Files
pytorch/test/distributed/tensor/test_op_strategy.py
Prachi Gupta 22650c89fb [ROCm] Update skip_if_lt_x_gpu to work with MultiProcContinuous class (#167281)
- Since MultiProcContinuous class spawns one process per GPU and runs UT in each of the processes, we need to ensure we are propagating the exit code associated with skip all the way to the main worker thread that spawned all the child processes.
- This commit also updates several UTs that are meant for 4 GPUs but incorrectly calls skip_if_lt_x_gpu with 2 as an input. Examples:
    - test_replicate_with_fsdp.py
    - test_dtensor_resharding.py
    - test_state_dict.py
    - test_functional_api.py: Fix typo. multi-accelerator doesn't exit, replaced with multi-gpu
    - test_op_strategy.py: world_size was hardcoded
    - test_math_ops.py: UT written for 4 GPU, so skipping for anything less
    - test_schedule_multiproc.py: All UTs in this suite are required to run on 2+ GPUs, therefore, adding skips if less than 4 GPUs are supplied

Fixes https://github.com/pytorch/pytorch/issues/166875

Pull Request resolved: https://github.com/pytorch/pytorch/pull/167281
Approved by: https://github.com/jeffdaily
2025-11-07 18:11:48 +00:00

660 lines
24 KiB
Python

# Owner(s): ["oncall: distributed"]
import itertools
import random
from contextlib import contextmanager
from itertools import chain
from unittest.mock import patch
import numpy as np
import torch
from torch.distributed.tensor import (
DeviceMesh,
distribute_tensor,
DTensor,
init_device_mesh,
Partial,
Replicate,
Shard,
)
from torch.distributed.tensor._collective_utils import redistribute_cost
from torch.distributed.tensor._dtensor_spec import DTensorSpec, TensorMeta
from torch.distributed.tensor._op_schema import (
OpSchema,
OpSpec,
OpStrategy,
RuntimeSchemaInfo,
)
from torch.distributed.tensor._ops._einsum_strategy import (
EinsumDims,
gen_einsum_strategies,
)
from torch.distributed.tensor._ops.utils import (
register_op_strategy,
replicate_op_strategy,
)
from torch.distributed.tensor.debug import CommDebugMode
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import (
create_local_tensor_test_class,
DTensorOpTestBase,
DTensorTestBase,
with_comms,
)
try:
from torch.utils._cxx_pytree import tree_leaves
except ImportError:
from torch.utils._pytree import tree_leaves # type: ignore[no-redef]
def extract_tensor_meta(t) -> TensorMeta:
return TensorMeta(t.shape, t.stride(), t.dtype)
class TestEinsumDims(TestCase):
def test_batch_dims(self):
equation = "abc,abc->abc"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["a", "b", "c"])
self.assertEqual(edims.contracting_dims, [])
self.assertEqual(edims.lhs_out_only_dims, [])
self.assertEqual(edims.rhs_out_only_dims, [])
def test_mm_dims(self):
equation = "mk,kn->mn"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, [])
self.assertEqual(edims.contracting_dims, ["k"])
self.assertEqual(edims.lhs_out_only_dims, ["m"])
self.assertEqual(edims.rhs_out_only_dims, ["n"])
def test_bmm_dims(self):
equation = "bmk,bkn->bmn"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["b"])
self.assertEqual(edims.contracting_dims, ["k"])
self.assertEqual(edims.lhs_out_only_dims, ["m"])
self.assertEqual(edims.rhs_out_only_dims, ["n"])
equation = "bcmk,bckn->bcmn"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["b", "c"])
self.assertEqual(edims.contracting_dims, ["k"])
self.assertEqual(edims.lhs_out_only_dims, ["m"])
self.assertEqual(edims.rhs_out_only_dims, ["n"])
