Files
pytorch/test/distributed/checkpoint/test_state_dict.py
Yuanyuan Chen a8c528c105 [1/N] Apply UP035 rule in tests (#163947)
Apply UP035 `ruff` rule in tests, but some tests for `fx` and `dynamo` are excluded in case the old typing is the test target.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163947
Approved by: https://github.com/ezyang
2025-09-29 01:42:01 +00:00

1099 lines
41 KiB
Python

# Owner(s): ["oncall: distributed"]
import copy
import functools
import sys
from collections.abc import Callable
from itertools import chain
from typing import Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._composable import replicate
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
)
from torch.distributed.checkpoint import state_dict as ptd_state_dict
from torch.distributed.checkpoint.state_dict import (
_patch_model_state_dict,
_patch_optimizer_state_dict,
get_model_state_dict,
get_optimizer_state_dict,
get_state_dict,
set_model_state_dict,
set_optimizer_state_dict,
StateDictOptions,
)
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import (
fully_shard,
FullyShardedDataParallel as FSDP,
ShardingStrategy,
StateDictType,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.optim import _apply_optimizer_in_backward
from torch.distributed.tensor import DTensor
from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
RowwiseParallel,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from torch.testing._internal.common_dist_composable import (
CompositeParamModel,
UnitModule,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests, TEST_WITH_DEV_DBG_ASAN
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
MultiProcessTestCase,
with_comms,
)
from torch.testing._internal.distributed.common_state_dict import (
FusionEmbedding,
FusionEmbeddingWithHook,
FusionEmbeddingWithModifier,
VerifyStateDictMixin,
)
from torch.utils._pytree import tree_all, tree_all_only
device_type = acc.type if (acc := torch.accelerator.current_accelerator()) else "cpu"
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class TestStateDict(DTensorTestBase, VerifyStateDictMixin):
"""Tests state_dict and load_state_dict"""
@property
def world_size(self) -> int:
return min(4, torch.accelerator.device_count())
def _test_save_load(
self,
init_model_optim: Callable,
test_frozen: bool = False,
flatten_optimizer: bool = False,
) -> None:
options = StateDictOptions(
ignore_frozen_params=test_frozen,
flatten_optimizer_state_dict=flatten_optimizer,
)
# Initialize original model and distributed model.
model, optim, copy_optim, dist_model, dist_optim = init_model_optim()
# Train 10 steps.
_dist_optim = [dist_optim] if not isinstance(dist_optim, list) else dist_optim
for _ in range(10):
optim.zero_grad()
for d_optim in _dist_optim:
d_optim.zero_grad()
batch = torch.rand(8, 100, device=device_type)
model(batch).sum().backward()
dist_model(batch).sum().backward()
optim.step()
for d_optim in _dist_optim:
d_optim.step()
# We need to ensure gradients don't exist, this the invariant of using DSD.
optim.zero_grad()
# Get the state_dict, and compare the result
msd = model.state_dict()
osd = optim.state_dict()
dist_msd, dist_osd = get_state_dict(
dist_model, optimizers=dist_optim, options=options
)
self._verify_msd(msd, dist_msd, options)
self._verify_osd_by_load(model, optim, copy_optim, dist_osd)
if not flatten_optimizer:
self._verify_osd(model, optim, osd, dist_osd)
# Initialize a completely new model to simulate checkpoint load.
_, _, _, dist_model, dist_optim = init_model_optim()
# Simulate DCP distributed load. We need to first get the state_dict and
# pass them to DCP to load the saved state_dict from the storage.
# Then finally we can call set_state_dict().
if not isinstance(dist_optim, list):
dist_optim = [dist_optim]
if test_frozen:
# We won't be able to load the partial state_dict back.
return
# Since we already have the state_dict saved before, no need to call DCP.
# We can directly load them back. This assert is to ensure that optimizer
# state storage are initialized.
# self.assertEqual(len(curr_dist_osd[STATE]), len(dist_osd[STATE]))
set_model_state_dict(
dist_model,
model_state_dict=dist_msd,
options=options,
)
set_optimizer_state_dict(
dist_model,
optimizers=dist_optim,
optim_state_dict=dist_osd,
options=options,
)
# Check if the new state_dict are the same
dist_msd, dist_osd = get_state_dict(
dist_model, optimizers=dist_optim, options=options
)
self._verify_msd(msd, dist_msd, options)
# TODO: Ditto
# self._verify_osd_by_load(model, optim, copy_optim, dist_osd)
if not flatten_optimizer:
self._verify_osd(model, optim, osd, dist_osd)
# Test _patch_model_state_dict, and _patch_optimizer_state_dict
_patch_model_state_dict(dist_model, options=options)
_patch_optimizer_state_dict(dist_model, optimizers=dist_optim, options=options)
dist_msd = dist_model.state_dict()
dist_osd = dist_optim[0].state_dict()
self._verify_msd(msd, dist_msd, options)
self._verify_osd_by_load(model, optim, copy_optim, dist_osd)
if not flatten_optimizer:
self._verify_osd(model, optim, osd, dist_osd)
def _test_fsdp(
self,
*,
use_orig_params: bool,
use_dtensor: bool,
wrapping: tuple[nn.Module] = (),
compile_model: bool = False,
optimizer_class: type[Optimizer],
) -> None:
if not use_orig_params:
return
# TODO: remove this return after we complete the composable API side change for device_mesh
if use_dtensor:
return
def init_model_optim():
if use_dtensor:
device_mesh = init_device_mesh(device_type, (self.world_size,))
orig_model = CompositeParamModel(device=torch.device(device_type))
orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True)
copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4, foreach=True)
if wrapping:
strategy = set(wrapping)
else:
strategy = {UnitModule}
if use_dtensor:
device_mesh = init_device_mesh(device_type, (self.world_size,))
dist_model = FSDP(
copy.deepcopy(orig_model),
auto_wrap_policy=ModuleWrapPolicy(strategy),
use_orig_params=use_orig_params,
device_mesh=device_mesh,
)
else:
dist_model = FSDP(
copy.deepcopy(orig_model),
auto_wrap_policy=ModuleWrapPolicy(strategy),
use_orig_params=use_orig_params,
)
if compile_model:
dist_model = torch.compile(dist_model)
dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4, foreach=True)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim)
@with_comms
@skip_if_lt_x_gpu(2)
def test_fsdp(self) -> None:
self.run_subtests(
{
"use_orig_params": [True, False],
"use_dtensor": [True, False],
"wrapping": [(), (nn.Linear, UnitModule)],
"optimizer_class": [
torch.optim.Adam,
torch.optim.AdamW,
torch.optim.SGD,
],
},
self._test_fsdp,
)
@with_comms
@skip_if_lt_x_gpu(2)
def test_compiled_fsdp(self) -> None:
self.run_subtests(
{
"use_orig_params": [True],
"use_dtensor": [False],
"wrapping": [()],
"optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
},
self._test_fsdp,
)
def _test_fsdp2(
self,
*,
reshard_after_forward: Union[bool, int],
optimizer_class: type[Optimizer],
compile_model: bool,
foreach: bool = True,
):
def init_model_optim():
orig_model = CompositeParamModel(device=torch.device(device_type))
orig_optim = optimizer_class(
orig_model.parameters(), lr=1e-4, foreach=foreach
)
copy_optim = optimizer_class(
orig_model.parameters(), lr=1e-4, foreach=foreach
)
dist_model = fully_shard(
copy.deepcopy(orig_model),
reshard_after_forward=reshard_after_forward,
)
if compile_model:
dist_model = torch.compile(dist_model)
dist_optim = optimizer_class(
dist_model.parameters(), lr=1e-4, foreach=foreach
)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim)
@with_comms
@skip_if_lt_x_gpu(2)
def test_fsdp2(self) -> None:
self.run_subtests(
{
"reshard_after_forward": [True, False],
"optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
"compile_model": [True, False],
},
self._test_fsdp2,
)
def _test_ddp(self, use_composable: bool, optimizer_class: type[Optimizer]) -> None:
def init_model_optim():
orig_model = CompositeParamModel(device=torch.device(device_type))
orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
if use_composable:
dist_model = replicate(copy.deepcopy(orig_model))
else:
dist_model = DDP(copy.deepcopy(orig_model))
dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim)
@with_comms
@skip_if_lt_x_gpu(2)
def test_ddp(self) -> None:
self.run_subtests(
{
"use_composable": [True, False],
"optimizer_class": [
torch.optim.Adam,
torch.optim.AdamW,
torch.optim.SGD,
],
},
self._test_ddp,
)
def _test_fsdp_ddp(
self,
optimizer_class: type[Optimizer],
optim_in_backward: bool = False,
test_frozen: bool = False,
) -> None:
def init_model_optim():
orig_model = CompositeParamModel(device=torch.device(device_type))
if test_frozen:
for param in chain(
orig_model.u1.parameters(), orig_model.u2.parameters()
):
param.requires_grad = False
orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
dist_model = copy.deepcopy(orig_model)
dist_model.l = DDP(dist_model.l)
dist_model = FSDP(
copy.deepcopy(orig_model),
auto_wrap_policy=ModuleWrapPolicy({UnitModule}),
use_orig_params=optim_in_backward,
ignored_modules=[dist_model.l],
)
if optim_in_backward:
_apply_optimizer_in_backward(
optimizer_class, dist_model.parameters(), {"lr": 1e-4}
)
dist_optim = [
p._in_backward_optimizers[0] for p in dist_model.parameters()
]
else:
dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim, test_frozen)
@with_comms
@skip_if_lt_x_gpu(2)
def test_fsdp_ddp(self) -> None:
self.run_subtests(
{
"optimizer_class": [torch.optim.Adam, torch.optim.AdamW],
},
self._test_fsdp_ddp,
)
def _test_single_gpu(self, optimizer_class: type[Optimizer]) -> None:
def init_model_optim():
orig_model = CompositeParamModel(device=torch.device(device_type))
orig_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
copy_optim = optimizer_class(orig_model.parameters(), lr=1e-4)
model_copy = copy.deepcopy(orig_model)
optim_copy = optimizer_class(model_copy.parameters(), lr=1e-4)
return orig_model, orig_optim, copy_optim, model_copy, optim_copy
self._test_save_load(init_model_optim)
@skip_if_lt_x_gpu(1)
def test_single_gpu(self) -> None:
self._test_single_gpu(torch.optim.Adam)
self._test_single_gpu(torch.optim.AdamW)
def _test_strict(self, parallelism: str) -> None:
model = CompositeParamModel(device=torch.device(device_type))
if parallelism == "DDP":
model = DDP(model)
else:
model = fully_shard(model)
model_state_dict = get_model_state_dict(model)
model_state_dict["abc"] = torch.zeros(10)
with self.assertRaisesRegex(RuntimeError, "Unexpected key"):
set_model_state_dict(model, model_state_dict=model_state_dict)
key_iter = iter(model_state_dict.keys())
for key in key_iter:
if key != "abc":
break
model_state_dict.pop(key)
incompatible_keys = set_model_state_dict(
model,
model_state_dict=model_state_dict,
options=StateDictOptions(strict=False),
)
self.assertEqual(incompatible_keys.missing_keys, [key])
self.assertEqual(incompatible_keys.unexpected_keys, ["abc"])
model_state_dict.pop("abc")
with self.assertRaisesRegex(RuntimeError, "Missing key"):
set_model_state_dict(model, model_state_dict=model_state_dict)
@with_comms
@skip_if_lt_x_gpu(1)
def test_strict(self) -> None:
self.run_subtests(
{"parallelism": ["DDP", "fully_shard"]},
self._test_strict,
)
def _test_cpu_offload_full_state_dict(
self, optimizer_class: type[Optimizer]
) -> None:
orig_model = CompositeParamModel(device=torch.device(device_type))
device_mesh = init_device_mesh(device_type, (self.world_size,))
dist_model = FSDP(
copy.deepcopy(orig_model),
auto_wrap_policy=ModuleWrapPolicy({UnitModule}),
use_orig_params=True,
device_mesh=device_mesh,
)
dist_optim = optimizer_class(dist_model.parameters(), lr=1e-4)
mst, ost = get_state_dict(
dist_model,
dist_optim,
options=StateDictOptions(cpu_offload=True),
)
cpu_device = torch.device("cpu")
def is_cpu(v):
if isinstance(v, DTensor):
return v.device == cpu_device
elif isinstance(v, ShardedTensor):
shards = v.local_shards()
if not shards:
return True
return shards[0].tensor.device == cpu_device
else:
return v.device == cpu_device
self.assertTrue(
tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, mst)
)
self.assertTrue(
tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, ost)
)
mst, ost = get_state_dict(
dist_model, dist_optim, options=StateDictOptions(full_state_dict=True)
)
self.assertTrue(
tree_all(lambda v: not isinstance(v, (DTensor, ShardedTensor)), mst)
