Files
pytorch/caffe2/python/ideep/convfusion_op_test.py
Gu, Jinghui a7b82a44c4 Upgrade mkldnn-bridge for dnnlowp support (#16308)
Summary:
The mkldnn-bridge is upgraded in this PR to support DNNLOWP operators.
Meanwhile, APIs have been updated in caffe2 to use latest version.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16308

Differential Revision: D14697018

Pulled By: yinghai

fbshipit-source-id: ca952589098accb08295fd5aa92924c61e74d69c
2019-04-03 12:47:17 -07:00

688 lines
25 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import copy
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
from caffe2.python.transformations import optimizeForMKLDNN
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class ConvFusionTest(hu.HypothesisTestCase):
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 20),
input_channels=st.integers(1, 16),
output_channels=st.integers(1, 16),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
group=st.integers(1, 1),
**mu.gcs)
def test_convolution_relu_fusion(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, use_bias, group, gc, dc):
conv = core.CreateOperator(
"Conv",
["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
["Y0"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[0]
)
relu = core.CreateOperator(
"Relu",
["Y0"],
["Y0"],
device_option=dc[0]
)
# Manual fusion for Conv + ReLU
conv_fusion = core.CreateOperator(
"ConvFusion",
["X1", "w1", "b1"] if use_bias else ["X1", "w1"],
["Y1"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
fusion_type = 1,
device_option=dc[1]
)
X = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X0', X, dc[0])
workspace.FeedBlob('w0', w, dc[0])
workspace.FeedBlob('b0', b, dc[0])
workspace.RunOperatorOnce(conv)
workspace.RunOperatorOnce(relu)
Y0 = workspace.FetchBlob('Y0')
workspace.ResetWorkspace()
workspace.FeedBlob('X1', X, dc[1])
workspace.FeedBlob('w1', w, dc[1])
workspace.FeedBlob('b1', b, dc[1])
workspace.RunOperatorOnce(conv_fusion)
Y1 = workspace.FetchBlob('Y1')
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
print(Y1.flatten())
print(Y0.flatten())
print(np.max(np.abs(Y1 - Y0)))
self.assertTrue(False)
# Auto fusion for Conv + ReLU
workspace.ResetWorkspace()
old_net = caffe2_pb2.NetDef()
conv_old = caffe2_pb2.OperatorDef()
conv_old.CopyFrom(conv)
conv_old.device_option.CopyFrom(dc[1])
relu_old = caffe2_pb2.OperatorDef()
relu_old.CopyFrom(relu)
relu_old.device_option.CopyFrom(dc[1])
old_net.op.extend([conv_old, relu_old])
workspace.FeedBlob('X0', X, dc[1])
workspace.FeedBlob('w0', w, dc[1])
workspace.FeedBlob('b0', b, dc[1])
net = core.Net("net")
net.Proto().CopyFrom(old_net)
optimizeForMKLDNN(net)
self.assertTrue(len(net.Proto().op) == 1)
self.assertTrue(net.Proto().op[0].type == "ConvFusion")
workspace.RunOperatorOnce(net.Proto().op[0])
Y2 = workspace.FetchBlob('Y0')
if not np.allclose(Y0, Y2, atol=0.01, rtol=0.01):
print(Y2.flatten())
print(Y0.flatten())
print(np.max(np.abs(Y2 - Y0)))
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 20),
input_channels=st.integers(1, 16),
output_channels=st.integers(1, 16),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
group=st.integers(1, 1),
sum_add=st.sampled_from(["Sum", "Add"]),
**mu.gcs)
def test_convolution_sum_fusion(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, use_bias, group, sum_add, gc, dc):
