Files
pytorch/torch/csrc/autograd/python_variable.cpp
Edward Z. Yang a797ab9343 Rewrite AST to a new, more functional representation.
Previously, our AST was a DAG, where shared Nodes indicated a computation
should be reused.  This commit rewrites the IR into a new functional
representation which represents sharing explicitly using variable
bindings.

We offer a few justifications for this new style:

1. The new representation is not all that different from the
old one; it is about as easy to construct, and the lack of an
explicit graph doesn't negatively impact our ability to interpret
the graph, since we've chosen, as a matter of design, to NOT have
the IR participate in the actual execution of a graph.

2. The new let-binding representation has an implicit ordering,
which we can use to conveniently keep track of the original order
the trace showed up as.  This automatically gives us a topsort,
and gives us an easier to read textual representation of our
IR:

  %14 = Embedding %11, %0, -1, None, 2, False, False
  %15 = Dropout %14, 0.2, True, False
  %16 = Index %12, 0
  %17 = Index %12, 1
  %18 = Index %13, 0
  %19 = Index %13, 1
  %20 = Index %15, 0
  %21 = Linear %20, %1, %3
  %22 = Linear %16, %2, %4

3. It moves us closer to a Futhark style language
(http://futhark-lang.org/publications/pldi17.pdf).

Major aspects of the diff

- Node is replaced with Expr and Arg, a pair of mutually recursive
  structures which represent our new language.  In BNF, the language
  looks like this:

    a ::= c | %i
    e ::= %i, ... = e
        | PyOp e, ...
        | Ret %i, ...

  Technically, Ret is not actually a return (no control flow is involved),
  it just tuples up a series of tensors (identified by variables).

  One important invariant is that locals are always tensors; they
  are never constants (this is asymmetric with Args.)

- Arguments support Python constants.  This is an important piece because
  many operators take extra Python literals like integers and tuples in
  order to specify extra parameters about how an operator operates.  Adding
  this was essential to getting word_language_model to work.

- As both Expr and Arg have multiple variants, there is new infrastructure
  for doing case on the variants using ExprVisitor and ArgVisitor.  The
  strategy here is adapted from WebAssembly's visitors, although we have
  generalized to permit arbitrary argument forwarding, which is necessary
  to support tail-recursive visitor calls.  TCO is important because our
  interpreter may recurse arbitrarily deep into a stack of nested lets.
  If users wish, they can also manually case on the type tag.

- Tracing is now turned on and off using _tracer_enter/_tracer_exit in
  torch._C.  _tracer_enter accepts a list of variables which are to be
  treated as arguments; _tracer_exit accepts the list of traced variables
  which should be returned when you reexecute the trace, and returns
  the trace expression which can be reexecuted.  GlobalTracingState
  is a global variable which tracks whether or not we are tracing or not.

- You use run_forward to execute a trace on some set of parameters.

- When under tracing, variables keep track, via trace_local, what the
  name of their variables in the IR are.

Here is a simple runner which leaks memory but can be used to JIT models:

  import torch.autograd.function as F
  import torch._C

  def jit(model):
      import types
      real_forward = model.forward
      def forward(self, *args):
          def flatten(x):
              return tuple(F._iter_variables(x))
          if not hasattr(self, "saved_trace"):
              torch._C._tracer_enter(tuple(self.parameters()) + flatten(args))
              out = real_forward(*args)
              self.saved_trace = torch._C._tracer_exit(flatten(out))
              self.saved_outs = out
              return out
          else:
              flat_out = Variable._execution_engine.run_forward(self.saved_trace, tuple(self.parameters()) + flatten(args))
              return F._unflatten(flat_out, self.saved_outs)

Major problems:

- Sanity checking is spotty at best, especially when users pass in variables.

- The interpreter leaks tensor memory from the store.  When we add back def-use
  we should be able to deallocate tensors as soon as we know they are no longer
  necessary.

- The interpreter needs to reach feature parity with the old execution engine.
  From there, we need to see if backwards can be subsumed as well.

- I still have no confidence in having memory managed everything correctly.
  This requires a close look.

- Rather than return an *open* expression as a trace, we should return a
  *lambda* instead, which knows about how many formal parameters it
  requires.

- The IR is not introspectable from Python at the moment, but this is simply a
  matter of implementing all the binding code.

