causes multiple sphinx warnings
|
|
# WARNING: more than one target found for cross-reference 'Module'
|
|
"Module",
|
|
# torch.nn.modules.loss
|
|
"NLLLoss2d", # deprecated
|
|
# torch.nn.modules.normalization
|
|
"CrossMapLRN2d",
|
|
# torch.nn.parallel.data_parallel
|
|
"DataParallel",
|
|
# torch.nn.parallel.distributed
|
|
"DistributedDataParallel",
|
|
# torch.nn.parameter
|
|
"UninitializedTensorMixin",
|
|
# torch.nn.utils.parametrize
|
|
"ParametrizationList",
|
|
# torch.nn.utils.prune
|
|
"CustomFromMask",
|
|
"Identity",
|
|
"L1Unstructured",
|
|
"RandomUnstructured",
|
|
# torch.nn.utils.rnn
|
|
"PackedSequence",
|
|
"PackedSequence_",
|
|
# torch.nn.utils.spectral_norm
|
|
"SpectralNorm",
|
|
"SpectralNormLoadStateDictPreHook",
|
|
"SpectralNormStateDictHook",
|
|
# torch.nn.utils.weight_norm
|
|
"WeightNorm",
|
|
# torch.onnx.errors
|
|
"OnnxExporterError",
|
|
"OnnxExporterWarning",
|
|
"SymbolicValueError",
|
|
"UnsupportedOperatorError",
|
|
# torch.onnx.verification
|
|
"OnnxBackend",
|
|
"OnnxTestCaseRepro",
|
|
# torch.optim.optimizer
|
|
"Optimizer",
|
|
# torch.overrides
|
|
"BaseTorchFunctionMode",
|
|
"TorchFunctionMode",
|
|
# torch.package.file_structure_representation
|
|
"Directory",
|
|
# torch.package.glob_group
|
|
"GlobGroup",
|
|
# torch.package.importer
|
|
"Importer",
|
|
"ObjMismatchError",
|
|
"ObjNotFoundError",
|
|
"OrderedImporter",
|
|
# torch.package.package_exporter
|
|
"PackageExporter",
|
|
"PackagingErrorReason",
|
|
# torch.package.package_importer
|
|
"PackageImporter",
|
|
# torch.profiler.profiler
|
|
"ExecutionTraceObserver",
|
|
"profile",
|
|
# torch.return_types
|
|
"aminmax",
|
|
"aminmax_out",
|
|
"cummax",
|
|
"cummax_out",
|
|
"cummin",
|
|
"cummin_out",
|
|
"frexp",
|
|
"frexp_out",
|
|
"geqrf",
|
|
"geqrf_out",
|
|
"histogram",
|
|
"histogram_out",
|
|
"histogramdd",
|
|
"kthvalue",
|
|
"kthvalue_out",
|
|
"linalg_cholesky_ex",
|
|
"linalg_cholesky_ex_out",
|
|
"linalg_eig",
|
|
"linalg_eig_out",
|
|
"linalg_eigh",
|
|
"linalg_eigh_out",
|
|
"linalg_inv_ex",
|
|
"linalg_inv_ex_out",
|
|
"linalg_ldl_factor",
|
|
"linalg_ldl_factor_ex",
|
|
"linalg_ldl_factor_ex_out",
|
|
"linalg_ldl_factor_out",
|
|
"linalg_lstsq",
|
|
"linalg_lstsq_out",
|
|
"linalg_lu",
|
|
"linalg_lu_factor",
|
|
"linalg_lu_factor_ex",
|
|
"linalg_lu_factor_ex_out",
|
|
"linalg_lu_factor_out",
|
|
"linalg_lu_out",
|
|
"linalg_qr",
|
|
"linalg_qr_out",
|
|
"linalg_slogdet",
|
|
"linalg_slogdet_out",
|
|
"linalg_solve_ex",
|
|
"linalg_solve_ex_out",
|
|
"linalg_svd",
|
|
"linalg_svd_out",
|
|
"lu_unpack",
|
|
"lu_unpack_out",
|
|
"max",
|
|
"max_out",
|
|
"median",
|
|
"median_out",
|
|
"min",
|
|
"min_out",
|
|
"mode",
|
|
"mode_out",
|
|
"nanmedian",
|