conv_S0 = core.CreateOperator(
"Conv",
["SX0", "Sw0", "Sb0"] if use_bias else ["SX0", "Sw0"],
["S0"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[0]
)
conv = core.CreateOperator(
"Conv",
["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
["Y0"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[0]
)
sum = core.CreateOperator(
sum_add,
["S0", "Y0"],
["S0"],
device_option=dc[0]
)
# Manual fusion for Conv + Sum
conv_S1 = core.CreateOperator(
"Conv",
["SX1", "Sw1", "Sb1"] if use_bias else ["SX1", "Sw1"],
["S1"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[1]
)
conv_fusion = core.CreateOperator(
"ConvFusion",
["X1", "w1", "b1", "S1"] if use_bias else ["X1", "w1", "S1"],
["S1"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
fusion_type = 2,
device_option=dc[1]
)
SX = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
Sw = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
Sb = np.random.rand(output_channels * group).astype(np.float32) - 0.5
X = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('SX0', SX, dc[0])
workspace.FeedBlob('Sw0', Sw, dc[0])
workspace.FeedBlob('Sb0', Sb, dc[0])
workspace.FeedBlob('X0', X, dc[0])
workspace.FeedBlob('w0', w, dc[0])
workspace.FeedBlob('b0', b, dc[0])
workspace.RunOperatorOnce(conv_S0)
workspace.RunOperatorOnce(conv)
workspace.RunOperatorOnce(sum)
S0 = workspace.FetchBlob('S0')
workspace.ResetWorkspace()
workspace.FeedBlob('SX1', SX, dc[1])
workspace.FeedBlob('Sw1', Sw, dc[1])
workspace.FeedBlob('Sb1', Sb, dc[1])
workspace.FeedBlob('X1', X, dc[1])
workspace.FeedBlob('w1', w, dc[1])
workspace.FeedBlob('b1', b, dc[1])
workspace.RunOperatorOnce(conv_S1)
workspace.RunOperatorOnce(conv_fusion)
S1 = workspace.FetchBlob('S1')
if not np.allclose(S0, S1, atol=0.01, rtol=0.01):
print(S1.flatten())
print(S0.flatten())
print(np.max(np.abs(S1 - S0)))
self.assertTrue(False)
# Auto fusion for Conv + Sum
workspace.ResetWorkspace()
old_net = caffe2_pb2.NetDef()
conv_S0_old = caffe2_pb2.OperatorDef()
conv_S0_old.CopyFrom(conv_S0)
conv_S0_old.device_option.CopyFrom(dc[1])
conv_old = caffe2_pb2.OperatorDef()
conv_old.CopyFrom(conv)
conv_old.device_option.CopyFrom(dc[1])
sum_old = caffe2_pb2.OperatorDef()
sum_old.CopyFrom(sum)
sum_old.device_option.CopyFrom(dc[1])
old_net.op.extend([conv_S0_old, conv_old, sum_old])
workspace.FeedBlob('SX0', SX, dc[1])
workspace.FeedBlob('Sw0', Sw, dc[1])
workspace.FeedBlob('Sb0', Sb, dc[1])
workspace.FeedBlob('X0', X, dc[1])
workspace.FeedBlob('w0', w, dc[1])
workspace.FeedBlob('b0', b, dc[1])
net = core.Net("net")
net.Proto().CopyFrom(old_net)
optimizeForMKLDNN(net)
self.assertTrue(len(net.Proto().op) == 2)
self.assertTrue(net.Proto().op[1].type == "ConvFusion")
workspace.RunNetOnce(net.Proto())
S2 = workspace.FetchBlob('S0')
if not np.allclose(S0, S2, atol=0.01, rtol=0.01):
print(S2.flatten())
print(S0.flatten())
print(np.max(np.abs(S2 - S0)))
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 20),
input_channels=st.integers(1, 16),
output_channels=st.integers(1, 16),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
group=st.integers(1, 1),
sum_add=st.sampled_from(["Sum", "Add"]),
**mu.gcs)
def test_convolution_sum_relu_fusion(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, use_bias, group, sum_add, gc, dc):
conv_S0 = core.CreateOperator(
"Conv",
["SX0", "Sw0", "Sb0"] if use_bias else ["SX0", "Sw0"],