- The tracer is NOT reentrant (you can't trace while you're inside a trace.)
  Furthermore, no sanity checking is done if you try to incorrectly reuse
  things from one trace in another.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-09-05 17:48:55 -04:00

428 lines
14 KiB
C++

#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/autograd/python_ir.h"
#include <structmember.h>
#include "THP.h"
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/Types.h"
#include "torch/csrc/autograd/python_cpp_function.h"
#include "torch/csrc/autograd/python_hook.h"
#include "torch/csrc/autograd/functions/accumulate_grad.h"
#include "torch/csrc/cuda/AutoGPU.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/Exceptions.h"
using namespace torch::autograd;
PyObject *THPVariableClass = NULL;
static PyObject* THPVariable_NewWithVar(PyTypeObject* type, std::shared_ptr<Variable> var)
{
PyObject* obj = type->tp_alloc(type, 0);
if (obj) {
auto v = (THPVariable*) obj;
new (&v->cdata) std::shared_ptr<Variable>(std::move(var));
if (auto fn = dynamic_cast<PyFunction*>(v->cdata->grad_fn.get())) {
// Create a new reference to the THPFunction. This ensures that ref count
// of the THPFunction is at least the number of referring THPVariables.
v->cdata->grad_fn = THPFunction_asFunction((THPFunction*)fn->obj);
}
}
return obj;
}
PyObject * THPVariable_Wrap(const std::shared_ptr<Variable>& var)
{
if (!var) {
Py_RETURN_NONE;
} else if (var->pyobj) {
Py_INCREF(var->pyobj);
} else {
var->pyobj = THPVariable_NewWithVar((PyTypeObject *)THPVariableClass, var);
THPVariable* py_var = (THPVariable*)var->pyobj;
py_var->data = torch::createPyObject(var->data);
}
return var->pyobj;
}
// This function DOES NOT steal a reference to data
PyObject * THPVariable_NewWithFunction(PyObject *data, const std::shared_ptr<torch::autograd::Function>& grad_fn)
{
THPUtils_assert(THPModule_isTensor(data), "data must be a Tensor");
auto v = std::make_shared<Variable>(torch::createTensor(data), grad_fn->is_executable, false);
v->grad_fn = grad_fn;
PyObject* obj = THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, v);
if (obj) {
v->pyobj = obj;
Py_INCREF(data);
((THPVariable*)obj)->data = data;
}
return obj;
}
// This function DOES NOT steal a reference to data
PyObject * THPVariable_NewVolatile(PyObject *data)
{
auto v = std::make_shared<Variable>(torch::createTensor(data), false, true);
PyObject* obj = THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, v);
if (obj) {
v->pyobj = obj;
((THPVariable*)obj)->data = data;
Py_INCREF(data);
}
return obj;
}
// This function DOES NOT steal a reference to data
PyObject * THPVariable_NewLeaf(PyObject *data)
{
auto v = std::make_shared<Variable>(torch::createTensor(data), false, false);
PyObject* obj = THPVariable_NewWithVar((PyTypeObject*)THPVariableClass, v);
if (obj) {
v->pyobj = obj;
((THPVariable*)obj)->data = data;
Py_INCREF(data);
}
return obj;
}
static int THPVariable_traverse(THPVariable *self, visitproc visit, void *arg)
{
Py_VISIT(self->data);
Py_VISIT(self->backward_hooks);
if (self->cdata) {
if (auto fn = dynamic_cast<PyFunction*>(self->cdata->grad_fn.get())) {
Py_VISIT(fn->obj);
}
for (auto& hook : self->cdata->hooks) {
if (auto pyhook = dynamic_cast<PyFunctionPreHook*>(hook.get())) {
Py_VISIT(pyhook->dict);
}
}
}
return 0;
}
static int THPVariable_clear(THPVariable *self)
{
Py_CLEAR(self->data);
Py_CLEAR(self->backward_hooks);
if (self->cdata) {
if (auto grad_acc = self->cdata->grad_accumulator.lock()) {
grad_acc->pre_hooks.clear();
}
self->cdata->pyobj = nullptr;
}
self->cdata.reset();
return 0;
}
static void THPVariable_dealloc(THPVariable* self)
{
PyObject_GC_UnTrack(self);
THPVariable_clear(self);
self->cdata.~shared_ptr<Variable>();
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject *THPVariable_pynew(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
THPObjectPtr _data;