|
"nanmedian_out",
|
|
"qr",
|
|
"qr_out",
|
|
"slogdet",
|
|
"slogdet_out",
|
|
"sort",
|
|
"sort_out",
|
|
"svd",
|
|
"svd_out",
|
|
"topk",
|
|
"topk_out",
|
|
"triangular_solve",
|
|
"triangular_solve_out",
|
|
# torch.serialization
|
|
"LoadEndianness",
|
|
"SourceChangeWarning",
|
|
# torch.sparse.semi_structured
|
|
"SparseSemiStructuredTensor",
|
|
# torch.storage
|
|
"UntypedStorage",
|
|
# torch.torch_version
|
|
"TorchVersion",
|
|
# torch.types
|
|
"SymInt",
|
|
# torch.utils.benchmark.examples.compare
|
|
"FauxTorch",
|
|
# torch.utils.benchmark.examples.spectral_ops_fuzz_test
|
|
"Benchmark",
|
|
# torch.utils.benchmark.op_fuzzers.binary
|
|
"BinaryOpFuzzer",
|
|
# torch.utils.benchmark.op_fuzzers.sparse_binary
|
|
"BinaryOpSparseFuzzer",
|
|
# torch.utils.benchmark.op_fuzzers.sparse_unary
|
|
"UnaryOpSparseFuzzer",
|
|
# torch.utils.benchmark.op_fuzzers.spectral
|
|
"SpectralOpFuzzer",
|
|
# torch.utils.benchmark.op_fuzzers.unary
|
|
"UnaryOpFuzzer",
|
|
# torch.utils.benchmark.utils.common
|
|
"Measurement",
|
|
"TaskSpec",
|
|
# torch.utils.benchmark.utils.compare
|
|
"Colorize",
|
|
"Compare",
|
|
"Table",
|
|
# torch.utils.benchmark.utils.fuzzer
|
|
"FuzzedParameter",
|
|
"FuzzedTensor",
|
|
"Fuzzer",
|
|
"ParameterAlias",
|
|
# torch.utils.benchmark.utils.sparse_fuzzer
|
|
"FuzzedSparseTensor",
|
|
# torch.utils.benchmark.utils.timer
|
|
"CPPTimer",
|
|
"Language",
|
|
"Timer",
|
|
# torch.utils.benchmark.utils.valgrind_wrapper.timer_interface
|
|
"CallgrindStats",
|
|
"CopyIfCallgrind",
|
|
"FunctionCount",
|
|
"FunctionCounts",
|
|
"GlobalsBridge",
|
|
"Serialization",
|
|
# torch.utils.bundled_inputs
|
|
"InflatableArg",
|
|
# torch.utils.checkpoint
|
|
"CheckpointError",
|
|
"CheckpointFunction",
|
|
"DefaultDeviceType",
|
|
# torch.utils.collect_env
|
|
"SystemEnv",
|
|
# torch.utils.cpp_extension
|
|
"BuildExtension",
|
|
# torch.utils.data.dataloader
|
|
"DataLoader",
|
|
# torch.utils.data.datapipes.dataframe.dataframe_wrapper
|
|
"PandasWrapper",
|
|
"default_wrapper",
|
|
# torch.utils.data.datapipes.dataframe.dataframes
|
|
"Capture",
|
|
"CaptureA",
|
|
"CaptureAdd",
|
|
"CaptureCall",
|
|
"CaptureControl",
|
|
"CaptureDataFrame",
|
|
"CaptureDataFrameWithDataPipeOps",
|
|
"CaptureF",
|
|
"CaptureGetAttr",
|
|
"CaptureGetItem",
|
|
"CaptureInitial",
|
|
"CaptureLikeMock",
|
|
"CaptureMul",
|
|
"CaptureSetItem",
|
|
"CaptureSub",
|
|
"CaptureVariable",
|
|
"CaptureVariableAssign",
|
|
"DataFrameTracedOps",
|
|
"DataFrameTracer",
|
|
# torch.utils.data.datapipes.dataframe.datapipes
|
|
"ConcatDataFramesPipe",
|
|
"DataFramesAsTuplesPipe",
|
|
"ExampleAggregateAsDataFrames",
|
|
"FilterDataFramesPipe",
|
|
"PerRowDataFramesPipe",
|
|
"ShuffleDataFramesPipe",
