mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-22 06:11:27 +08:00
Extend `register_custom_op` to support onnx-script local function. The FunctionProto from onnx-script is represented by custom op and inserted into ModelProto for op execution. NOTE: I did experiments on >2GB case of a simple model with large initializers: ```python import torch class Net(torch.nn.Module): def __init__(self, B, C): super().__init__() self.layer_norm = torch.nn.LayerNorm((B, C), eps=1e-3) def forward(self, x): return self.layer_norm(x) N, B, C = 3, 25000, 25000 model = Net(B, C) x = torch.randn(N, B, C) torch.onnx.export(model, x, "large_model.onnx", opset_version=12) ``` And it turns out we won't get model_bytes > 2GB after `_export_onnx` pybind cpp function, as we split initializer in external files in that function, and have serialization before return the model bytes, which protobuf is not allowed to be larger than 2GB at any circumstances. The test cases can be found in the next PR #86907 . Pull Request resolved: https://github.com/pytorch/pytorch/pull/86906 Approved by: https://github.com/justinchuby, https://github.com/BowenBao
397 lines
14 KiB
Python
397 lines
14 KiB
Python
"""Utilities for manipulating the torch.Graph object and the torchscript."""
|
|
|
|
# TODO(justinchuby): Move more of the symbolic helper functions here and expose
|
|
# them to the user.
|
|
|
|
import dataclasses
|
|
import re
|
|
import typing
|
|
from typing import Any, Dict, Iterable, Optional, Sequence, Tuple, Union
|
|
|
|
import torch
|
|
from torch import _C
|
|
from torch._C import _onnx as _C_onnx
|
|
from torch.onnx._globals import GLOBALS
|
|
from torch.onnx._internal import _beartype, registration
|
|
|
|
|
|
_ATTR_PATTERN = re.compile("^(.+)_(([ifstgz])|(ty))$")
|
|
_SKIP_NODE_ATTRIBUTES = {"inplace", "aten"}
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class GraphContext:
|
|
"""Extra context for symbolic functions with all methods from torch.Graph.
|
|
|
|
NOTE: This class is not meant for external consumption. Please do not depend on
|
|
it outside of torch.onnx as the interface may evolve.
|
|
|
|
Attributes:
|
|
graph: The _C.Graph being constructed.
|
|
block: The current _C.Block being constructed.
|
|
opset: The opset version.
|
|
original_node: Current node that is being converted from.
|
|
params_dict: Mapping from graph initializer name to IValue.
|
|
env: Mapping from Torch domain graph Value to ONNX domain graph Value.
|
|
"""
|
|
|
|
graph: _C.Graph
|
|
block: _C.Block
|
|
opset: int
|
|
original_node: _C.Node
|
|
params_dict: Dict[str, "_C.IValue"]
|
|
env: Dict[_C.Value, _C.Value]
|
|
|
|
# Relay methods from _C.Graph for compatibility with symbolic functions that expect
|
|
# a _C.Graph
|
|
def __getattr__(self, name: str) -> Any:
|
|
return getattr(self.graph, name)
|
|
|
|
@_beartype.beartype
|
|
def op(
|
|
self,
|
|
opname: str,
|
|
*raw_args: Union[torch.Tensor, _C.Value],
|
|
outputs: int = 1,
|
|
**kwargs,
|
|
):
|
|
"""Creates an ONNX operator "opname", taking "raw_args" as inputs and "kwargs" as attributes.
|
|
|
|
The set of operators and the inputs/attributes they take
|
|
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
|
|
|
|
Args:
|
|
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
|
|
with a namespace, e.g., `aten::add`.
|
|
raw_args: The inputs to the operator; usually provided
|
|
as arguments to the `symbolic` definition.
|
|
outputs: The number of outputs this operator returns.
|
|
By default an operator is assumed to return a single output.
|
|
If `outputs` is greater than one, this functions returns a tuple
|
|
of output `Value`, representing each output of the ONNX operator
|
|
in order.
|
|
kwargs: The attributes of the ONNX operator, whose keys are named
|
|
according to the following convention: `alpha_f` indicates
|
|
the `alpha` attribute with type `f`. The valid type specifiers are
|
|
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
|
|
specified with type float accepts either a single float, or a
|
|
list of floats (e.g., you would say `dims_i` for a `dims` attribute
|
|
that takes a list of integers).