PyObject *data = NULL;
PyObject *grad_fn = NULL;
char is_volatile = 0;
char requires_grad = 0;
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbO", (char**)accepted_args,
&data, &requires_grad, &is_volatile, &grad_fn))
return NULL;
if (grad_fn == Py_None)
grad_fn = NULL;
if (data == NULL || data == Py_None) {
// For legacy serialization code, create an empty tensor temporarily.
at::Tensor tensor = at::CPU(at::kFloat).tensor();
_data = torch::createPyObject(tensor);
data = _data.get();
}
THPUtils_assert(!(is_volatile && requires_grad),
"Variable can't be volatile and require_grad at the same time!");
THPUtils_assert(!grad_fn || THPFunction_Check(grad_fn),
"Variable _grad_fn has to be a Function object or None, but got %s",
THPUtils_typename(grad_fn));
THPUtils_assert(THPModule_isTensor(data), "Variable data has to "
"be a tensor, but got %s", THPUtils_typename(data));
std::shared_ptr<Variable> var;
if (grad_fn) {
var = std::make_shared<Variable>(torch::createTensor(data), THPFunction_asFunction((THPFunction*)grad_fn));
} else {
var = std::make_shared<Variable>(torch::createTensor(data), requires_grad, is_volatile);
}
PyObject* self = THPVariable_NewWithVar(type, var);
if (self) {
var->pyobj = self;
((THPVariable*)self)->cdata = var;
((THPVariable*)self)->data = data;
Py_INCREF(data);
}
return self;
}
int THPVariable_pyinit(PyObject *self, PyObject *args, PyObject *kwds)
{
// Ensures that calls to Variable() and subclasses contain data argument.
// The 'data' argument is optional in __new__ to handle legacy serialized
// Variables.
PyObject *data;
PyObject *grad_fn = NULL;
char is_volatile = 0;
char requires_grad = 0;
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbO", (char**)accepted_args,
&data, &requires_grad, &is_volatile, &grad_fn))
return -1;
return 0;
}
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
PyObject *THPVariable_get_version(THPVariable *self)
{
auto& var = *self->cdata;
return PyInt_FromLong(**var.version_counter);
}
PyObject *THPVariable_get_grad_fn(THPVariable *self)
{
auto& var = *self->cdata;
if (!var.grad_fn) {
Py_RETURN_NONE;
}
return functionToPyObject(var.grad_fn);
}
int THPVariable_set_grad_fn(THPVariable *self, PyObject *obj)
{
THPUtils_assertRet(-1, obj == Py_None, "_grad_fn can be only set to None");
self->cdata->grad_fn = nullptr;
return 0;
}
PyObject *THPVariable_is_leaf(THPVariable *self)
{
return PyBool_FromLong(!self->cdata->grad_fn);
}
PyObject * THPVariable_get_data(THPVariable *self)
{
if (!self->data) {
self->data = torch::createPyObject(self->cdata->data);
}
Py_INCREF(self->data);
return self->data;
}
int THPVariable_set_data(THPVariable *self, PyObject *data)
{
THPUtils_assertRet(-1, THPModule_isTensor(data), "Variable data has to "
"be a tensor, but got %s", THPUtils_typename(data));
Py_INCREF(data);
Py_XDECREF(self->data);
self->data = data;
auto& var = *self->cdata;
auto tensor = torch::createTensor(data);
var.data.swap(tensor);
return 0;
}
PyObject *THPVariable_get_grad(THPVariable *self)
{
auto& var = *self->cdata;
if (!var.grad) {
Py_RETURN_NONE;
}
return THPVariable_Wrap(var.grad);
}
int THPVariable_set_grad(THPVariable *self, PyObject *other)
{
auto& var = *self->cdata;
if (other == Py_None) {
var.grad.reset();
return 0;
}
THPUtils_assertRet(-1, THPVariable_Check(other),
"expected Variable or None (got %s)", THPUtils_typename(other));
THPUtils_assertRet(-1, self != (THPVariable*)other,
"can't assign Variable as its own grad");
auto& other_var = ((THPVariable*)other)->cdata;
// Make sure the data is ok
THPUtils_assertRet(-1, other_var->data.type().ID() == var.data.type().ID(),
"assigned grad has data of a different type");
THPUtils_assertRet(-1, other_var->data.type().isCuda() == var.data.type().isCuda(),
"assigned grad has data located on a different device");
if (var.data.type().isCuda()) {
THPUtils_assertRet(-1, other_var->data.get_device() == var.data.get_device(),