|
|
# torch.utils.data.datapipes.dataframe.structures
|
|
"DataChunkDF",
|
|
# torch.utils.data.datapipes.datapipe
|
|
"DFIterDataPipe",
|
|
"DataChunk",
|
|
"IterDataPipe",
|
|
"MapDataPipe",
|
|
# torch.utils.data.datapipes.iter.callable
|
|
"CollatorIterDataPipe",
|
|
"MapperIterDataPipe",
|
|
# torch.utils.data.datapipes.iter.combinatorics
|
|
"SamplerIterDataPipe",
|
|
"ShufflerIterDataPipe",
|
|
# torch.utils.data.datapipes.iter.combining
|
|
"ConcaterIterDataPipe",
|
|
"DemultiplexerIterDataPipe",
|
|
"ForkerIterDataPipe",
|
|
"MultiplexerIterDataPipe",
|
|
"ZipperIterDataPipe",
|
|
# torch.utils.data.datapipes.iter.filelister
|
|
"FileListerIterDataPipe",
|
|
# torch.utils.data.datapipes.iter.fileopener
|
|
"FileOpenerIterDataPipe",
|
|
# torch.utils.data.datapipes.iter.grouping
|
|
"BatcherIterDataPipe",
|
|
"GrouperIterDataPipe",
|
|
"UnBatcherIterDataPipe",
|
|
# torch.utils.data.datapipes.iter.routeddecoder
|
|
"RoutedDecoderIterDataPipe",
|
|
# torch.utils.data.datapipes.iter.selecting
|
|
"FilterIterDataPipe",
|
|
# torch.utils.data.datapipes.iter.sharding
|
|
"SHARDING_PRIORITIES",
|
|
"ShardingFilterIterDataPipe",
|
|
# torch.utils.data.datapipes.iter.utils
|
|
"IterableWrapperIterDataPipe",
|
|
# torch.utils.data.datapipes.map.callable
|
|
"MapperMapDataPipe",
|
|
# torch.utils.data.datapipes.map.combinatorics
|
|
"ShufflerIterDataPipe",
|
|
# torch.utils.data.datapipes.map.combining
|
|
"ConcaterMapDataPipe",
|
|
"ZipperMapDataPipe",
|
|
# torch.utils.data.datapipes.map.grouping
|
|
"BatcherMapDataPipe",
|
|
# torch.utils.data.datapipes.map.utils
|
|
"SequenceWrapperMapDataPipe",
|
|
# torch.utils.data.datapipes.utils.decoder
|
|
"Decoder",
|
|
"ImageHandler",
|
|
"MatHandler",
|
|
# torch.utils.data.dataset
|
|
"ConcatDataset",
|
|
# torch.utils.data.distributed
|
|
"DistributedSampler",
|
|
# torch.utils.dlpack
|
|
"DLDeviceType",
|
|
# torch.utils.file_baton
|
|
"FileBaton",
|
|
# torch.utils.flop_counter
|
|
"FlopCounterMode",
|
|
# torch.utils.hipify.hipify_python
|
|
"CurrentState",
|
|
"GeneratedFileCleaner",
|
|
"HipifyResult",
|
|
"InputError",
|
|
"Trie",
|
|
"bcolors",
|
|
# torch.utils.hooks
|
|
"BackwardHook",
|
|
"RemovableHandle",
|
|
# torch.utils.mkldnn
|
|
"MkldnnBatchNorm",
|
|
"MkldnnConv1d",
|
|
"MkldnnConv2d",
|
|
"MkldnnConv3d",
|
|
"MkldnnLinear",
|
|
"MkldnnPrelu",
|
|
# torch.utils.mobile_optimizer
|
|
"LintCode",
|
|
# torch.utils.show_pickle
|
|
"DumpUnpickler",
|
|
"FakeClass",
|
|
"FakeObject",
|
|
# torch.utils.tensorboard.writer
|
|
"FileWriter",
|
|
"SummaryWriter",
|
|
# torch.utils.throughput_benchmark
|
|
"ExecutionStats",
|
|
# torch.utils.weak
|
|
"WeakIdKeyDictionary",
|
|
"WeakIdRef",
|
|
"WeakTensorKeyDictionary",
|
|
]
