Files
pytorch/caffe2/python/core_test.py
Simon Layton a8250280bb Py3 test fixes
Summary:
\cc pietern
Closes https://github.com/caffe2/caffe2/pull/1555

Differential Revision: D6479902

Pulled By: pietern

fbshipit-source-id: 84647eddec45620b1ed603f4882ded2dd49adc43
2017-12-05 10:34:41 -08:00

917 lines
32 KiB
Python

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from inspect import currentframe, getframeinfo
import unittest
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace, test_util
from caffe2.python.task import Node, Task
class TestScopes(test_util.TestCase):
def testBlobReferenceIsIndependentFromNameScope(self):
blob_v = core.BlobReference("v")
with core.NameScope("foo"):
blob_w = core.BlobReference("w")
with core.NameScope("bar"):
blob_x = core.BlobReference("x")
self.assertEqual(str(blob_v), "v")
self.assertEqual(str(blob_w), "w")
self.assertEqual(str(blob_x), "x")
def testNameScopeWithOp(self):
global_x = core.BlobReference("x")
global_y = core.BlobReference("y")
with core.NameScope("foo"):
# Raw strings should have namescope prepended.
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
# BlobReferences should not.
op = core.CreateOperator("Relu", global_x, global_y)
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "y")
def testNameScopeWithReset(self):
with core.NameScope("foo"):
# foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
with core.NameScope("bar"):
# foo/bar/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/bar/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/bar/y")
# Back to foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
with core.NameScope("bar", reset=True):
# bar/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "bar/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "bar/y")
# Back to foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
def testDeviceScope(self):
# No device
op = core.CreateOperator("Relu", "x", "y")
self.assertFalse(op.HasField('device_option'))
# explicitly setting a device
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
op = core.CreateOperator("Relu", "x", "y", device_option=device_option)
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
with core.DeviceScope(device_option):
# from device scope
op = core.CreateOperator("Relu", "x", "y")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
# from an overridden device option
override_device = caffe2_pb2.DeviceOption()
override_device.device_type = caffe2_pb2.CPU
op = core.CreateOperator(
"Relu", "x", "y", device_option=override_device)
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CPU)
# back from normal: no device
op = core.CreateOperator("Relu", "x", "y")
self.assertFalse(op.HasField('device_option'))
device_option = caffe2_pb2.DeviceOption()
def testNameAndDeviceScopeTogether(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
with core.DeviceScope(device_option):
with core.NameScope("foo"):
op = core.CreateOperator("Relu", "x", "y")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
class TestCloneNet(test_util.TestCase):
def testPartialClone(self):
params = core.Net('params')
p1 = params.ConstantFill([], ['p1'])
workspace.CreateNet(params)
workspace.RunNetOnce(params)
n = core.Net('original')
a1 = n.AddExternalInput('a1')
a2 = n.AddExternalInput('a2')
b1, b2 = n.Concat([a1, a2], ['b1', 'b2'], axis=0)
c1 = n.Sum([b1, p1], ['c1'])
c2 = n.Sum([b2], ['c2'])
d = n.Sum([c1, c2], ['d'])
# test that gradient ops are ignored when partial-cloning
n.AddGradientOperators([d])
# test some in-place ops
k = n.Sum([p1], ['k'])