)
self.assertTrue(
tree_all(lambda v: not isinstance(v, (DTensor, ShardedTensor)), ost)
)
mst, ost = get_state_dict(
dist_model,
dist_optim,
options=StateDictOptions(full_state_dict=True, cpu_offload=True),
)
if self.rank == 0:
self.assertTrue(
tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, mst)
)
self.assertTrue(
tree_all_only((torch.Tensor, DTensor, ShardedTensor), is_cpu, ost)
)
else:
self.assertEqual(mst, {})
self.assertEqual(ost, {})
@with_comms
@skip_if_lt_x_gpu(2)
def test_cpu_offload_full_state_dict(self) -> None:
self.run_subtests(
{"optimizer_class": [torch.optim.Adam, torch.optim.AdamW]},
self._test_cpu_offload_full_state_dict,
)
@with_comms
@skip_if_lt_x_gpu(1)
def test_activation_ckpt_fqns_ddp(self) -> None:
"""Tests that activation checkpointing prefixes are removed from module names"""
model = CompositeParamModel(device=torch.device(device_type))
original_keys = get_model_state_dict(model).keys()
apply_activation_checkpointing(model)
model = DDP(model)
new_keys = get_model_state_dict(model).keys()
self.assertEqual(original_keys, new_keys)
@with_comms
@skip_if_lt_x_gpu(1)
def test_activation_ckpt_fqns_fsdp1(self) -> None:
self.run_subtests(
{"use_orig_params": [True, False]},
self._test_activation_ckpt_fqns_fsdp1,
)
def _test_activation_ckpt_fqns_fsdp1(self, use_orig_params: bool) -> None:
"""Tests that activation checkpointing prefixes are removed from module names"""
model = CompositeParamModel(device=torch.device(device_type))
original_keys = get_model_state_dict(model).keys()
apply_activation_checkpointing(model)
model = FSDP(model, use_orig_params=use_orig_params)
new_keys = get_model_state_dict(model).keys()
self.assertEqual(original_keys, new_keys)
@skip_if_lt_x_gpu(1)
def test_extra_state(self) -> None:
model = CompositeParamModel(device=torch.device(device_type))
def get_extra_state(self):
return "MyState"
def set_extra_state(self, state):
return
UnitModule.get_extra_state = get_extra_state
UnitModule.set_extra_state = set_extra_state
target_model = copy.deepcopy(model)
set_model_state_dict(target_model, get_model_state_dict(target_model))
self.assertEqual(model.state_dict()["u1._extra_state"], "MyState")
self.assertEqual(model.state_dict(), get_model_state_dict(target_model))
@skip_if_lt_x_gpu(1)
def test_non_persistent_buffers(self) -> None:
model = CompositeParamModel(device=torch.device(device_type))
model.register_buffer(
"dont_save_me", torch.rand(100, device=device_type), persistent=False
)
target_model = copy.deepcopy(model)
set_model_state_dict(target_model, get_model_state_dict(target_model))
self.assertEqual(model.state_dict(), get_model_state_dict(target_model))
def _test_broadcast_from_rank0(self, wrapper) -> None:
model = CompositeParamModel(device=torch.device(device_type))
optim = torch.optim.Adam(model.parameters())
fsdp_model = wrapper(copy.deepcopy(model))
fsdp_optim = torch.optim.Adam(fsdp_model.parameters())
batch = torch.rand(8, 100, device=device_type)
model(batch).sum().backward()
optim.step()
states, optim_states = get_state_dict(model, optim)
fsdp_model(batch).sum().backward()
fsdp_optim.step()
def check(equal):
fsdp_states = get_model_state_dict(
fsdp_model,
options=StateDictOptions(full_state_dict=True),
)
fsdp_optim_states = get_optimizer_state_dict(
fsdp_model,
fsdp_optim,
options=StateDictOptions(full_state_dict=True),
)
if equal:
self.assertEqual(states, fsdp_states)
self.assertEqual(optim_states, fsdp_optim_states)
else:
self.assertNotEqual(states, fsdp_states)
self.assertNotEqual(optim_states, fsdp_optim_states)
check(equal=True)
fsdp_model(batch).sum().backward()
fsdp_optim.step()
check(equal=False)
# Drop the states to simulate loading from rank0
if dist.get_rank() > 0:
load_states = {}
load_states2 = {}
load_optim_states = {}
else:
load_states = copy.deepcopy(states)
load_states2 = copy.deepcopy(states)
load_optim_states = copy.deepcopy(optim_states)
set_model_state_dict(
fsdp_model,
model_state_dict=load_states,
options=StateDictOptions(broadcast_from_rank0=True, full_state_dict=True),
)
set_optimizer_state_dict(
fsdp_model,
fsdp_optim,
optim_state_dict=load_optim_states,
options=StateDictOptions(broadcast_from_rank0=True, full_state_dict=True),
)
check(equal=True)