|
|
|
|
# The suffix(es) of source filenames.
|
|
# You can specify multiple suffix as a list of string:
|
|
#
|
|
# source_suffix = ['.rst', '.md']
|
|
source_suffix = ".rst"
|
|
|
|
# The master toctree document.
|
|
master_doc = "index"
|
|
|
|
|
|
# Use the linkcode extension to override [SOURCE] links to point
|
|
# to the repo. Use the torch_version variable defined above to
|
|
# determine link
|
|
def linkcode_resolve(domain, info):
|
|
if domain != "py":
|
|
return None
|
|
if not info["module"]:
|
|
return None
|
|
|
|
try:
|
|
module = __import__(info["module"], fromlist=[""])
|
|
obj = module
|
|
for part in info["fullname"].split("."):
|
|
obj = getattr(obj, part)
|
|
# Get the source file and line number
|
|
obj = inspect.unwrap(obj)
|
|
fn = inspect.getsourcefile(obj)
|
|
source, lineno = inspect.getsourcelines(obj)
|
|
except Exception:
|
|
return None
|
|
|
|
# Determine the tag based on the torch_version
|
|
if RELEASE:
|
|
version_parts = torch_version.split(
|
|
"."
|
|
) # For release versions, format as "vX.Y.Z" for correct path in repo
|
|
patch_version = (
|
|
version_parts[2].split("+")[0].split("a")[0]
|
|
) # assuming a0 always comes after release version in versions.txt
|
|
version_path = f"v{version_parts[0]}.{version_parts[1]}.{patch_version}"
|
|
else:
|
|
version_path = torch.version.git_version
|
|
fn = os.path.relpath(fn, start=os.path.dirname(torch.__file__))
|
|
return (
|
|
f"https://github.com/pytorch/pytorch/blob/{version_path}/torch/{fn}#L{lineno}"
|
|
)
|
|
|
|
|
|
# The language for content autogenerated by Sphinx. Refer to documentation
|
|
# for a list of supported languages.
|
|
#
|
|
# This is also used if you do content translation via gettext catalogs.
|
|
# Usually you set "language" from the command line for these cases.
|
|
language = "en"
|
|
|
|
# List of patterns, relative to source directory, that match files and
|
|
# directories to ignore when looking for source files.
|
|
# This patterns also effect to html_static_path and html_extra_path
|
|
exclude_patterns = []
|
|
|
|
# The name of the Pygments (syntax highlighting) style to use.
|
|
pygments_style = "sphinx"
|
|
|
|
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
|
# Disable docstring inheritance
|
|
autodoc_inherit_docstrings = False
|
|
|
|
# Show type hints in the description
|
|
autodoc_typehints = "description"
|
|
|
|
# Add parameter types if the parameter is documented in the docstring
|
|
autodoc_typehints_description_target = "documented_params"