def test_free_dims(self):
equation = "abc,ab->abc"
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["a", "b"])
self.assertEqual(edims.contracting_dims, [])
self.assertEqual(edims.lhs_out_only_dims, ["c"])
self.assertEqual(edims.rhs_out_only_dims, [])
equation = "abd,bf->abfd" # codespell:ignore
input_dims, output_dim = EinsumDims.parse_equation(equation)
edims = EinsumDims.parse_dims(input_dims, output_dim)
self.assertEqual(edims.batch_dims, ["b"])
self.assertEqual(edims.contracting_dims, [])
self.assertEqual(edims.lhs_out_only_dims, ["a", "d"])
self.assertEqual(edims.rhs_out_only_dims, ["f"])
class TestEinsumStrategies(DTensorOpTestBase):
@property
def world_size(self) -> int:
return 4
def test_mm_1d_mesh(self):
mesh = self.build_device_mesh()
all_strats = gen_einsum_strategies("mk,kn->mn", mesh)
self.assertEqual(len(all_strats.strategies), 4)
def test_mm_2d_mesh(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
all_strats = gen_einsum_strategies("mk,kn->mn", mesh)
self.assertEqual(len(all_strats.strategies), 16)
def test_bmm_1d_mesh(self):
mesh = self.build_device_mesh()
all_strats = gen_einsum_strategies("bmk,bkn->bmn", mesh)
self.assertEqual(len(all_strats.strategies), 5)
def test_bmm_diffinndim_2d_mesh(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
all_strats = gen_einsum_strategies("bmk,kn->bmn", mesh)
self.assertEqual(len(all_strats.strategies), 25)
def test_bmm_diffoutndim_2d_mesh(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
all_strats = gen_einsum_strategies("bmk,k->bm", mesh)
self.assertEqual(len(all_strats.strategies), 16)
def test_bmm_2d_mesh(self):
mesh = DeviceMesh(self.device_type, torch.arange(self.world_size).reshape(2, 2))
all_strats = gen_einsum_strategies("bmk,bkn->bmn", mesh)
self.assertEqual(len(all_strats.strategies), 25)
def test_pointwise_1d_mesh(self):
mesh = self.build_device_mesh()
simple_strats = gen_einsum_strategies("abcd,abcd->abcd", mesh)
self.assertEqual(len(simple_strats.strategies), 5)
broadcast_strats = gen_einsum_strategies("bcd,abcd->abcd", mesh)
self.assertEqual(len(broadcast_strats.strategies), 5)
def test_linearity_1d_mesh(self):
mesh = self.build_device_mesh()
all_strats = gen_einsum_strategies("abcd,abcd->abcd", mesh, linearity=True)
self.assertEqual(len(all_strats.strategies), 6)
class TestCostModel(DTensorOpTestBase):
@property
def world_size(self) -> int:
return 4
def test_redistribute_cost_mesh_1d(self):
mesh_1d = self.build_device_mesh()
shard_placement = (Shard(0),)
replica_placement = (Replicate(),)
partial_placement = (Partial(),)
global_tensor = torch.randn(10, 10)
global_tensor_meta = extract_tensor_meta(global_tensor)
# shard spec
shard_spec = DTensorSpec(mesh_1d, shard_placement, global_tensor_meta)
# replica spec
replica_spec = DTensorSpec(mesh_1d, replica_placement, global_tensor_meta)
# partial spec
partial_spec = DTensorSpec(mesh_1d, partial_placement, global_tensor_meta)
# make sure reshard cost is 0 for the same spec redistribute
for spec in [shard_spec, replica_spec, partial_spec]:
cost = redistribute_cost(spec, spec)
self.assertEqual(cost, 0)
# shard -> replicate
allgather_cost = redistribute_cost(shard_spec, replica_spec)
# partial -> shard
reduce_scatter_cost = redistribute_cost(partial_spec, shard_spec)
# partial -> replicate
allreduce_cost = redistribute_cost(partial_spec, replica_spec)
self.assertEqual(allgather_cost, reduce_scatter_cost)
self.assertTrue(allreduce_cost + 1 < allgather_cost + reduce_scatter_cost)
