mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This reverts commit b22f01fcb9d69bb7d77e08d69004c7265ef7fa4a. Reverted https://github.com/pytorch/pytorch/pull/153633 on behalf of https://github.com/malfet due to But libtorch build regressions are real, fbjni is still used for C++ builds ([comment](https://github.com/pytorch/pytorch/pull/153633#issuecomment-2884951805))
152 lines
4.1 KiB
Python
152 lines
4.1 KiB
Python
from typing import Optional
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
|
|
|
|
OUTPUT_DIR = "src/androidTest/assets/"
|
|
|
|
|
|
def scriptAndSave(module, fileName):
|
|
print("-" * 80)
|
|
script_module = torch.jit.script(module)
|
|
print(script_module.graph)
|
|
outputFileName = OUTPUT_DIR + fileName
|
|
# note that the lite interpreter model can also be used in full JIT
|
|
script_module._save_for_lite_interpreter(outputFileName)
|
|
print("Saved to " + outputFileName)
|
|
print("=" * 80)
|
|
|
|
|
|
class Test(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, input):
|
|
return None
|
|
|
|
@torch.jit.script_method
|
|
def eqBool(self, input: bool) -> bool:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqInt(self, input: int) -> int:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqFloat(self, input: float) -> float:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqStr(self, input: str) -> str:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqTensor(self, input: Tensor) -> Tensor:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqDictStrKeyIntValue(self, input: dict[str, int]) -> dict[str, int]:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqDictIntKeyIntValue(self, input: dict[int, int]) -> dict[int, int]:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqDictFloatKeyIntValue(self, input: dict[float, int]) -> dict[float, int]:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def listIntSumReturnTuple(self, input: list[int]) -> tuple[list[int], int]:
|
|
sum = 0
|
|
for x in input:
|
|
sum += x
|
|
return (input, sum)
|
|
|
|
@torch.jit.script_method
|
|
def listBoolConjunction(self, input: list[bool]) -> bool:
|
|
res = True
|
|
for x in input:
|
|
res = res and x
|
|
return res
|
|
|
|
@torch.jit.script_method
|
|
def listBoolDisjunction(self, input: list[bool]) -> bool:
|
|
res = False
|
|
for x in input:
|
|
res = res or x
|
|
return res
|
|
|
|
@torch.jit.script_method
|
|
def tupleIntSumReturnTuple(
|
|
self, input: tuple[int, int, int]
|
|
) -> tuple[tuple[int, int, int], int]:
|
|
sum = 0
|
|
for x in input:
|
|
sum += x
|
|
return (input, sum)
|
|
|
|
@torch.jit.script_method
|
|
def optionalIntIsNone(self, input: Optional[int]) -> bool:
|
|
return input is None
|
|
|
|
@torch.jit.script_method
|
|
def intEq0None(self, input: int) -> Optional[int]:
|
|
if input == 0:
|
|
return None
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def str3Concat(self, input: str) -> str:
|
|
return input + input + input
|
|
|
|
@torch.jit.script_method
|
|
def newEmptyShapeWithItem(self, input):
|
|
return torch.tensor([int(input.item())])[0]
|
|
|
|
@torch.jit.script_method
|
|
def testAliasWithOffset(self) -> list[Tensor]:
|
|
x = torch.tensor([100, 200])
|
|
a = [x[0], x[1]]
|
|
return a
|
|
|
|
@torch.jit.script_method
|
|
def testNonContiguous(self):
|
|
x = torch.tensor([100, 200, 300])[::2]
|
|
assert not x.is_contiguous()
|
|
assert x[0] == 100
|
|
assert x[1] == 300
|
|
return x
|
|
|
|
@torch.jit.script_method
|
|
def conv2d(self, x: Tensor, w: Tensor, toChannelsLast: bool) -> Tensor:
|
|
r = torch.nn.functional.conv2d(x, w)
|
|
if toChannelsLast:
|
|
r = r.contiguous(memory_format=torch.channels_last)
|
|
else:
|
|
r = r.contiguous()
|
|
return r
|
|
|
|
@torch.jit.script_method
|
|
def conv3d(self, x: Tensor, w: Tensor, toChannelsLast: bool) -> Tensor:
|
|
r = torch.nn.functional.conv3d(x, w)
|
|
if toChannelsLast:
|
|
r = r.contiguous(memory_format=torch.channels_last_3d)
|
|
else:
|
|
r = r.contiguous()
|
|
return r
|
|
|
|
@torch.jit.script_method
|
|
def contiguous(self, x: Tensor) -> Tensor:
|
|
return x.contiguous()
|
|
|
|
@torch.jit.script_method
|
|
def contiguousChannelsLast(self, x: Tensor) -> Tensor:
|
|
return x.contiguous(memory_format=torch.channels_last)
|
|
|
|
@torch.jit.script_method
|
|
def contiguousChannelsLast3d(self, x: Tensor) -> Tensor:
|
|
return x.contiguous(memory_format=torch.channels_last_3d)
|
|
|
|
|
|
scriptAndSave(Test(), "test.pt")
|