"assigned grad has data located on a different device");
}
THPUtils_assertRet(-1, other_var->data.sizes().vec() == var.data.sizes().vec(),
"assigned grad has data of a different size");
var.grad = other_var;
if (auto grad_acc = var.grad_accumulator.lock()) {
((AccumulateGrad*)grad_acc.get())->variable_grad = other_var;
}
return 0;
}
PyObject *THPVariable_get_volatile(THPVariable *self)
{
auto& var = *self->cdata;
return PyBool_FromLong(var.is_volatile);
}
int THPVariable_set_volatile(THPVariable *self, PyObject *obj)
{
THPUtils_assertRet(-1, PyBool_Check(obj), "volatile must be a bool");
THPUtils_assertRet(-1, !self->cdata->grad_fn,
"volatile can only be set on leaf variables");
auto& var = *self->cdata;
var.is_volatile = (obj == Py_True);
return 0;
}
PyObject *THPVariable_get_output_nr(THPVariable *self)
{
auto& var = *self->cdata;
return PyInt_FromLong(var.output_nr);
}
PyObject *THPVariable_get_requires_grad(THPVariable *self)
{
auto& var = *self->cdata;
return PyBool_FromLong(var.requires_grad);
}
int THPVariable_set_requires_grad(THPVariable *self, PyObject *obj)
{
THPUtils_assertRet(-1, PyBool_Check(obj), "requires_grad must be a bool");
auto& var = *self->cdata;
if (var.grad_fn) {
const char *hint = "";
if (obj == Py_False) {
hint = " If you want to use a computed variable in a subgraph "
"that doesn't require differentiation use "
"var_no_grad = var.detach().";
}
THPUtils_setError("you can only change requires_grad flags of leaf variables.%s", hint);
return -1;
}
var.requires_grad = obj == Py_True;
if (auto grad_accumulator = var.grad_accumulator.lock()) {
grad_accumulator->is_executable = var.requires_grad;
}
return 0;
}
PyObject *THPVariable_get_backwards_hooks(THPVariable *self)
{
if (self->backward_hooks) {
Py_INCREF(self->backward_hooks);
return self->backward_hooks;
}
Py_RETURN_NONE;
}
int THPVariable_set_backwards_hooks(THPVariable *self, PyObject *obj)
{
if (obj == Py_None) {
obj = nullptr;
}
Py_XINCREF(obj);
Py_XDECREF(self->backward_hooks);
self->backward_hooks = obj;
self->cdata->hooks.clear();
if (obj) {
self->cdata->hooks.emplace_back(new PyFunctionPreHook(obj, 0));
}
return 0;
}
static struct PyGetSetDef THPVariable_properties[] = {
{"_version", (getter)THPVariable_get_version, NULL, NULL, NULL},
{"grad_fn", (getter)THPVariable_get_grad_fn, NULL, NULL, NULL},
{"_grad_fn", (getter)THPVariable_get_grad_fn, (setter)THPVariable_set_grad_fn, NULL, NULL},
{"is_leaf", (getter)THPVariable_is_leaf, NULL, NULL, NULL},
{"data", (getter)THPVariable_get_data, (setter)THPVariable_set_data, NULL, NULL},
{"_grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, NULL, NULL}, // only for legacy reasons
{"grad", (getter)THPVariable_get_grad, (setter)THPVariable_set_grad, NULL, NULL},
{"volatile", (getter)THPVariable_get_volatile, (setter)THPVariable_set_volatile, NULL, NULL},
{"output_nr", (getter)THPVariable_get_output_nr, NULL, NULL, NULL},
{"requires_grad", (getter)THPVariable_get_requires_grad, (setter)THPVariable_set_requires_grad, NULL, NULL},
{"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, NULL, NULL},
{NULL}
};
PyTypeObject THPVariableType = {
PyVarObject_HEAD_INIT(NULL, 0)
"torch._C._VariableBase", /* tp_name */
sizeof(THPVariable), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPVariable_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
NULL, /* tp_doc */
(traverseproc)THPVariable_traverse, /* tp_traverse */
(inquiry)THPVariable_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
THPVariable_properties, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
THPVariable_pyinit, /* tp_init */
0, /* tp_alloc */
THPVariable_pynew /* tp_new */
};
bool THPVariable_initModule(PyObject *module)
{
if (PyType_Ready(&THPVariableType) < 0)
return false;
Py_INCREF(&THPVariableType);
PyModule_AddObject(module, "_VariableBase", (PyObject *)&THPVariableType);
return true;
}