["S0"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[0]
)
conv = core.CreateOperator(
"Conv",
["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
["Y0"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[0]
)
sum = core.CreateOperator(
sum_add,
["S0", "Y0"],
["S0"],
device_option=dc[0]
)
relu = core.CreateOperator(
"Relu",
["S0"],
["S0"],
device_option=dc[0]
)
# Manual fusion for Conv + Sum + ReLU
conv_S1 = core.CreateOperator(
"Conv",
["SX1", "Sw1", "Sb1"] if use_bias else ["SX1", "Sw1"],
["S1"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[1]
)
conv_fusion = core.CreateOperator(
"ConvFusion",
["X1", "w1", "b1", "S1"] if use_bias else ["X1", "w1", "S1"],
["S1"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
fusion_type = 3,
device_option=dc[1]
)
SX = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
Sw = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
Sb = np.random.rand(output_channels * group).astype(np.float32) - 0.5
X = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('SX0', SX, dc[0])
workspace.FeedBlob('Sw0', Sw, dc[0])
workspace.FeedBlob('Sb0', Sb, dc[0])
workspace.FeedBlob('X0', X, dc[0])
workspace.FeedBlob('w0', w, dc[0])
workspace.FeedBlob('b0', b, dc[0])
workspace.RunOperatorOnce(conv_S0)
workspace.RunOperatorOnce(conv)
workspace.RunOperatorOnce(sum)
workspace.RunOperatorOnce(relu)
S0 = workspace.FetchBlob('S0')
workspace.ResetWorkspace()
workspace.FeedBlob('SX1', SX, dc[1])
workspace.FeedBlob('Sw1', Sw, dc[1])
workspace.FeedBlob('Sb1', Sb, dc[1])
workspace.FeedBlob('X1', X, dc[1])
workspace.FeedBlob('w1', w, dc[1])
workspace.FeedBlob('b1', b, dc[1])
workspace.RunOperatorOnce(conv_S1)
workspace.RunOperatorOnce(conv_fusion)
S1 = workspace.FetchBlob('S1')
if not np.allclose(S0, S1, atol=0.01, rtol=0.01):
print(S1.flatten())
print(S0.flatten())
print(np.max(np.abs(S1 - S0)))
self.assertTrue(False)
# Auto fusion for Conv + Sum + ReLU
workspace.ResetWorkspace()
old_net = caffe2_pb2.NetDef()
conv_S0_old = caffe2_pb2.OperatorDef()
conv_S0_old.CopyFrom(conv_S0)
conv_S0_old.device_option.CopyFrom(dc[1])
conv_old = caffe2_pb2.OperatorDef()
conv_old.CopyFrom(conv)
conv_old.device_option.CopyFrom(dc[1])
sum_old = caffe2_pb2.OperatorDef()
sum_old.CopyFrom(sum)
sum_old.device_option.CopyFrom(dc[1])
relu_old = caffe2_pb2.OperatorDef()
relu_old.CopyFrom(relu)
relu_old.device_option.CopyFrom(dc[1])
old_net.op.extend([conv_S0_old, conv_old, sum_old, relu_old])
workspace.FeedBlob('SX0', SX, dc[1])
workspace.FeedBlob('Sw0', Sw, dc[1])
workspace.FeedBlob('Sb0', Sb, dc[1])
workspace.FeedBlob('X0', X, dc[1])
workspace.FeedBlob('w0', w, dc[1])
workspace.FeedBlob('b0', b, dc[1])
net = core.Net("net")
net.Proto().CopyFrom(old_net)
optimizeForMKLDNN(net)
self.assertTrue(len(net.Proto().op) == 2)
self.assertTrue(net.Proto().op[1].type == "ConvFusion")
workspace.RunNetOnce(net.Proto())
S2 = workspace.FetchBlob('S0')
if not np.allclose(S0, S2, atol=0.01, rtol=0.01):
print(S2.flatten())
print(S0.flatten())
print(np.max(np.abs(S2 - S0)))
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 20),
input_channels=st.integers(7, 17),
output_channels=st.integers(5, 15),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
group=st.integers(2, 5),
**mu.gcs)
def test_convolution_grouped_sum_relu_fusion(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, use_bias, group, gc, dc):
