Files
pytorch/torch/_dynamo/bytecode_transformation.py
PyTorch MergeBot a75e3a02be Revert "[dynamo, nested graph breaks] small fixes to resume function generation (#151056)"
This reverts commit 28e7aa21c522e92ea01a62dfdc5e3b74e398d8f0.

Reverted https://github.com/pytorch/pytorch/pull/151056 on behalf of https://github.com/malfet due to Not sure which one, but it broke test_error_messages, see 203b0efd63/1 ([comment](https://github.com/pytorch/pytorch/pull/151056#issuecomment-2916437433))
2025-05-28 13:53:50 +00:00

1660 lines
58 KiB
Python

# mypy: allow-untyped-defs
"""
This module provides utilities for analyzing, transforming and manipulating Python bytecode.
It includes functionality for:
- Converting between different bytecode formats and versions
- Virtualizing jumps and managing jump targets
- Handling exception tables and their entries
- Managing instruction offsets and extended arguments
- Providing a clean API for bytecode modification and transformation
- Supporting Python version-specific bytecode features
- Generating bytecode from template functions
The module is designed to work across different Python versions (3.7+) and handles
version-specific bytecode differences transparently.
"""
import copy
import dataclasses
import dis
import functools
import itertools
import sys
import types
import uuid
from collections.abc import Iterator, Sequence
from typing import Any, Callable, cast, Optional, Union
from ..utils._backport_slots import dataclass_slots
from .bytecode_analysis import (
get_indexof,
propagate_line_nums,
remove_extra_line_nums,
stacksize_analysis,
)
from .utils import is_safe_constant
@dataclass_slots
@dataclasses.dataclass
class InstructionExnTabEntry:
start: "Instruction"
end: "Instruction"
target: "Instruction"
depth: int
lasti: bool
def __repr__(self) -> str:
return (
f"InstructionExnTabEntry(start={self.start.short_inst_repr()}, "
f"end={self.end.short_inst_repr()}, "
f"target={self.target.short_inst_repr()}, "
f"depth={self.depth}, lasti={self.lasti})"
)
def __eq__(self, o) -> bool:
return (
self.start is o.start
and self.end is o.end
and self.target is o.target
and self.depth == o.depth
and self.lasti == o.lasti
)
@dataclass_slots
@dataclasses.dataclass
class Instruction:
"""A mutable version of dis.Instruction"""
opcode: int
opname: str
arg: Optional[int]
argval: Any
offset: Optional[int] = None
starts_line: Optional[int] = None
is_jump_target: bool = False
positions: Optional["dis.Positions"] = None
# extra fields to make modification easier:
target: Optional["Instruction"] = None
exn_tab_entry: Optional[InstructionExnTabEntry] = None
argrepr: Optional[str] = None
def __hash__(self) -> int:
return id(self)
def __eq__(self, other) -> bool:
return id(self) == id(other)
def short_inst_repr(self) -> str:
return f"Instruction(opname={self.opname}, offset={self.offset})"
def copy_positions(self, other: "Instruction") -> None:
self.starts_line = other.starts_line
self.positions = other.positions
if sys.version_info >= (3, 13):
def convert_instruction(i: dis.Instruction) -> Instruction:
return Instruction(
i.opcode,
i.opname,
i.arg,
i.argval,
i.offset,
i.line_number,
i.is_jump_target,
i.positions,
)
elif sys.version_info >= (3, 11):
def convert_instruction(i: dis.Instruction) -> Instruction:
return Instruction(
i.opcode,
i.opname,
i.arg,
i.argval,
i.offset,
i.starts_line,
i.is_jump_target,
i.positions,
)
else:
def convert_instruction(i: dis.Instruction) -> Instruction:
return Instruction(
i.opcode,
i.opname,
i.arg,
i.argval,
i.offset,
i.starts_line,
i.is_jump_target,
None,
)
class _NotProvided:
def __repr__(self) -> str:
return "_NotProvided"
if sys.version_info >= (3, 12):
def inst_has_op_bits(name):
return name in ("LOAD_ATTR", "LOAD_GLOBAL", "LOAD_SUPER_ATTR")
elif sys.version_info >= (3, 11):
def inst_has_op_bits(name):
return name == "LOAD_GLOBAL"
else:
def inst_has_op_bits(name):
return False
def create_instruction(
name, *, arg=None, argval=_NotProvided, target=None
) -> Instruction:
"""
At most one of `arg`, `argval`, and `target` can be not None/_NotProvided.
This is to prevent ambiguity, e.g. does
create_instruction("LOAD_CONST", 5)
mean load the constant at co_consts[5], or load the constant 5?
If `arg` is not provided, it will be computed during assembly from
`argval` or `target`.
Bits in the args of instructions LOAD_GLOBAL, LOAD_ATTR (3.12+), and LOAD_SUPER_ATTR
modify the behavior of the instruction. In this case, we allow both `arg`
and `argval` to be set. The value of `arg` here is expected to be the value of