|
|
|
|
# Type aliases for common types
|
|
# Sphinx type aliases only works with Postponed Evaluation of Annotations
|
|
# (PEP 563) enabled (via `from __future__ import annotations`), which keeps the
|
|
# type annotations in string form instead of resolving them to actual types.
|
|
# However, PEP 563 does not work well with JIT, which uses the type information
|
|
# to generate the code. Therefore, the following dict does not have any effect
|
|
# until PEP 563 is supported by JIT and enabled in files.
|
|
autodoc_type_aliases = {
|
|
"_size_1_t": "int or tuple[int]",
|
|
"_size_2_t": "int or tuple[int, int]",
|
|
"_size_3_t": "int or tuple[int, int, int]",
|
|
"_size_4_t": "int or tuple[int, int, int, int]",
|
|
"_size_5_t": "int or tuple[int, int, int, int, int]",
|
|
"_size_6_t": "int or tuple[int, int, int, int, int, int]",
|
|
"_size_any_opt_t": "int or None or tuple",
|
|
"_size_2_opt_t": "int or None or 2-tuple",
|
|
"_size_3_opt_t": "int or None or 3-tuple",
|
|
"_ratio_2_t": "float or tuple[float, float]",
|
|
"_ratio_3_t": "float or tuple[float, float, float]",
|
|
"_ratio_any_t": "float or tuple",
|
|
"_tensor_list_t": "Tensor or tuple[Tensor]",
|
|
}
|
|
|
|
# Enable overriding of function signatures in the first line of the docstring.
|
|
autodoc_docstring_signature = True
|
|
|
|
# -- katex javascript in header
|
|
#
|
|
# def setup(app):
|
|
# app.add_javascript("https://cdn.jsdelivr.net/npm/katex@0.10.0-beta/dist/katex.min.js")
|
|
|
|
|
|
# -- Options for HTML output ----------------------------------------------
|
|
#
|
|
# The theme to use for HTML and HTML Help pages. See the documentation for
|
|
# a list of builtin themes.
|
|
#
|
|
#
|
|
#
|
|
|
|
|
|
# Theme options are theme-specific and customize the look and feel of a theme
|
|
# further. For a list of options available for each theme, see the
|
|
# documentation.
|
|
|
|
# Add any paths that contain custom static files (such as style sheets) here,
|
|
# relative to this directory. They are copied after the builtin static files,
|
|
# so a file named "default.css" will overwrite the builtin "default.css".
|
|
|
|
html_css_files = [
|
|
"css/jit.css",
|
|
"css/custom.css",
|
|
"https://cdn.jsdelivr.net/npm/katex@0.10.0-beta/dist/katex.min.css",
|
|
]
|
|
|
|
html_js_files = ["js/runllm-widget.js"]
|
|
|
|
from sphinx.ext.coverage import CoverageBuilder
|
|
|
|
|
|
# NB: Due to some duplications of the following modules/functions, we keep
|
|
# them as expected failures for the time being instead of return 1
|
|
ignore_duplicated_modules = {
|
|
"torch.nn.utils.weight_norm",
|
|
"torch.nn.utils.spectral_norm",
|
|
"torch.nn.parallel.data_parallel",
|
|
"torch.ao.quantization.quantize",
|
|
}
|
|
|
|
|
|
def coverage_post_process(app, exception):
|
|
if exception is not None:
|
|
return
|
|
|
|
# Only run this test for the coverage build
|
|
if not isinstance(app.builder, CoverageBuilder):
|
|
return
|
|
|
|
if not torch.distributed.is_available():
|
|
raise RuntimeError(
|
|
"The coverage tool cannot run with a version "
|
|
"of PyTorch that was built with USE_DISTRIBUTED=0 "
|
|
"as this module's API changes."