e = n.Sum([d], ['e'])
e = n.Sum([e, k], [e])
e = n.Sum([e], [e])
f = n.Sum(e, ['f'])
def net_assert(net, num_ops, inputs, outputs, internals):
self.assertEqual(len(net.Proto().op), num_ops)
self.assertEqual(set(net.Proto().external_input), inputs)
self.assertEqual(set(net.Proto().external_output), outputs)
all_blobs = set(net.Proto().external_input)
all_blobs |= set(net.Proto().external_output)
for op in net.Proto().op:
all_blobs |= set(op.input) | set(op.output)
self.assertEqual(all_blobs, inputs | outputs | internals)
# create net to make sure its valid
for input in inputs:
workspace.FeedBlob(input, np.array([]))
workspace.CreateNet(net)
n2, (d22, ) = n.ClonePartial('f1', {a1: 'a11', a2: 'a22'}, [d])
net_assert(
n2, 4, {'p1', 'a11', 'a22'}, {'f1/d'},
{'f1/b1', 'f1/b2', 'f1/c1', 'f1/c2', 'p1'})
self.assertTrue(isinstance(d22, core.BlobReference))
self.assertEqual(d22.Net(), n2)
self.assertEqual(str(d22), 'f1/d')
n3, (d22, ) = n.ClonePartial('f2', [b1, b2], [d])
net_assert(
n3, 3, {'p1', 'b1', 'b2'}, {'f2/d'}, {'f2/c1', 'f2/c2', 'p1'})
self.assertEqual(str(d22), 'f2/d')
n4, (c22, ) = n.ClonePartial('f3', [b1], [c1])
net_assert(n4, 1, {'p1', 'b1'}, {'f3/c1'}, {'p1'})
self.assertEqual(str(c22), 'f3/c1')
n5, (c11, c22) = n.ClonePartial('f4', [b1, b2], [c1, c2])
net_assert(n5, 2, {'p1', 'b1', 'b2'}, {'f4/c1', 'f4/c2'}, {'p1'})
self.assertEqual(str(c11), 'f4/c1')
self.assertEqual(str(c22), 'f4/c2')
with self.assertRaises(AssertionError):
n.ClonePartial('f4', [a1, a2, c2], [d])
n6, (e22, ) = n.ClonePartial('f5', [d], [e])
net_assert(n6, 4, {'p1', 'd'}, {'f5/e'}, {'f5/k', 'p1'})
self.assertEqual(str(e22), 'f5/e')
n8, (e22, f22) = n.ClonePartial('f7', [d], [e, f])
net_assert(n8, 5, {'p1', 'd'}, {'f7/e', 'f7/f'}, {'p1', 'f7/k'})
self.assertEqual(str(e22), 'f7/e')
self.assertEqual(str(f22), 'f7/f')
params._CheckLookupTables()
n._CheckLookupTables()
class TestCreateOperator(test_util.TestCase):
def testCreate(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
op = core.CreateOperator(
"Ludicrous", "x", "y", name="ludicrous",
control_input="z", device_option=device_option,
engine="WARP", arg1=1, arg2="2", arg3=[1, 2, 3])
self.assertEqual(op.type, "Ludicrous")
self.assertEqual(op.name, "ludicrous")
self.assertEqual(op.engine, "WARP")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "y")
self.assertEqual(len(op.control_input), 1)
self.assertEqual(op.control_input[0], "z")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CUDA)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertTrue(len(op.arg), 3)
# can't guarantee ordering of kwargs, so generate a set of args
# to test with
arg_map = {}
for arg in op.arg:
arg_map[arg.name] = arg
# Check all elements exist that should
self.assertEqual("arg1" in arg_map, True)
self.assertEqual("arg2" in arg_map, True)
self.assertEqual("arg3" in arg_map, True)
# Now test that all args were initialized correctly
self.assertEqual(arg_map["arg1"].i, 1)
self.assertEqual(arg_map["arg2"].s, b"2")
self.assertEqual(list(arg_map["arg3"].ints), [1, 2, 3])
def testCreateWithNoneKwarg(self):
with self.assertRaises(ValueError):
core.CreateOperator("Ludicrous", "x", "y", arg1=None)
class TestAutoNaming(test_util.TestCase):
"""
Test that operators are named with different names, and that automatically
named blob names don't clash intra or inter networks.
"""
def test_next_blob(self):
def create_net():
net = core.Net('net')
with core.NameScope('foo'):
net.Add(['a', 'b'], net.NextScopedBlob('ab'))
net.Add(['c', 'd'], net.NextBlob('cd'))
return net
net_a = create_net()
net_b = create_net()