|
|
|
|
Returns:
|
|
The value representing the single output of this operator (see the `outputs`
|
|
keyword argument for multi-return nodes).
|
|
"""
|
|
# FIXME(justinchuby): Add the return type back once we know how to handle mypy
|
|
return _add_op(self, opname, *raw_args, outputs=outputs, **kwargs)
|
|
|
|
@_beartype.beartype
|
|
def aten_op(self, operator: str, *args, overload_name: str = "", **kwargs):
|
|
"""Generates an ONNX ATen op node.
|
|
|
|
This function is for backward compatibility with the old symbolic functions.
|
|
"""
|
|
return self.op(
|
|
"aten::ATen",
|
|
*args,
|
|
operator_s=operator,
|
|
overload_name_s=overload_name,
|
|
**kwargs,
|
|
)
|
|
|
|
@_beartype.beartype
|
|
def onnxscript_op(
|
|
self,
|
|
onnx_fn, # TODO(titaiwang): annotate this when onnx-script becomes dependency
|
|
*raw_args: Union[torch.Tensor, _C.Value],
|
|
outputs: int = 1,
|
|
**kwargs,
|
|
):
|
|
"""Creates an ONNX operator from onnx-script function, taking "raw_args" as inputs and "kwargs" as attributes.
|
|
|
|
onnx-script repository: https://github.com/microsoft/onnx-script
|
|
|
|
Args:
|
|
onnx_fn: ONNXFunction from onnx-script; An example can be found at
|
|
https://github.com/microsoft/onnx-script#example
|
|
raw_args: The inputs to the operator; usually provided
|
|
as arguments to the `symbolic` definition.
|
|
outputs: The number of outputs this operator returns.
|
|
By default an operator is assumed to return a single output.
|
|
If `outputs` is greater than one, this functions returns a tuple
|
|
of output `Value`, representing each output of the ONNX operator
|
|
in order.
|
|
kwargs: The attributes of the ONNX operator, whose keys are named
|
|
according to the following convention: `alpha_f` indicates
|
|
the `alpha` attribute with type `f`. The valid type specifiers are
|
|
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
|
|
specified with type float accepts either a single float, or a
|
|
list of floats (e.g., you would say `dims_i` for a `dims` attribute
|
|
that takes a list of integers).
|
|
|
|
Returns:
|
|
The value representing the single output of this operator (see the `outputs`
|
|
keyword argument for multi-return nodes).
|
|
"""
|
|
# NOTE(titaiwang): This is using class attributes, and it needs to be updated
|
|
# if onnx-script makes any change on these.
|
|
symbolic_name = f"{onnx_fn.opset.domain}::{onnx_fn.opname}"
|
|
opset_version = onnx_fn.opset.version
|
|
|
|
registration.custom_onnx_symbolic(symbolic_name, opset_version)(onnx_fn)
|
|
|
|
return _add_op(self, symbolic_name, *raw_args, outputs=outputs, **kwargs)
|
|
|
|
|
|
@_beartype.beartype
|
|
def add_op_with_blocks(
|
|
graph_context: GraphContext,
|
|
opname: str,
|
|
*inputs: _C.Value,
|
|
outputs: int = 1,
|
|
n_blocks: int = 1,
|
|
**attributes,
|
|
) -> Tuple[Any, Tuple[GraphContext, ...], _C.Node]:
|
|
"""Creates an ONNX operator "opname", taking inputs and attributes.
|
|
|
|
Args:
|
|
graph_context: The context for the current graph.
|
|
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
|
|
with a namespace, e.g., `aten::add`.
|
|
inputs: The inputs to the operator.
|
|
outputs: The number of outputs this operator returns.
|
|
By default an operator is assumed to return a single output.
|
|
If `outputs` is greater than one, this functions returns a tuple
|
|
of output `Value`, representing each output of the ONNX operator
|
|
in order.
|
|
n_blocks: The number of sub-blocks to create in the node.
|
|
attributes: The attributes of the ONNX operator.