# shard to partial
cost = redistribute_cost(shard_spec, partial_spec)
self.assertEqual(cost, float("inf"))
def test_redistribute_cost_latency(self):
# test cost model on addmm op
from torch.distributed.tensor._ops._matrix_ops import addmm_strategy
mesh = self.build_device_mesh()
shard0_placement = (Shard(0),)
partial_placement = (Partial(),)
shard1_placement = (Shard(1),)
shard0_tensor_meta = extract_tensor_meta(torch.randn(8))
partial_tensor_meta = extract_tensor_meta(torch.randn(50, 6))
shard1_tensor_meta = extract_tensor_meta(torch.randn(6, 8))
# shard spec
shard0_spec = DTensorSpec(mesh, shard0_placement, shard0_tensor_meta)
# replica spec
partial_spec = DTensorSpec(mesh, partial_placement, partial_tensor_meta)
# partial spec
shard1_spec = DTensorSpec(mesh, shard1_placement, shard1_tensor_meta)
op_schema = OpSchema(
torch.ops.aten.addmm.default,
(
OpStrategy([OpSpec(shard0_spec)]),
OpStrategy([OpSpec(partial_spec)]),
OpStrategy([OpSpec(shard1_spec)]),
),
{},
)
output_strategy = addmm_strategy(op_schema)
strategy_costs = {}
for strategy in output_strategy.strategies:
redistribute_cost = sum(chain.from_iterable(strategy.redistribute_cost))
strategy_costs[str(strategy)] = redistribute_cost
# assert that cost model counts for collective latency (i.e. multiple comm is penalized)
self.assertTrue(
strategy_costs["(S(0), R, S(1)) -> S(1)"]
< strategy_costs["(R, S(0), R) -> S(0)"]
)
# assert a single allreduce is the best one
self.assertEqual(
strategy_costs["(S(0), R, S(1)) -> S(1)"], min(strategy_costs.values())
)
def test_redistribute_cost_mesh_2d(self):
mesh_2d = DeviceMesh(
self.device_type, torch.arange(self.world_size).reshape(2, 2)
)
shard_placement = (Shard(0), Shard(0))
replica_placement = (Replicate(), Replicate())
partial_placement = (Partial(), Partial())
global_tensor = torch.randn(8, 8)
global_tensor_meta = extract_tensor_meta(global_tensor)
# shard spec
shard_spec = DTensorSpec(mesh_2d, shard_placement, global_tensor_meta)
# replica spec
replica_spec = DTensorSpec(mesh_2d, replica_placement, global_tensor_meta)
# partial spec
partial_spec = DTensorSpec(mesh_2d, partial_placement, global_tensor_meta)
# make sure reshard cost is 0 for the same spec redistribute
for spec in [shard_spec, replica_spec, partial_spec]:
cost = redistribute_cost(spec, spec)
self.assertEqual(cost, 0)
# shard -> replicate
allgather_cost = redistribute_cost(shard_spec, replica_spec)
# partial -> replicate
allreduce_cost = redistribute_cost(partial_spec, replica_spec)
# partial -> shard
reduce_scatter_cost = redistribute_cost(partial_spec, shard_spec)
self.assertTrue(allreduce_cost > allgather_cost)
self.assertTrue(allreduce_cost > reduce_scatter_cost)
def test_mm_strategies(self):
from torch.distributed.tensor._ops._matrix_ops import mm_strategy
mesh = self.build_device_mesh()
lhs_tensor = torch.randn(6, 8)
rhs_tensor = torch.randn(8, 12)
lhs_tensor_meta = extract_tensor_meta(lhs_tensor)
rhs_tensor_meta = extract_tensor_meta(rhs_tensor)
mm_combs = (
(Shard(0), Replicate()),
(Replicate(), Shard(1)),
(Shard(1), Shard(0)),
(Replicate(), Replicate()),
)
for lhs, rhs in mm_combs:
lhs_spec = DTensorSpec(mesh, (lhs,), lhs_tensor_meta)
rhs_spec = DTensorSpec(mesh, (rhs,), rhs_tensor_meta)
op_schema = OpSchema(
torch.ops.aten.mm.default,
(
OpStrategy([OpSpec(lhs_spec)]),
OpStrategy([OpSpec(rhs_spec)]),
),
{},
)
# test the strategy
res_strategies = mm_strategy(op_schema)
for strtgy in res_strategies.strategies:
if strtgy.input_specs == (lhs_spec, rhs_spec):