# created net proto is predicatable.
self.assertEqual(net_a.Proto().op,
net_b.Proto().op)
self.assertEqual(net_a.Proto().op[0].output[0], 'foo/ab')
self.assertEqual(net_a.Proto().op[1].output[0], 'cd')
net_c = core.Net('net')
# different calls return different blob names
self.assertNotEqual(str(net_c.NextBlob('b')), str(net_c.NextBlob('b')))
def test_auto_naming(self):
a = core.Net('net')
b = core.Net('net')
self.assertNotEqual(a.Proto().name, b.Proto().name)
a_in1 = a.AddExternalInput('a')
b_in1 = b.AddExternalInput('b')
all_outputs_single = []
all_outputs_list = []
def add_ops():
all_outputs_single.append(a.Sum([a_in1, a_in1]))
all_outputs_single.append(a.Sum([a_in1, a_in1]))
all_outputs_single.append(b.Sum([b_in1, b_in1]))
all_outputs_single.append(b.Sum([b_in1, b_in1]))
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
add_ops()
with core.NameScope('n1'):
add_ops()
# Force reset of lookup tables
a.Proto().name
with core.NameScope('n2'):
add_ops()
all_outputs = []
for s in all_outputs_single:
all_outputs.append(str(s))
for l in all_outputs_list:
for o in l:
all_outputs.append(str(o))
for i, o1 in enumerate(all_outputs):
for j, o2 in enumerate(all_outputs):
if i != j:
self.assertNotEqual(str(o1), str(o2))
a._CheckLookupTables()
b._CheckLookupTables()
class TestAppendNet(test_util.TestCase):
def test_external_inputs_merged_correctly(self):
netA = core.Net("A")
netA.Sum(["in1", "in2"], ["sum1"])
self.assertTrue("in1" in netA.external_inputs)
netB = core.Net("B")
netB.Sum(["in3", "in4"], ["in1"])
netB.AppendNet(netA)
self.assertFalse("in1" in netB.external_inputs)
def test_external_inputs_merged_correctlyB(self):
netA = core.Net("A")
netA.Sum(["in1", "in2"], ["sum1"])
self.assertTrue("in1" in netA.external_inputs)
netB = core.Net("B")
netB.Sum(["in3", "in4"], ["in1"])
netA.AppendNet(netB) # note different order than in prev test
self.assertTrue("in1" in netA.external_inputs)
class TestExtractPredictorNet(test_util.TestCase):
def test_extract_simple(self):
from caffe2.python import brew
from caffe2.python.model_helper import ModelHelper, ExtractPredictorNet
model = ModelHelper(name="test", arg_scope={'order': 'NCHW'})
[data, label] = brew.image_input(
model,
"reader", ["xx/data", "label"],
is_test=1,
)
cnv = brew.conv(model, data, 'cnv', 32, 32, 4)
a = brew.fc(model, cnv, 'a', 100, 200)
pred = brew.fc(model, a, 'pred', 200, 5)
brew.softmax(model, [pred, label], "softmax")
(predict_net, export_blobs) = ExtractPredictorNet(
net_proto=model.net.Proto(),
input_blobs=["xx/data"],
output_blobs=["pred"],
renames={"xx/data": "image"},
)
export_blobs = set(export_blobs)
ops = list(predict_net.Proto().op)
for op in ops:
self.assertFalse(op.type == "Softmax")
self.assertFalse("xx/data" in op.input)
# Note: image input should not be included
self.assertEquals(ops[0].type, "Conv")
self.assertEquals(ops[1].type, "FC")
self.assertEquals(ops[2].type, "FC")
self.assertEquals(len(ops), 3)
# test rename happened
self.assertEquals(ops[0].input[0], "image")
# Check export blobs
self.assertTrue("image" not in export_blobs)
self.assertTrue("xx/data" not in export_blobs)
self.assertEqual(set([str(p) for p in model.params]), export_blobs)
# Check external inputs/outputs
self.assertTrue("image" in predict_net.Proto().external_input)
self.assertEquals(set(["pred"]), set(predict_net.Proto().external_output))
self.assertEqual(
set(predict_net.Proto().external_input) -
set([str(p) for p in model.params]), set(["image"])
)
class TestOperatorTraceback(test_util.TestCase):
def test_operator_constructor_traceback(self):
net = core.Net("test")
a, b = net.AddExternalInput("a", "b")
net.Mul([a, b], "c"); cf = currentframe(); line = cf.f_lineno
with self.assertRaises(Exception):
workspace.RunNetOnce(net)
with self.assertRaises(Exception):
workspace.CreateNet(net)