|
|
)
|
|
|
|
# These are all the modules that have "automodule" in an rst file
|
|
# These modules are the ones for which coverage is checked
|
|
# Here, we make sure that no module is missing from that list
|
|
modules = app.env.domaindata["py"]["modules"]
|
|
|
|
# We go through all the torch submodules and make sure they are
|
|
# properly tested
|
|
missing = set()
|
|
|
|
def is_not_internal(modname):
|
|
split_name = modname.split(".")
|
|
for name in split_name:
|
|
if name[0] == "_":
|
|
return False
|
|
return True
|
|
|
|
# The walk function does not return the top module
|
|
if "torch" not in modules:
|
|
missing.add("torch")
|
|
|
|
for _, modname, ispkg in pkgutil.walk_packages(
|
|
path=torch.__path__, prefix=torch.__name__ + "."
|
|
):
|
|
if is_not_internal(modname):
|
|
if modname not in modules and modname not in ignore_duplicated_modules:
|
|
missing.add(modname)
|
|
|
|
output = []
|
|
|
|
if missing:
|
|
mods = ", ".join(missing)
|
|
output.append(
|
|
f"\nYou added the following module(s) to the PyTorch namespace '{mods}' "
|
|
"but they have no corresponding entry in a doc .rst file. You should "
|
|
"either make sure that the .rst file that contains the module's documentation "
|
|
"properly contains either '.. automodule:: mod_name' (if you do not want "
|
|
"the paragraph added by the automodule, you can simply use '.. py:module:: mod_name') "
|
|
" or make the module private (by appending an '_' at the beginning of its name)."
|
|
)
|
|
|
|
# The output file is hard-coded by the coverage tool
|
|
# Our CI is setup to fail if any line is added to this file
|
|
output_file = path.join(app.outdir, "python.txt")
|
|
|
|
if output:
|
|
with open(output_file, "a") as f:
|
|
for o in output:
|
|
f.write(o)
|
|
|
|
|
|
def process_docstring(app, what_, name, obj, options, lines):
|
|
"""
|
|
Custom process to transform docstring lines Remove "Ignore" blocks
|
|
|
|
Args:
|
|
app (sphinx.application.Sphinx): the Sphinx application object
|
|
|
|
what (str):
|
|
the type of the object which the docstring belongs to (one of
|
|
"module", "class", "exception", "function", "method", "attribute")
|
|
|
|
name (str): the fully qualified name of the object
|
|
|
|
obj: the object itself
|
|
|
|
options: the options given to the directive: an object with
|
|
attributes inherited_members, undoc_members, show_inheritance
|
|
and noindex that are true if the flag option of same name was
|
|
given to the auto directive
|
|
|
|
lines (List[str]): the lines of the docstring, see above
|
|
|
|
References:
|
|
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
|
|
"""
|
|
import re
|
|
|
|
remove_directives = [
|
|
# Remove all xdoctest directives
|
|
re.compile(r"\s*>>>\s*#\s*x?doctest:\s*.*"),
|
|
re.compile(r"\s*>>>\s*#\s*x?doc:\s*.*"),
|
|
]
|
|
filtered_lines = [
|
|
line for line in lines if not any(pat.match(line) for pat in remove_directives)
|
|
]
|
|
# Modify the lines inplace
|
|
lines[:] = filtered_lines
|
|
|
|
# make sure there is a blank line at the end
|
|
if lines and lines[-1].strip():
|
|
lines.append("")
|
|
|
|
|
|
def setup(app):
|
|
app.connect("build-finished", coverage_post_process)
|
|
app.connect("autodoc-process-docstring", process_docstring)
|
|
app.connect("html-page-context", hide_edit_button_for_pages)
|
|
app.config.add_last_updated = True
|
|
return {"version": "0.1", "parallel_read_safe": True}
|
|
|
|
|
|
def hide_edit_button_for_pages(app, pagename, templatename, context, doctree):
|
|
if pagename.startswith("generated/"):