conv_S0 = core.CreateOperator(
"Conv",
["SX0", "Sw0", "Sb0"] if use_bias else ["SX0", "Sw0"],
["S0"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[0]
)
conv = core.CreateOperator(
"Conv",
["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
["Y0"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[0]
)
sum = core.CreateOperator(
"Sum",
["S0", "Y0"],
["S0"],
device_option=dc[0]
)
relu = core.CreateOperator(
"Relu",
["S0"],
["S0"],
device_option=dc[0]
)
SX = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
Sw = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
Sb = np.random.rand(output_channels * group).astype(np.float32) - 0.5
X = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('SX0', SX, dc[0])
workspace.FeedBlob('Sw0', Sw, dc[0])
workspace.FeedBlob('Sb0', Sb, dc[0])
workspace.FeedBlob('X0', X, dc[0])
workspace.FeedBlob('w0', w, dc[0])
workspace.FeedBlob('b0', b, dc[0])
workspace.RunOperatorOnce(conv_S0)
workspace.RunOperatorOnce(conv)
workspace.RunOperatorOnce(sum)
workspace.RunOperatorOnce(relu)
S0 = workspace.FetchBlob('S0')
workspace.ResetWorkspace()
old_net = caffe2_pb2.NetDef()
conv_S0_old = caffe2_pb2.OperatorDef()
conv_S0_old.CopyFrom(conv_S0)
conv_S0_old.device_option.CopyFrom(dc[1])
conv_old = caffe2_pb2.OperatorDef()
conv_old.CopyFrom(conv)
conv_old.device_option.CopyFrom(dc[1])
sum_old = caffe2_pb2.OperatorDef()
sum_old.CopyFrom(sum)
sum_old.device_option.CopyFrom(dc[1])
relu_old = caffe2_pb2.OperatorDef()
relu_old.CopyFrom(relu)
relu_old.device_option.CopyFrom(dc[1])
old_net.op.extend([conv_S0_old, conv_old, sum_old, relu_old])
workspace.FeedBlob('SX0', SX, dc[1])
workspace.FeedBlob('Sw0', Sw, dc[1])
workspace.FeedBlob('Sb0', Sb, dc[1])
workspace.FeedBlob('X0', X, dc[1])
workspace.FeedBlob('w0', w, dc[1])
workspace.FeedBlob('b0', b, dc[1])
net = core.Net("net")
net.Proto().CopyFrom(old_net)
optimizeForIDEEP(net)
workspace.RunNetOnce(net.Proto())
S2 = workspace.FetchBlob('S0')
if not np.allclose(S0, S2, atol=0.01, rtol=0.01):
print(S2.flatten())
print(S0.flatten())
print(np.max(np.abs(S2 - S0)))
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 20),
input_channels=st.integers(1, 16),
output_channels=st.integers(1, 16),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
group=st.integers(1, 1),
inplace=st.sampled_from([True, False]),
**mu.gcs)
def test_convolution_bn_folding(
self, stride, pad, kernel, size, input_channels,
output_channels, batch_size, use_bias, group,
inplace, gc, dc):
conv = core.CreateOperator(
"Conv",
["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
["X1"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[1]
)
bn = core.CreateOperator(
"SpatialBN",
["X1", "scale", "bias", "mean", "var"],
["X1" if inplace else "Y"],
is_test=True,
device_option=dc[1]
)
X = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
scale = np.random.rand(output_channels).astype(np.float32) + 0.5
bias = np.random.rand(output_channels).astype(np.float32) - 0.5
mean = np.random.randn(output_channels).astype(np.float32)
var = np.absolute(np.random.rand(output_channels).astype(np.float32)) + 0.5
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X0', X, dc[1])
workspace.FeedBlob('w0', w, dc[1])
workspace.FeedBlob('b0', b, dc[1])
workspace.FeedBlob('scale', scale, dc[1])
workspace.FeedBlob('bias', bias, dc[1])