self.op_name_check(net, cf, line)
def op_name_check(self, net, cf, line):
net.PopulateProtoWithFileName()
filename = getframeinfo(cf).filename
self.assertEqual(net.Proto().op[0].name, '{}:{}'.format(filename, line))
def test_operator_runtime_traceback(self):
net = core.Net("test")
a = net.AddExternalInput("a")
workspace.blobs[a] = np.array([1, 2, 3], dtype=np.float32)
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
with self.assertRaises(Exception):
workspace.RunNetOnce(net)
workspace.CreateNet(net)
with self.assertRaises(Exception):
workspace.RunNet(net)
self.op_name_check(net, cf, line)
def test_c_workspace_constructor(self):
net = core.Net("test")
a, b = net.AddExternalInput("a", "b")
net.Mul([a, b], "c"); cf = currentframe(); line = cf.f_lineno
ws = workspace.C.Workspace()
with self.assertRaises(Exception):
ws.run(net)
with self.assertRaises(Exception):
ws.create_net(net)
self.op_name_check(net, cf, line)
def test_c_workspace_runtime(self):
net = core.Net("test")
a = net.AddExternalInput("a")
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
ws = workspace.C.Workspace()
ws.create_blob(str(a)).feed(np.array([1, 2, 3], dtype=np.float32))
ws.create_net(net)
with self.assertRaises(Exception):
ws.run(net)
self.op_name_check(net, cf, line)
class TestCreatePlan(test_util.TestCase):
def test_create_plan_from_proto_correctly(self):
from caffe2.python.net_builder import ops
with Node('trainer'), Task(name='my_task', num_instances=2) as task:
with ops.task_init():
globl = ops.Const(0)
with ops.task_instance_init():
local = ops.Const(0)
with ops.loop(100):
ops.Copy(globl, local)
with ops.task_instance_exit():
ops.Add([globl, local], [globl])
with ops.task_exit():
ops.Mul([globl, globl], [globl])
plan = core.Plan(task.get_step())
test_plan = core.Plan.create_from_proto(plan.Proto())
self.assertEqual(len(plan.Steps()), 1)
self.assertEqual(len(test_plan.Steps()), 1)
self.assertEqual(plan.Steps()[0].Name(), test_plan.Steps()[0].Name())
self.assertEqual(len(plan.Nets()), len(test_plan.Nets()))
for idx in range(0, len(plan.Nets())):
# When we create Net for test_plan, we will end up with new Net
# name with postfix.
net_1 = plan.Nets()[idx]
net_2 = test_plan.Nets()[idx]
trim_size = len(net_1.Name())
self.assertEqual(net_1.Name(), net_2.Name()[:trim_size])
class TestOpRegistryKey(test_util.TestCase):
def test_is_operator(self):
self.assertTrue(core.IsOperator('Relu'))
self.assertFalse(core.IsOperator('NOEXIST'))
def test_is_operator_with_engine(self):
self.assertTrue(core.IsOperatorWithEngine('Relu', 'DEFAULT'))
self.assertFalse(core.IsOperatorWithEngine('Relu', 'NOEXIST'))
class TestDeviceOption(test_util.TestCase):
def test_check_equal_node_name(self):
opt1 = core.DeviceOption(0)
opt2 = core.DeviceOption(0)
self.assertTrue(core.device_option_equal(opt1, opt2))
opt2.node_name = 'test'
self.assertTrue(core.device_option_equal(opt1, opt2))
self.assertFalse(core.device_option_equal(opt1, opt2, ignore_node_name=False))
opt1.node_name = 'test'
self.assertTrue(core.device_option_equal(opt1, opt2, ignore_node_name=False))
def test_check_equal_default_value(self):
opt1 = caffe2_pb2.DeviceOption()
opt2 = caffe2_pb2.DeviceOption()
opt1.device_type = 0
self.assertTrue(core.device_option_equal(opt1, opt2))
opt1.cuda_gpu_id = 5
# opt1 still is on CPU, so the options should be equal
self.assertTrue(core.device_option_equal(opt1, opt2))
opt2.device_type = 0
self.assertTrue(core.device_option_equal(opt1, opt2))
opt1.device_type = 1
self.assertFalse(core.device_option_equal(opt1, opt2))
@unittest.skipIf(not workspace.has_gpu_support, 'No GPU support')
class TestInferDevice(test_util.TestCase):
def setUp(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
self.cuda_option = device_option
self.cpu_option = caffe2_pb2.DeviceOption()
def _test_op(