|
|
context["theme_use_edit_page_button"] = False
|
|
|
|
|
|
# From PyTorch 1.5, we now use autogenerated files to document classes and
|
|
# functions. This breaks older references since
|
|
# https://pytorch.org/docs/stable/torch.html#torch.flip
|
|
# moved to
|
|
# https://pytorch.org/docs/stable/generated/torch.flip.html
|
|
# which breaks older links from blog posts, stack overflow answers and more.
|
|
# To mitigate that, we add an id="torch.flip" in an appropriated place
|
|
# in torch.html by overriding the visit_reference method of html writers.
|
|
# Someday this can be removed, once the old links fade away
|
|
|
|
from sphinx.writers import html, html5
|
|
|
|
|
|
def replace(Klass):
|
|
old_call = Klass.visit_reference
|
|
|
|
def visit_reference(self, node):
|
|
if "refuri" in node and "generated" in node.get("refuri"):
|
|
ref = node.get("refuri")
|
|
ref_anchor = ref.split("#")
|
|
if len(ref_anchor) > 1:
|
|
# Only add the id if the node href and the text match,
|
|
# i.e. the href is "torch.flip#torch.flip" and the content is
|
|
# "torch.flip" or "flip" since that is a signal the node refers
|
|
# to autogenerated content
|
|
anchor = ref_anchor[1]
|
|
txt = node.parent.astext()
|
|
if txt == anchor or txt == anchor.split(".")[-1]:
|
|
self.body.append(f'<p id="{ref_anchor[1]}"/>')
|
|
return old_call(self, node)
|
|
|
|
Klass.visit_reference = visit_reference
|
|
|
|
|
|
replace(html.HTMLTranslator)
|
|
replace(html5.HTML5Translator)
|
|
|
|
# -- Options for HTMLHelp output ------------------------------------------
|
|
|
|
# Output file base name for HTML help builder.
|
|
htmlhelp_basename = "PyTorchdoc"
|
|
|
|
|
|
# -- Options for LaTeX output ---------------------------------------------
|
|
|
|
latex_engine = "lualatex"
|
|
latex_show_urls = "footnote"
|
|
|
|
latex_elements = {
|
|
"papersize": "letterpaper",
|
|
"pointsize": "10pt",
|
|
"tableofcontents": r"\pdfbookmark[0]{Contents}{toc}\tableofcontents",
|
|
"preamble": r"""
|
|
\usepackage{tocloft}
|
|
\setcounter{tocdepth}{3}
|
|
\setcounter{secnumdepth}{3}
|
|
% Fix table column widths
|
|
\renewenvironment{tabulary}{\begin{longtable}{p{0.3\linewidth}p{0.7\linewidth}}}{\end{longtable}}
|
|
|
|
% Ensure tables don't overflow
|
|
\AtBeginEnvironment{tabular}{\sloppy}
|
|
""",
|
|
"fncychap": r"\usepackage[Bjornstrup]{fncychap}",
|
|
"extraclassoptions": "oneside",
|
|
}
|
|
|
|
# Grouping the document tree into LaTeX files. List of tuples
|
|
# (source start file, target name, title,
|
|
# author, documentclass [howto, manual, or own class]).
|
|
|
|
|
|
latex_documents = [
|
|
(
|
|
master_doc,
|
|
"pytorch.tex",
|
|
"PyTorch Documentation",
|
|
"Torch Contributors",
|
|
"manual",
|
|
),
|
|
]