|
|
|
|
Returns:
|
|
A tuple of (output_values, new_contexts, node) where:
|
|
output_values: ONe or more output value of this operator
|
|
(see the `outputs` keyword argument for multi-return nodes).
|
|
new_contexts: A tuple of new graph contexts for each sub-block.
|
|
node: The node representing the operator.
|
|
"""
|
|
|
|
output_values = graph_context.op(opname, *inputs, outputs=outputs, **attributes)
|
|
if isinstance(output_values, Sequence):
|
|
node = output_values[0].node()
|
|
else:
|
|
node = output_values.node()
|
|
|
|
new_contexts = []
|
|
for _ in range(n_blocks):
|
|
new_block = node.addBlock()
|
|
# Create shallow copy of the graph context and update the block
|
|
new_context = dataclasses.replace(graph_context, block=new_block)
|
|
new_contexts.append(new_context)
|
|
|
|
return output_values, tuple(new_contexts), node
|
|
|
|
|
|
@_beartype.beartype
|
|
def _add_op(
|
|
graph_context: GraphContext,
|
|
opname: str,
|
|
*args: Union[torch.Tensor, _C.Value],
|
|
outputs: int = 1,
|
|
**kwargs,
|
|
):
|
|
"""Creates an ONNX operator "opname", taking "args" as inputs and attributes "kwargs".
|
|
|
|
The set of operators and the inputs/attributes they take
|
|
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
|
|
|
|
This function is monkey-patched onto Graph.
|
|
|
|
Args:
|
|
g: The Torch Graph or Block.
|
|
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
|
|
with a namespace, e.g., `aten::add`.
|
|
args: The inputs to the operator; usually provided
|
|
as arguments to the `symbolic` definition.
|
|
outputs: The number of outputs this operator returns.
|
|
By default an operator is assumed to return a single output.
|
|
If `outputs` is greater than one, this functions returns a tuple
|
|
of output `Value`, representing each output of the ONNX operator
|
|
in order.
|
|
kwargs: The attributes of the ONNX operator, whose keys are named
|
|
according to the following convention: `alpha_f` indicates
|
|
the `alpha` attribute with type `f`. The valid type specifiers are
|
|
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
|
|
specified with type float accepts either a single float, or a
|
|
list of floats (e.g., you would say `dims_i` for a `dims` attribute
|
|
that takes a list of integers).
|
|
|
|
Returns:
|
|
(Union[_C.Value, Tuple[_C.Value, ...]])
|
|
The value representing the single output of this operator (see the `outputs`
|
|
keyword argument for multi-return nodes).
|
|
"""
|
|
inputs = [_const_if_tensor(graph_context, arg) for arg in args]
|
|
# Filter out None attributes, this can be convenient client side because
|
|
# now they can pass through None attributes, and have them not show up
|
|
attributes = {k: v for k, v in kwargs.items() if v is not None}
|
|
|
|
if "::" not in opname:
|
|
opname = "onnx::" + opname
|
|
|
|
node = _create_node(
|
|
graph_context.block,
|
|
opname,
|
|
inputs,
|
|
attributes,
|
|
params_dict=graph_context.params_dict,
|
|
opset_version=graph_context.opset,
|
|
n_outputs=outputs,
|
|
shape_inference=GLOBALS.onnx_shape_inference,
|
|
)
|
|
|
|
if outputs == 1:
|
|
return node.output()
|
|
return tuple(node.outputs())
|
|
|
|
|
|
@_beartype.beartype
|
|
def _const_if_tensor(graph_context: GraphContext, arg):
|
|
if arg is None:
|
|
return arg
|
|
if isinstance(arg, _C.Value):
|
|
return arg
|
|
|
|
return _add_op(graph_context, "onnx::Constant", value_z=arg)
|
|
|
|
|
|
def _create_node(
|
|
graph_or_block: Union[_C.Graph, _C.Block],
|
|
domain_op: str,
|
|
inputs: Sequence,
|
|
attributes: dict,
|
|
params_dict: dict,
|
|
opset_version: int,
|
|
n_outputs: int,
|
|
shape_inference: bool = True,
|
|
) -> _C.Node:
|
|
"""Creates an node 'domain_op', taking inputs and attributes."""