self,
op_name,
in_option,
out_option,
op_option=None,
inputs=None,
outputs=None
):
op_option = self.cuda_option if not op_option else op_option
inputs = ["blob_1"] if not inputs else inputs
outputs = ["blob_2"] if not outputs else outputs
with core.DeviceScope(op_option):
op = core.CreateOperator(op_name, inputs, outputs)
input_dev, output_dev = core.InferOpBlobDevices(op)
for in_dev in input_dev:
self.assertEqual(in_dev, in_option)
for out_dev in output_dev:
self.assertEqual(out_dev, out_option)
def test_infer_device(self):
self._test_op(
"FC",
self.cuda_option,
self.cuda_option,
op_option=self.cuda_option,
inputs=["data", "fc_w", "fc_b"],
outputs=["fc_1"]
)
def test_infer_device_cross_device(self):
self._test_op("CopyGPUToCPU", self.cuda_option, self.cpu_option)
self._test_op("CopyCPUToGPU", self.cpu_option, self.cuda_option)
self._test_op("EnsureCPUOutput", self.cuda_option, self.cpu_option)
self._test_op("CopyFromCPUInput", self.cpu_option, self.cuda_option)
self._test_op(
"EnsureCPUOutput",
self.cpu_option,
self.cpu_option,
op_option=self.cpu_option
)
self._test_op(
"CopyFromCPUInput",
self.cpu_option,
self.cpu_option,
op_option=self.cpu_option
)
def test_inject_copy(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
with core.DeviceScope(device_option):
net.FC(["data", weight, bias], "fc1")
_, blob_to_device = core.InjectCrossDeviceCopies(init_net)
new_net, blob_to_device = core.InjectCrossDeviceCopies(
net, blob_to_device
)
op = new_net._net.op[-1]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data_cuda_1")
self.assertEqual(op.input[1], "fc_w_cuda_1")
self.assertEqual(op.input[2], "fc_b_cuda_1")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(new_net._net.op[-2].type, "CopyCPUToGPU")
self.assertEqual(new_net._net.op[0].type, "CopyCPUToGPU")
self.assertNotEqual(blob_to_device["fc_w"], device_option)
def test_cross_nets(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
const = init_net.ConstantFill([], 'const', shape=[], value=1.)
with core.DeviceScope(device_option):
const = init_net.Add([const, const], [const])
fc_out = net.FC(["data", weight, bias], "fc1")
net.Add([fc_out, const], [fc_out])
data_remap = {'data': device_option}
nets, _ = core.InjectDeviceCopiesAmongNets(
[init_net, net], blob_to_device_init=data_remap
)
op = nets[1]._net.op[0]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.output[0], "fc_w_cuda_1")
op = nets[1]._net.op[1]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.output[0], "fc_b_cuda_1")
op = nets[1]._net.op[2]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data")
self.assertEqual(op.input[1], "fc_w_cuda_1")
self.assertEqual(op.input[2], "fc_b_cuda_1")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
op = nets[1]._net.op[3]
self.assertEqual(op.type, "Add")
self.assertEqual(op.input[0], "fc1")
self.assertEqual(op.input[1], "const_cuda_1")
# check that moved blob is in input to the new net
for c in ["data", "fc_w", "fc_b", "const_cuda_1"]:
self.assertTrue(c in nets[1]._net.external_input)
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "fc_w"
output: "fc_w_cuda_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "fc_b"
output: "fc_b_cuda_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "data"
input: "fc_w_cuda_1"
input: "fc_b_cuda_1"
output: "fc1"
name: ""
type: "FC"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "fc1"
input: "const_cuda_1"
output: "fc1"
name: ""
type: "Add"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
external_input: "data"
external_input: "fc_w"
external_input: "fc_b"
external_input: "const"
external_input: "const_cuda_1"
"""
def test_cross_nets_no_change(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
with core.DeviceScope(device_option):
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