# Verify the `strict` flag.
load_states = load_states2
if load_states:
key = next(iter(load_states.keys()))
load_states.pop(key)
with self.assertRaisesRegex(RuntimeError, "Missing key"):
set_model_state_dict(
fsdp_model,
model_state_dict=load_states,
options=StateDictOptions(
broadcast_from_rank0=True, full_state_dict=True
),
)
@with_comms
@skip_if_lt_x_gpu(4)
def test_broadcast_from_rank0(self) -> None:
device_mesh = init_device_mesh(device_type, (self.world_size,))
hsdp_device_mesh = init_device_mesh(device_type, (2, self.world_size // 2))
self.run_subtests(
{
"wrapper": [
functools.partial(fully_shard, mesh=device_mesh),
functools.partial(FSDP, device_mesh=device_mesh),
functools.partial(
FSDP,
device_mesh=hsdp_device_mesh,
sharding_strategy=ShardingStrategy.HYBRID_SHARD,
),
]
},
self._test_broadcast_from_rank0,
)
@with_comms
@skip_if_lt_x_gpu(2)
def test_fsdp_root_not_initialized(self) -> None:
# This test verifies that FSDP root is not initialized but we should
# still be able to get the state_dict without errors because
# fsdp_model.state_dict() will trigger the FSDP initialization.
device_mesh = init_device_mesh(device_type, (self.world_size,))
model = CompositeParamModel(device=torch.device(device_type))
fsdp_model = FSDP(copy.deepcopy(model), device_mesh=device_mesh)
fsdp_optim = torch.optim.Adam(fsdp_model.parameters())
get_model_state_dict(fsdp_model)
get_optimizer_state_dict(fsdp_model, fsdp_optim)
@with_comms
@skip_if_lt_x_gpu(2)
def test_optim_state_dict_param_matching(self) -> None:
# This test verifies parameters between optim and optim_state_dict
# "initial_lr" is added to optim_state_dict, but not to the new optim
# We test whether "initial_lr" appear in optim after
# set_optimizer_state_dict.
torch.manual_seed(0)
model = nn.Sequential(
*[nn.Linear(4, 4, device=device_type, bias=False) for _ in range(2)]
)
for layer in model:
fully_shard(layer)
fully_shard(model)
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=[lambda epoch: 0.95**epoch])
opt_state_dict = ptd_state_dict.get_optimizer_state_dict(
model,
optim,
options=ptd_state_dict.StateDictOptions(
full_state_dict=True, cpu_offload=True
),
)
if dist.get_rank() == 0:
self.assertTrue("initial_lr" in opt_state_dict["param_groups"][0])
optim = torch.optim.Adam(model.parameters(), lr=1e-2)
self.assertTrue("initial_lr" not in optim.param_groups[0])
ptd_state_dict.set_optimizer_state_dict(
model,
optim,
optim_state_dict=opt_state_dict,
options=ptd_state_dict.StateDictOptions(
broadcast_from_rank0=True, full_state_dict=True
),
)
if dist.get_rank() == 0:
self.assertTrue("initial_lr" in optim.param_groups[0])
@with_comms
@skip_if_lt_x_gpu(2)
def test_flattened_osd(self) -> None:
device_mesh = init_device_mesh(device_type, (self.world_size,))
model = CompositeParamModel(device=torch.device(device_type))
fsdp_model = fully_shard(copy.deepcopy(model), mesh=device_mesh)
fsdp_optim = torch.optim.AdamW(fsdp_model.parameters())
batch = torch.rand(8, 100, device=device_type)
fsdp_model(batch).sum().backward()
fsdp_optim.step()
fsdp_optim.zero_grad()
osd1 = get_optimizer_state_dict(fsdp_model, fsdp_optim)
osd2 = get_optimizer_state_dict(
fsdp_model,
fsdp_optim,
options=StateDictOptions(flatten_optimizer_state_dict=True),
)
fsdp_optim2 = torch.optim.AdamW(fsdp_model.parameters())
set_optimizer_state_dict(
fsdp_model, optimizers=fsdp_optim2, optim_state_dict=osd2
)
self.assertEqual(fsdp_optim.state_dict(), fsdp_optim2.state_dict())
set_optimizer_state_dict(
fsdp_model, optimizers=fsdp_optim2, optim_state_dict=osd1
)
self.assertEqual(fsdp_optim.state_dict(), fsdp_optim2.state_dict())
def _test_deprecate_partial(self) -> None:
model = CompositeParamModel(device=torch.device(device_type))