|
|
if isinstance(graph_or_block, _C.Graph):
|
|
graph = graph_or_block
|
|
node = graph.create(domain_op, inputs, n_outputs)
|
|
node = graph.insertNode(node)
|
|
elif isinstance(graph_or_block, _C.Block):
|
|
block = graph_or_block
|
|
node = block.addNode(domain_op, inputs)
|
|
|
|
# Block does not have create defined, so we need to add outputs manually
|
|
if n_outputs > 1:
|
|
for _ in range(1, n_outputs):
|
|
node.addOutput()
|
|
|
|
node_ouputs = tuple(node.outputs())
|
|
assert len(node_ouputs) == n_outputs
|
|
|
|
aten = domain_op.startswith("aten::")
|
|
|
|
# Add all attributes
|
|
for key, value in sorted(attributes.items()):
|
|
if key in _SKIP_NODE_ATTRIBUTES:
|
|
continue
|
|
_add_attribute(node, key, value, aten=aten)
|
|
if shape_inference:
|
|
_C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
|
|
return node
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_onnx_list(value):
|
|
return (
|
|
not isinstance(value, torch._six.string_classes)
|
|
and not isinstance(value, torch.Tensor)
|
|
and isinstance(value, Iterable)
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _scalar(x: torch.Tensor):
|
|
"""Convert a scalar tensor into a Python value."""
|
|
assert x.numel() == 1
|
|
return x[0]
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_caffe2_aten_fallback() -> bool:
|
|
return (
|
|
GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
|
|
and _C_onnx._CAFFE2_ATEN_FALLBACK
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _add_attribute(node: _C.Node, key: str, value: Any, aten: bool):
|
|
r"""Initializes the right attribute based on type of value."""
|
|
m = _ATTR_PATTERN.match(key)
|
|
if m is None:
|
|
raise ValueError(
|
|
f"Invalid attribute specifier '{key}' names "
|
|
"must be suffixed with type, e.g. 'dim_i' or 'dims_i'"
|
|
)
|
|
name, kind = m.group(1), m.group(2)
|
|
if _is_onnx_list(value):
|
|
kind += "s"
|
|
|
|
if aten and _is_caffe2_aten_fallback():
|
|
if isinstance(value, torch.Tensor):
|
|
# Caffe2 proto does not support tensor attribute.
|
|
if value.numel() > 1:
|
|
raise ValueError("Should not pass tensor attribute")
|
|
value = _scalar(value)
|
|
if isinstance(value, float):
|
|
kind = "f"
|
|
else:
|
|
kind = "i"
|
|
return getattr(node, f"{kind}_")(name, value)
|
|
|
|
|
|
# TODO: Expose this to user when migrating symbolic helper functions to here.
|
|
@_beartype.beartype
|
|
def _is_tensor(x: _C.Value) -> bool:
|
|
return x.type().isSubtypeOf(_C.TensorType.get())
|
|
|
|
|
|
@_beartype.beartype
|
|
def get_device_from_value(value: _C.Value) -> Optional[torch.device]:
|
|
if not _is_tensor(value):
|
|
return None
|
|
tensor_type = typing.cast(_C.TensorType, value.type())
|
|
return tensor_type.device()
|
|
|
|
|
|
@_beartype.beartype
|
|
def parse_node_kind(kind: str) -> Tuple[str, str]:
|
|
"""Parse node kind into domain and Op name."""
|
|
if "::" not in kind:
|
|
raise ValueError(f"Node kind: {kind} is invalid. '::' is not in node kind.")
|
|
domain, opname = kind.split("::", 1)
|
|
if "::" in opname:
|
|
raise ValueError(f"Node kind: {kind} is invalid. '::' should only apear once.")
|
|
return domain, opname
|
|
|
|
|
|
@_beartype.beartype
|
|
def is_aten(domain: str) -> bool:
|
|
"""Check if the domain is official."""
|
|
return domain == "aten"
|
|
|
|
|
|
@_beartype.beartype
|
|
def is_prim(domain: str) -> bool:
|
|
"""Check if the domain is official."""
|
|
return domain == "prim"
|
|
|
|
|
|
@_beartype.beartype
|
|
def is_onnx(domain: str) -> bool:
|
|
"""Check if the domain is official."""
|
|
return domain == "onnx"
|