self.assertEqual(strtgy.redistribute_cost, [[0.0], [0.0]])
break
op_schema = OpSchema(
torch.ops.aten.mm.default,
(lhs_spec, rhs_spec),
{},
)
# test sharding prop
output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding_non_cached(
op_schema
)
self.assertFalse(output_sharding.needs_redistribute)
def test_bmm_strategies(self):
from torch.distributed.tensor._ops._matrix_ops import bmm_strategy
mesh = self.build_device_mesh()
lhs_tensor = torch.randn(8, 6, 8)
rhs_tensor = torch.randn(8, 8, 12)
lhs_tensor_meta = extract_tensor_meta(lhs_tensor)
rhs_tensor_meta = extract_tensor_meta(rhs_tensor)
bmm_combs = (
(Shard(0), Shard(0)),
(Shard(1), Replicate()),
(Replicate(), Shard(2)),
(Shard(2), Shard(1)),
(Replicate(), Replicate()),
)
for lhs, rhs in bmm_combs:
lhs_spec = DTensorSpec(mesh, (lhs,), lhs_tensor_meta)
rhs_spec = DTensorSpec(mesh, (rhs,), rhs_tensor_meta)
op_schema = OpSchema(
torch.ops.aten.bmm.default,
(
OpStrategy([OpSpec(lhs_spec)]),
OpStrategy([OpSpec(rhs_spec)]),
),
{},
)
# test the strategy
res_strategies = bmm_strategy(op_schema)
for strtgy in res_strategies.strategies:
if strtgy.input_specs == (lhs_spec, rhs_spec):
self.assertEqual(strtgy.redistribute_cost, [[0.0], [0.0]])
break
op_schema = OpSchema(
torch.ops.aten.bmm.default,
(lhs_spec, rhs_spec),
{},
)
# test sharding prop
output_sharding = DTensor._op_dispatcher.sharding_propagator.propagate_op_sharding_non_cached(
op_schema
)
self.assertFalse(output_sharding.needs_redistribute)
# -------------Test op strategy registration-------------
# custom op without List[Tensor] as input
# reference: https://docs.pytorch.org/docs/stable/library.html#torch.library.register_autograd
@torch.library.custom_op("mylib::numpy_sin", mutates_args=())
def numpy_sin(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
x_np = x.cpu().numpy()
y_np = y.cpu().numpy()
out_np = np.sin(x_np) + np.sin(y_np)
return torch.from_numpy(out_np).to(device=x.device)
def setup_context(ctx, inputs, output):
(x, y) = inputs
ctx.save_for_backward(x, y)
def backward(ctx, grad):
(x, y) = ctx.saved_tensors
return grad * x.cos(), grad * y.cos()
@numpy_sin.register_fake
def _fw(x, y):
return torch.empty_like(x)
torch.library.register_autograd(
"mylib::numpy_sin", backward, setup_context=setup_context
)
# custom op with List[Tensor] as input
@torch.library.custom_op("mylib::numpy_tuple_sin", mutates_args=())
def numpy_tuple_sin(
x: torch.Tensor, y: list[torch.Tensor], z: torch.Tensor
) -> torch.Tensor:
x_np = x.cpu().numpy()
y_np = [i.cpu().numpy() for i in y]
z_np = z.cpu().numpy()
out_np = np.sin(x_np) + np.sin(z_np) + sum(np.sin(i) for i in y_np)
return torch.from_numpy(out_np).to(device=x.device)
def setup_tuple_context(ctx, inputs, output):
(x, y, z) = inputs
ctx.save_for_backward(x, y, z)
def tuple_backward(ctx, grad):
(x, y, z) = ctx.saved_tensors
return grad * x.cos(), [grad * i.cos() for i in y], grad * z.cos()
@numpy_tuple_sin.register_fake
def _fw_tuple(x, y, z):
return torch.empty_like(x)
torch.library.register_autograd(
"mylib::numpy_tuple_sin", tuple_backward, setup_context=setup_tuple_context
)
@contextmanager
def op_strategy_context(op_overload, strategy_func, schema_info=None):
"""
Context manager for setting and clearing op strategies.
Args:
op_overload: The operator overload to set or clear the strategy for.
strategy_func: The strategy function to set for the operator overload.
schema_info: Optional schema information for the operator overload.