model_state_dict1 = get_model_state_dict(model)
model_state_dict1 = copy.deepcopy(model_state_dict1)
with self.assertWarnsRegex(
FutureWarning,
"Getting submodules only model/optim state_dict is deprecated",
):
model_state_dict2 = get_model_state_dict(model, submodules={model.l})
model_state_dict2 = copy.deepcopy(model_state_dict2)
with self.assertWarnsRegex(
FutureWarning,
"Getting submodules only model/optim state_dict is deprecated",
):
model_state_dict3 = get_model_state_dict(
model,
submodules={model.l},
options=StateDictOptions(keep_submodule_prefixes=False),
)
model_state_dict3 = copy.deepcopy(model_state_dict3)
self.assertEqual(len(model_state_dict2), 2)
self.assertEqual(len(model_state_dict3), 2)
for key in model_state_dict3.keys():
full_fqn = f"l.{key}"
value1 = model_state_dict1[full_fqn]
value2 = model_state_dict2[full_fqn]
value3 = model_state_dict3[key]
self.assertEqual(value1, value2)
self.assertEqual(value2, value3)
zeros_state_dict = {
k: torch.zeros_like(v) for k, v in model_state_dict1.items()
}
model.load_state_dict(zeros_state_dict)
set_model_state_dict(
model,
model_state_dict=model_state_dict2,
options=StateDictOptions(strict=False),
)
self.assertEqual(model.l.weight, model_state_dict1["l.weight"])
self.assertEqual(model.l.bias, model_state_dict1["l.bias"])
model.load_state_dict(zeros_state_dict)
with self.assertWarnsRegex(FutureWarning, "Passing model_state_dict as a "):
set_model_state_dict(
model,
model_state_dict={model.l: model_state_dict3},
options=StateDictOptions(strict=False),
)
self.assertEqual(model.l.weight, model_state_dict1["l.weight"])
self.assertEqual(model.l.bias, model_state_dict1["l.bias"])
def _test_deprecate_fsdp_api(self) -> None:
device_mesh = init_device_mesh(device_type, (self.world_size,))
model = CompositeParamModel(device=torch.device(device_type))
fsdp_model = FSDP(copy.deepcopy(model), device_mesh=device_mesh)
with self.assertWarnsRegex(
FutureWarning,
r"FSDP.state_dict_type\(\) and FSDP.set_state_dict_type\(\) are being deprecated",
):
with FSDP.state_dict_type(fsdp_model, StateDictType.FULL_STATE_DICT):
fsdp_model.state_dict()
with self.assertRaisesRegex(AssertionError, "FutureWarning not triggered"):
with self.assertWarnsRegex(
FutureWarning,
r"FSDP.state_dict_type\(\) and FSDP.set_state_dict_type\(\) are being deprecated",
):
get_model_state_dict(model)
@with_comms
@skip_if_lt_x_gpu(1)
def test_deprecate_api(self) -> None:
self._test_deprecate_partial()
self._test_deprecate_fsdp_api()
@with_comms
@skip_if_lt_x_gpu(2)
def test_shared_weight(self):
class TiedEmbeddingModel(nn.Module):
def __init__(self, vocab_size, embedding_dim):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.decoder = nn.Linear(embedding_dim, vocab_size)
self.decoder.weight = self.embedding.weight # Tying weights
def forward(self, input):
input = (input * 10).to(torch.int)
embedded = self.embedding(input)
output = self.decoder(embedded)
return output
def init_model_optim():
device_mesh = init_device_mesh(device_type, (self.world_size,))
orig_model = TiedEmbeddingModel(10000, 300).to(torch.device(device_type))
orig_optim = torch.optim.AdamW(orig_model.parameters(), lr=1e-4)
copy_optim = torch.optim.AdamW(orig_model.parameters(), lr=1e-4)
dist_model = FSDP(copy.deepcopy(orig_model), device_mesh=device_mesh)
dist_optim = torch.optim.AdamW(dist_model.parameters(), lr=1e-4)
return orig_model, orig_optim, copy_optim, dist_model, dist_optim
self._test_save_load(init_model_optim)
self.run_subtests(
{
"init_model_optim": [init_model_optim],
"flatten_optimizer": [True, False],
},
self._test_save_load,
)
@with_comms
@skip_if_lt_x_gpu(2)
def test_setting_meta_device_model(self) -> None:
# This test verifies that we can set model state dict by a meta device model
torch.manual_seed(0)
with torch.device("meta"):
meta_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
for layer in meta_model:
fully_shard(layer)
fully_shard(meta_model)
with torch.device("cpu"):
cpu_model = nn.Sequential(*[nn.Linear(4, 4, bias=False) for _ in range(2)])
full_sd = cpu_model.state_dict()
set_model_state_dict(
meta_model,
model_state_dict=full_sd,
options=StateDictOptions(full_state_dict=True, strict=False),
)
meta_model_state_dict = meta_model.state_dict()
cpu_model_state_dict = get_model_state_dict(cpu_model)
for cpu_model_key, cpu_model_value in cpu_model_state_dict.items():
meta_model_value = (
meta_model_state_dict[cpu_model_key]
.full_tensor()
.to(device=cpu_model_value.device)
)
self.assertEqual(cpu_model_value, meta_model_value)
@with_comms
@skip_if_lt_x_gpu(2)
def test_setting_meta_device_model_broadcasting_and_memory(self) -> None:
# This test verifies that we can set model state dict by a meta device model
# With the correlated changes in state_dict, meta device model should be accepted
# in broadcasting and get copied successfully.
torch.manual_seed(0)
with torch.device("meta"):
meta_model = nn.Sequential(
*[nn.Linear(10000, 10000, bias=False) for _ in range(4)]
)
for layer in meta_model:
fully_shard(layer)
fully_shard(meta_model)
with torch.device("cpu"):
cpu_model = nn.Sequential(
*[nn.Linear(10000, 10000, bias=False) for _ in range(4)]
)
full_sd = cpu_model.state_dict()
set_model_state_dict(
meta_model,
model_state_dict=full_sd,
options=StateDictOptions(
broadcast_from_rank0=True, full_state_dict=True, strict=False
),
)
meta_model_state_dict = meta_model.state_dict()
cpu_model_state_dict = get_model_state_dict(cpu_model)
for cpu_model_key, cpu_model_value in cpu_model_state_dict.items():
meta_model_value = (
meta_model_state_dict[cpu_model_key]
.full_tensor()
.to(device=cpu_model_value.device)
)
self.assertEqual(cpu_model_value, meta_model_value)
# Memory allocated and reserved are lower due to the change at _distribute_tensors
# from view to clone. This test would fail if with view due to higher memory cost.
memory_allocated = (
torch.get_device_module(device_type).memory_allocated(0) / 1024 / 1024
)
memory_reserved = (
torch.get_device_module(device_type).memory_reserved(0) / 1024 / 1024
)
self.assertTrue(memory_allocated <= 384)
self.assertTrue(memory_reserved <= 768)
@with_comms
@skip_if_lt_x_gpu(2)
def test_set_cpu_model_state_dict_broadcast_from_rank0(self) -> None:
torch.manual_seed(42)
model = nn.Linear(2, 2)
expected_state_dict = {
k: v.detach().clone() for k, v in model.state_dict().items()
}
state_dict = expected_state_dict if torch.distributed.get_rank() == 0 else {}
model._apply(lambda t: torch.zeros_like(t))
set_model_state_dict(
model,
state_dict,
options=StateDictOptions(full_state_dict=True, broadcast_from_rank0=True),
)
for (actual_name, tensor), (expected_name, expected_tensor) in zip(
model.state_dict().items(),
expected_state_dict.items(),
):
assert actual_name == expected_name
torch.testing.assert_close(tensor, expected_tensor, msg=expected_name)
@with_comms
@skip_if_lt_x_gpu(2)
def test_multi_device_load_model_state_dict(self) -> None:
torch.manual_seed(0)
with torch.device("meta"):
meta_submodel = nn.Linear(4, 4, bias=False)
with torch.device("cpu"):
cpu_submodel = nn.Linear(4, 4, bias=False)
with torch.device(device_type):
acc_submodel = nn.Linear(4, 4, bias=False)
two_device_model_with_meta = nn.Sequential(meta_submodel, acc_submodel)
two_device_model_without_meta = nn.Sequential(cpu_submodel, acc_submodel)
with torch.device("cpu"):
model_to_set = nn.Sequential(