net.FC(["data", weight, bias], "fc1")
data_remap = {'data': device_option}
nets = core.InjectDeviceCopiesAmongNetsWithoutB2D(
[init_net, net], blob_to_device_init=data_remap
)
op = nets[1]._net.op[0]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data")
self.assertEqual(op.input[1], "fc_w")
self.assertEqual(op.input[2], "fc_b")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "data"
input: "fc_w"
input: "fc_b"
output: "fc1"
name: ""
type: "FC"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
external_input: "data"
external_input: "fc_w"
external_input: "fc_b"
"""
def test_inject_copy_multi_use(self):
net = core.Net("test")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
with core.DeviceScope(device_option):
net.Relu("data", "relu1")
net.Relu("data", "relu2")
with core.DeviceScope(device_option):
net.Relu("data", "relu3")
net.Relu("data", "relu4")
device_option.cuda_gpu_id = 0
with core.DeviceScope(device_option):
net.Relu("data", "relu5")
device_option.cuda_gpu_id = 1
with core.DeviceScope(device_option):
net.Relu("data", "relu6")
new_net, _ = core.InjectCrossDeviceCopies(net)
op = new_net._net.op[0]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.output[0], "data_cuda_1")
op = new_net._net.op[1]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.output[0], "relu1")
op = new_net._net.op[2]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "relu2")
op = new_net._net.op[3]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.input[0], "data_cuda_1")
self.assertEqual(op.output[0], "relu3")
op = new_net._net.op[4]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "relu4")
op = new_net._net.op[5]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 0)
self.assertEqual(op.output[0], "data_cuda_0")
op = new_net._net.op[6]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 0)
self.assertEqual(op.input[0], "data_cuda_0")
self.assertEqual(op.output[0], "relu5")
op = new_net._net.op[7]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 1)
self.assertEqual(op.device_option.cuda_gpu_id, 1)
self.assertEqual(op.input[0], "data_cuda_1")
self.assertEqual(op.output[0], "relu6")
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "data"
output: "data_cuda_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "data_cuda_1"
output: "relu1"
name: ""
type: "Relu"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "data"
output: "relu2"
name: ""
type: "Relu"
}
op {
input: "data_cuda_1"
output: "relu3"
name: ""
type: "Relu"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
op {
input: "data"
output: "relu4"
name: ""
type: "Relu"
}
op {
input: "data"
output: "data_cuda_0"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
cuda_gpu_id: 0
}
}
op {
input: "data_cuda_0"
output: "relu5"
name: ""
type: "Relu"
device_option {
device_type: 1
cuda_gpu_id: 0
}
}
op {
input: "data_cuda_1"
output: "relu6"
name: ""
type: "Relu"
device_option {
device_type: 1
cuda_gpu_id: 1
}
}
external_input: "data"
"""
def test_blob_inplace(self):
net = core.Net("test")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = caffe2_pb2.CUDA
device_option.cuda_gpu_id = 1
net.Adagrad(['param', 'moment', 'grad', 'lr'], ['param', 'moment'])
with core.DeviceScope(device_option):
net.Relu("param", "param_relu_no_sense")
net, _ = core.InjectCrossDeviceCopies(net)
op = net._net.op[1]
self.assertEqual(op.type, 'CopyCPUToGPU')
self.assertEqual(op.input[0], 'param')
self.assertEqual(op.output[0], 'param_cuda_1')
op = net._net.op[2]
self.assertEqual(op.input[0], 'param_cuda_1')
net.Relu('nonsense_input', 'moment')
# should not raise inplace error
core.InjectCrossDeviceCopies(net)
with core.DeviceScope(device_option):
net.Relu('nonsense_input_gpu', 'moment')
with self.assertRaises(RuntimeError):
core.InjectCrossDeviceCopies(net)
if __name__ == '__main__':
unittest.main()