Yields:
None
"""
propagator = DTensor._op_dispatcher.sharding_propagator
_origin_op_strategy_funcs = None
_origin_op_strategy_schema = None
try:
# register the op strategy
if op_overload in propagator.op_strategy_funcs:
_origin_op_strategy_funcs = propagator.op_strategy_funcs[op_overload]
del propagator.op_strategy_funcs[op_overload]
if op_overload in propagator.op_to_schema_info:
_origin_op_strategy_schema = propagator.op_to_schema_info[op_overload]
del propagator.op_to_schema_info[op_overload]
register_op_strategy(op_overload, schema_info=schema_info)(strategy_func)
yield
finally:
# clear this op strategy cache
if _origin_op_strategy_funcs is None:
if op_overload in propagator.op_strategy_funcs:
del propagator.op_strategy_funcs[op_overload]
else:
propagator.op_strategy_funcs[op_overload] = _origin_op_strategy_funcs
if _origin_op_strategy_schema is None:
if op_overload in propagator.op_to_schema_info:
del propagator.op_to_schema_info[op_overload]
else:
propagator.op_to_schema_info[op_overload] = _origin_op_strategy_schema
propagator.propagate_op_sharding.cache.cache_clear()
def detect_exists_identical_opspec(*args, op, mesh, strategy_function) -> bool:
"""
Given sample input args, detect if identical OpSpecs exists under the same
OpStrategy.
"""
tree_args = tree_leaves(args)
# metadata for each argument
arg_tensor_metadata = [extract_tensor_meta(i) for i in args]
# possible combination of placements for each arg
arg_placement_comb = []
for i in tree_args:
if isinstance(i, torch.Tensor):
# possible placement choice for argument i
placement_choices = (Replicate(), *[Shard(i) for i in range(i.ndim)])
# expand placement choice into full Placements for argument i
arg_placement_comb.append(
list(itertools.product(placement_choices, repeat=mesh.ndim))
)
random.shuffle(arg_placement_comb[-1])
arg_opspec_list = []
for idx, arg_placement in enumerate(arg_placement_comb):
arg_opspec_list.append([])
for placement in arg_placement:
arg_opspec_list[idx].append(
OpSpec(
output_specs=DTensorSpec(
mesh, placement, tensor_meta=arg_tensor_metadata[idx]
)
)
)
op_schema = OpSchema(
op,
args_schema=(tuple(OpStrategy(i) for i in arg_opspec_list)),
kwargs_schema={},
)
with op_strategy_context(op, strategy_function):
output_strategy = strategy_function(op_schema)
# OpSpec doesn't have hashing, convert to str to compare
output_strategy_str_list = [
str(j) for i in tree_leaves(output_strategy) for j in i.strategies
]
return len(output_strategy_str_list) == len(set(output_strategy_str_list))
class DistTensorReplicateStrategyRegistrationTest(DTensorTestBase):
@with_comms
@patch(
"torch.distributed.tensor._sharding_prop.ShardingPropagator._select_strategy"
)
def test_replicate_strategy_placement(self, mock_select_strategy):
costs_from__select_strategy = []
def mock_select_func(strategy, op_schema=None):
"""function copied from _select_strategy but with cost capturing"""
nonlocal costs_from__select_strategy
if len(strategy.strategies) == 1:
costs_from__select_strategy = strategy.strategies[0].redistribute_cost
return strategy.strategies[0]
op_spec_costs: list[float] = []
for op_spec in strategy.strategies:
assert op_spec.redistribute_cost is not None, (
"must set redistribute cost each OpSpec!"