workspace.FeedBlob('mean', mean, dc[1])
workspace.FeedBlob('var', var, dc[1])
workspace.RunOperatorOnce(conv)
workspace.RunOperatorOnce(bn)
Y = workspace.FetchBlob('X1' if inplace else "Y")
workspace.ResetWorkspace()
old_net = caffe2_pb2.NetDef()
conv_old = caffe2_pb2.OperatorDef()
conv_old.CopyFrom(conv)
conv_old.device_option.CopyFrom(dc[1])
bn_old = caffe2_pb2.OperatorDef()
bn_old.CopyFrom(bn)
bn_old.device_option.CopyFrom(dc[1])
old_net.op.extend([conv_old, bn_old])
workspace.FeedBlob('X0', X, dc[1])
workspace.FeedBlob('w0', w, dc[1])
workspace.FeedBlob('b0', b, dc[1])
workspace.FeedBlob('scale', scale, dc[1])
workspace.FeedBlob('bias', bias, dc[1])
workspace.FeedBlob('mean', mean, dc[1])
workspace.FeedBlob('var', var, dc[1])
net = core.Net("net")
net.Proto().CopyFrom(old_net)
optimizeForMKLDNN(net)
self.assertTrue(len(net.Proto().op) == 1)
self.assertTrue(net.Proto().op[0].type == "Conv")
workspace.RunOperatorOnce(net.Proto().op[0])
Y1 = workspace.FetchBlob('X1' if inplace else "Y")
if not np.allclose(Y, Y1, atol=0.01, rtol=0.01):
print(Y.flatten())
print(Y1.flatten())
print(np.max(np.abs(Y - Y1)))
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 20),
input_channels=st.integers(1, 16),
output_channels=st.integers(1, 16),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
group=st.integers(1, 1),
inplace=st.sampled_from([True, False]),
**mu.gcs)
def test_convolution_affch_folding(
self, stride, pad, kernel, size, input_channels,
output_channels, batch_size, use_bias, group,
inplace, gc, dc):
conv = core.CreateOperator(
"Conv",
["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
["X1"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
device_option=dc[1]
)
affch = core.CreateOperator(
"AffineChannel",
["X1", "scale", "bias"],
["X1" if inplace else "Y"],
device_option=dc[1]
)
X = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
scale = np.random.rand(output_channels).astype(np.float32) + 0.5
bias = np.random.rand(output_channels).astype(np.float32) - 0.5
old_ws_name = workspace.CurrentWorkspace()
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X0', X, dc[1])
workspace.FeedBlob('w0', w, dc[1])
workspace.FeedBlob('b0', b, dc[1])
workspace.FeedBlob('scale', scale, dc[1])
workspace.FeedBlob('bias', bias, dc[1])
workspace.RunOperatorOnce(conv)
workspace.RunOperatorOnce(affch)
Y = workspace.FetchBlob('X1' if inplace else "Y")
workspace.ResetWorkspace()
old_net = caffe2_pb2.NetDef()
conv_old = caffe2_pb2.OperatorDef()
conv_old.CopyFrom(conv)
conv_old.device_option.CopyFrom(dc[1])
affch_old = caffe2_pb2.OperatorDef()
affch_old.CopyFrom(affch)
affch_old.device_option.CopyFrom(dc[1])
old_net.op.extend([conv_old, affch_old])
workspace.FeedBlob('X0', X, dc[1])
workspace.FeedBlob('w0', w, dc[1])
workspace.FeedBlob('b0', b, dc[1])
workspace.FeedBlob('scale', scale, dc[1])
workspace.FeedBlob('bias', bias, dc[1])
net = core.Net("net")
net.Proto().CopyFrom(old_net)
optimizeForMKLDNN(net)
self.assertTrue(len(net.Proto().op) == 1)
self.assertTrue(net.Proto().op[0].type == "Conv")
workspace.RunOperatorOnce(net.Proto().op[0])
Y1 = workspace.FetchBlob('X1' if inplace else "Y")
if not np.allclose(Y, Y1, atol=0.01, rtol=0.01):
print(Y.flatten())
print(Y1.flatten())
print(np.max(np.abs(Y - Y1)))
self.assertTrue(False)
workspace.SwitchWorkspace(old_ws_name)
if __name__ == "__main__":
unittest.main()