|
|
latex_use_xindy = False
|
|
|
|
|
|
# -- Options for manual page output ---------------------------------------
|
|
|
|
# One entry per manual page. List of tuples
|
|
# (source start file, name, description, authors, manual section).
|
|
man_pages = [(master_doc, "PyTorch", "PyTorch Documentation", [author], 1)]
|
|
|
|
|
|
# -- Options for Texinfo output -------------------------------------------
|
|
|
|
# Grouping the document tree into Texinfo files. List of tuples
|
|
# (source start file, target name, title, author,
|
|
# dir menu entry, description, category)
|
|
texinfo_documents = [
|
|
(
|
|
master_doc,
|
|
"PyTorch",
|
|
"PyTorch Documentation",
|
|
author,
|
|
"PyTorch",
|
|
"One line description of project.",
|
|
"Miscellaneous",
|
|
),
|
|
]
|
|
|
|
|
|
# Example configuration for intersphinx: refer to the Python standard library.
|
|
intersphinx_mapping = {
|
|
"python": ("https://docs.python.org/3", None),
|
|
"numpy": ("https://numpy.org/doc/stable", None),
|
|
}
|
|
|
|
import sphinx.ext.doctest
|
|
|
|
# -- A patch that prevents Sphinx from cross-referencing ivar tags -------
|
|
# See http://stackoverflow.com/a/41184353/3343043
|
|
from docutils import nodes
|
|
from sphinx import addnodes
|
|
from sphinx.util.docfields import TypedField
|
|
|
|
|
|
# Without this, doctest adds any example with a `>>>` as a test
|
|
doctest_test_doctest_blocks = ""
|
|
doctest_default_flags = sphinx.ext.doctest.doctest.ELLIPSIS
|
|
doctest_global_setup = """
|
|
import torch
|
|
try:
|
|
import torchvision
|
|
except ImportError:
|
|
torchvision = None
|
|
"""
|
|
|
|
|
|
def patched_make_field(self, types, domain, items, **kw):
|
|
# `kw` catches `env=None` needed for newer sphinx while maintaining
|
|
# backwards compatibility when passed along further down!
|
|
|
|
# type: (List, unicode, Tuple) -> nodes.field
|
|
def handle_item(fieldarg, content):
|
|
par = nodes.paragraph()
|
|
par += addnodes.literal_strong("", fieldarg) # Patch: this line added
|
|
# par.extend(self.make_xrefs(self.rolename, domain, fieldarg,
|
|
# addnodes.literal_strong))
|
|
if fieldarg in types:
|
|
par += nodes.Text(" (")
|
|
# NOTE: using .pop() here to prevent a single type node to be
|
|
# inserted twice into the doctree, which leads to
|
|
# inconsistencies later when references are resolved
|
|
fieldtype = types.pop(fieldarg)
|
|
if len(fieldtype) == 1 and isinstance(fieldtype[0], nodes.Text):
|
|
typename = fieldtype[0].astext()
|
|
builtin_types = ["int", "long", "float", "bool", "type"]
|
|
for builtin_type in builtin_types:
|
|
pattern = rf"(?<![\w.]){builtin_type}(?![\w.])"
|
|
repl = f"python:{builtin_type}"
|
|
typename = re.sub(pattern, repl, typename)
|
|
par.extend(
|
|
self.make_xrefs(
|
|
self.typerolename,
|
|
domain,
|
|
typename,
|
|
addnodes.literal_emphasis,
|
|
**kw,
|
|
)
|
|
)
|
|
else:
|
|
par += fieldtype
|
|
par += nodes.Text(")")
|
|
par += nodes.Text(" -- ")
|
|
par += content
|
|
return par
|
|
|
|
fieldname = nodes.field_name("", self.label)
|
|
if len(items) == 1 and self.can_collapse:
|
|
fieldarg, content = items[0]
|
|
bodynode = handle_item(fieldarg, content)
|
|
else:
|
|
bodynode = self.list_type()
|
|
for fieldarg, content in items:
|
|
bodynode += nodes.list_item("", handle_item(fieldarg, content))
|
|
fieldbody = nodes.field_body("", bodynode)
|
|
return nodes.field("", fieldname, fieldbody)
|
|
|
|
|
|
TypedField.make_field = patched_make_field
|
|
|
|
copybutton_prompt_text = r">>> |\.\.\. "
|
|
copybutton_prompt_is_regexp = True
|