)
costs_from__select_strategy.append(op_spec.redistribute_cost)
redistribute_cost = sum(chain.from_iterable(op_spec.redistribute_cost))
op_spec_costs.append(redistribute_cost)
return strategy.strategies[op_spec_costs.index(min(op_spec_costs))]
mock_select_strategy.side_effect = mock_select_func
mesh = init_device_mesh(self.device_type, (2, self.world_size // 2))
comm_mode = CommDebugMode()
test_op = torch.ops.mylib.numpy_sin
input_x = torch.randn([8, 16, 32], device=self.device_type)
input_y = torch.randn([8, 16, 32], device=self.device_type)
output = test_op(input_x, input_y)
input_x_dt = distribute_tensor(input_x, mesh, [Shard(0), Shard(1)])
input_y_dt = distribute_tensor(input_y, mesh, [Shard(0), Shard(1)])
x_spec = DTensorSpec(mesh, input_x_dt.placements, extract_tensor_meta(input_x))
new_x_spec = DTensorSpec(
mesh, (Replicate(), Replicate()), extract_tensor_meta(input_x)
)
y_spec = DTensorSpec(mesh, input_y_dt.placements, extract_tensor_meta(input_y))
new_y_spec = DTensorSpec(
mesh, (Replicate(), Replicate()), extract_tensor_meta(input_y)
)
with comm_mode:
with op_strategy_context(test_op.default, replicate_op_strategy):
output_dt = test_op(input_x_dt, input_y_dt)
self.assertEqual(
comm_mode.get_comm_counts(),
{
torch.ops.c10d_functional.all_gather_into_tensor: self.world_size,
},
)
expected_cost = [
[redistribute_cost(x_spec, new_x_spec)],
[redistribute_cost(y_spec, new_y_spec)],
]
self.assertEqual(expected_cost, costs_from__select_strategy)
self.assertEqual(output_dt.full_tensor(), output)
self.assertEqual(output_dt.placements, [Replicate(), Replicate()])
self.assertTrue(
detect_exists_identical_opspec(
input_x,
input_y,
op=test_op.default,
mesh=mesh,
strategy_function=replicate_op_strategy,
)
)
@with_comms
def test_tuple_replicate_strategy_placement(self):
mesh = init_device_mesh(self.device_type, (2, self.world_size // 2))
test_op = torch.ops.mylib.numpy_tuple_sin
with op_strategy_context(
test_op.default,
replicate_op_strategy,
schema_info=RuntimeSchemaInfo(needs_pytree=True),
):
input_x = torch.randn([8, 16, 8], device=self.device_type)
input_y = [
torch.randn([8, 16, 8], device=self.device_type) for _ in range(3)
]
input_z = torch.randn([8, 16, 8], device=self.device_type)
output = test_op(input_x, input_y, input_z)
input_x_dt = distribute_tensor(input_x, mesh, [Shard(0), Shard(1)])
input_y_dt = [
distribute_tensor(i, mesh, [Shard(1), Shard(1)]) for i in input_y
]
input_z_dt = distribute_tensor(input_z, mesh, [Shard(1), Shard(0)])
output_dt = test_op(input_x_dt, input_y_dt, input_z_dt)
self.assertEqual(output_dt.full_tensor(), output)
self.assertEqual(output_dt.placements, [Replicate(), Replicate()])
class TestStrategyHashing(DTensorTestBase):
@with_comms
def test_call_with_different_nontensor_args(self):
mesh = self.build_device_mesh()
global_tensor = torch.tensor(
[
[29.0, 45.0, 3.0, 61.0],
[25.0, 6.0, 21.0, 0.0],
[1.0, 63.0, 49.0, 38.0],
[48.0, 9.0, 55.0, 18.0],
]
)
shard_spec = [Shard(1)]
sharded_dtensor = distribute_tensor(global_tensor, mesh, shard_spec)
with op_strategy_context(torch.ops.aten.sort.default, replicate_op_strategy):
# intentionally do not supply `schema_info=RuntimeSchemaInfo(1)`
torch.sort(sharded_dtensor, dim=0) # sort each column
out1, _ = torch.sort(sharded_dtensor, dim=1) # sort each row
with op_strategy_context(torch.ops.aten.sort.default, replicate_op_strategy):
out2, _ = torch.sort(sharded_dtensor, dim=1)
self.assertEqual(out1.full_tensor(), out2.full_tensor())
DistTensorReplicateStrategyRegistrationTestWithLocalTensor = (
create_local_tensor_test_class(
DistTensorReplicateStrategyRegistrationTest,
)
)
TestStrategyHashingWithLocalTensor = create_local_tensor_test_class(
TestStrategyHashing,
)
if __name__ == "__main__":
run_tests()