*[nn.Linear(4, 4, bias=False) for _ in range(2)]
)
full_sd = model_to_set.state_dict()
set_model_state_dict(
two_device_model_with_meta,
model_state_dict=full_sd,
options=StateDictOptions(
broadcast_from_rank0=True, full_state_dict=True, strict=False
),
)
with self.assertRaisesRegex(ValueError, "Multiple devices found"):
set_model_state_dict(
two_device_model_without_meta,
model_state_dict=full_sd,
options=StateDictOptions(
broadcast_from_rank0=True, full_state_dict=True, strict=False
),
)
@with_comms
@skip_if_lt_x_gpu(2)
def test_state_dict_with_hook_on_keys(self) -> None:
with torch.device("meta"):
metamodel = FusionEmbedding(4, 4, 4)
with torch.device(device_type):
gpumodel = FusionEmbeddingWithHook(4, 4, 4)
gpumodel_state_dict = get_model_state_dict(gpumodel)
with self.assertRaisesRegex(RuntimeError, "Missing key"):
set_model_state_dict(metamodel, gpumodel_state_dict)
with torch.device("meta"):
metamodel_modified = FusionEmbeddingWithModifier(4, 4, 4)
set_model_state_dict(metamodel_modified, gpumodel_state_dict)
@with_comms
@skip_if_lt_x_gpu(2)
def test_multi_param_groups(self) -> None:
class TestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(64, 64)
self.fc1 = torch.nn.Linear(64, 64)
def forward(self, x):
return self.fc1(self.fc(x))
device_mesh = init_device_mesh(device_type, (self.world_size,))
model = TestModel().to(device_type)
parallelize_module(
model,
device_mesh,
{
"fc": ColwiseParallel(use_local_output=False),
"fc1": RowwiseParallel(use_local_output=False),
},
)
def _test_multi(
optim_kwargs, full_state_dict, broadcast_from_rank0, cpu_offload
):
if broadcast_from_rank0 and not full_state_dict:
return
optim = torch.optim.AdamW(**optim_kwargs)
optim.zero_grad()
model(torch.randn(64, 64, device=device_type)).sum().backward()
optim.step()
optim.zero_grad()
options = torch.distributed.checkpoint.state_dict.StateDictOptions(
full_state_dict=full_state_dict,
broadcast_from_rank0=broadcast_from_rank0,
cpu_offload=cpu_offload,
)
optim_state_dict = get_optimizer_state_dict(model, optim, options=options)
new_optim = torch.optim.AdamW(**optim_kwargs)
set_optimizer_state_dict(
model, new_optim, optim_state_dict, options=options
)
self.assertEqual(optim.param_groups, new_optim.param_groups)
self.assertEqual(optim.state, new_optim.state)
_multi_optim_kwargs = {
"params": [
{"params": [model.fc.weight]},
{"params": [model.fc1.weight], "lr": 0.2},
],
"lr": 0.1,
}
_multi_optim_kwargs_empty_pg = {
"params": [
{"params": [model.fc.weight, model.fc1.weight]},
{"params": [], "lr": 0.2}, # empty pg group here
],
"lr": 0.1,
}
self.run_subtests(
{
"optim_kwargs": [_multi_optim_kwargs_empty_pg, _multi_optim_kwargs],
"full_state_dict": [False, True],
"broadcast_from_rank0": [False, True],
# TODO: cpu_offload will cause get_optimizer_state_dict complain that
# tensors are not on GPU.
"cpu_offload": [False],
},
_test_multi,
)
class TestNoComm(MultiProcessTestCase):
def setUp(self) -> None:
super().setUp()
self._spawn_processes()
@skip_if_lt_x_gpu(1)
def test_no_dist(self) -> None:
model = CompositeParamModel(device=torch.device(device_type))
optim = torch.optim.AdamW(model.parameters(), lr=1e-4)
self.assertFalse(dist.is_initialized())
msd = get_model_state_dict(
model, options=StateDictOptions(full_state_dict=True, cpu_offload=True)
)
for v in msd.values():
self.assertFalse(v.is_cuda)
self.assertEqual(model.state_dict(), msd)
set_model_state_dict(model, model.state_dict())
osd = get_optimizer_state_dict(
model,
optim,
options=StateDictOptions(full_state_dict=True, cpu_offload=True),
)
set_optimizer_state_dict(model, optim, osd)
set_optimizer_state_dict(model, optim, optim.state_dict())
if __name__ == "__main__":
run_tests()