the op bits and the true value of `arg` will be computed during assembly.
If `arg` is not set, the bits are assumed to be 0.
"""
# allow for instructions with op bits to have both arg and argval specified
if inst_has_op_bits(name):
if target is not None:
raise RuntimeError("target cannot be specified for instruction")
if arg is None:
arg = 0
else:
cnt = (arg is not None) + (argval is not _NotProvided) + (target is not None)
if cnt > 1:
raise RuntimeError(
"only one of arg, argval, and target can be not None/_NotProvided"
)
if arg is not None and not isinstance(arg, int):
raise RuntimeError("instruction arg must be int or None")
return Instruction(
opcode=dis.opmap[name], opname=name, arg=arg, argval=argval, target=target
)
# Python 3.11 remaps
def create_jump_absolute(target) -> Instruction:
inst = "JUMP_FORWARD" if sys.version_info >= (3, 11) else "JUMP_ABSOLUTE"
return create_instruction(inst, target=target)
def create_load_const(val, checked=True) -> Instruction:
"""
In general we should only create `LOAD_CONST` for immutable objects, but
sometimes it's convenient _and safe_ for Dynamo create `LOAD_CONST` for
mutable objects. In such cases, use `checked=False`.
"""
if checked:
assert is_safe_constant(val), f"unsafe constant {val}"
return create_instruction("LOAD_CONST", argval=val)
def create_dup_top() -> Instruction:
if sys.version_info >= (3, 11):
return create_instruction("COPY", arg=1)
return create_instruction("DUP_TOP")
def create_rot_n(n) -> list[Instruction]:
"""
Returns a "simple" sequence of instructions that rotates TOS to the n-th
position in the stack. For Python < 3.11, returns a single ROT_*
instruction. If no such instruction exists, an error is raised and the
caller is expected to generate an equivalent sequence of instructions.
For Python >= 3.11, any rotation can be expressed as a simple sequence of
swaps.
"""
if n <= 1:
# don't rotate
return []
if sys.version_info >= (3, 11):
# rotate can be expressed as a sequence of swap operations
# e.g. rotate 3 is equivalent to swap 3, swap 2
return [create_instruction("SWAP", arg=i) for i in range(n, 1, -1)]
# ensure desired rotate function exists
if sys.version_info < (3, 10) and n >= 5:
raise AttributeError(f"rotate {n} not supported for Python < 3.10")
if n <= 4:
return [create_instruction("ROT_" + ["TWO", "THREE", "FOUR"][n - 2])]
return [create_instruction("ROT_N", arg=n)]
def add_push_null(
inst_or_insts: Union[Instruction, list[Instruction]],
) -> list[Instruction]:
"""
Appends or prepends a PUSH_NULL instruction to `inst_or_insts`,
depending on Python version. Used when you know that
`inst_or_insts` generates a callable that will be called.
NOTE: Assumes `inst_or_insts` is a single instruction or sequence of
instructions that pushes exactly 1 object to the stack that is to
be called. It is important that you include ALL instructions that
construct the callable - not just the first instruction/a prefix.
Will attempt to use the NULL push bit for instructions
with such bits (LOAD_GLOBAL 3.11+, LOAD_ATTR 3.12+, LOAD_SUPER_ATTR).
In this case, instructions WILL be modified.
"""
if isinstance(inst_or_insts, Instruction):
insts = [inst_or_insts]
else:
insts = inst_or_insts
def inst_has_bit_set(idx):
assert insts[idx].arg is not None
return insts[idx].arg & 1 == 1
def set_inst_bit(idx):
assert insts[idx].arg is not None
insts[idx].arg |= 1
if sys.version_info >= (3, 13):
# In 3.13, NULL follows the callable
if inst_has_op_bits(insts[-1].opname) and not inst_has_bit_set(-1):
# All insts with op bits have the push_null bit as the last one.
# Only set the bit if it hasn't been set - otherwise, we need
# to add another PUSH_NULL.
set_inst_bit(-1)
else:
insts = insts + [create_instruction("PUSH_NULL")]
elif sys.version_info >= (3, 12):
# LOAD_ATTR/LOAD_SUPER_ATTR at the end
# We assume that `insts` will only load 1 object, so
# LOAD_GLOBAL at the end doesn't need to be checked
if inst_has_op_bits(insts[-1].opname) and not inst_has_bit_set(-1):
set_inst_bit(-1)
elif insts[0].opname == "LOAD_GLOBAL" and not inst_has_bit_set(0):
set_inst_bit(0)
else:
insts = [create_instruction("PUSH_NULL")] + insts
elif sys.version_info >= (3, 11):
# 3.11 introduced NULL preceding callable
if inst_has_op_bits(insts[0].opname) and not inst_has_bit_set(0):
set_inst_bit(0)
else:
insts = [create_instruction("PUSH_NULL")] + insts
return insts
def add_push_null_call_function_ex(
inst_or_insts: Union[Instruction, list[Instruction]],
) -> list[Instruction]:
"""Like add_push_null, but the low bit of LOAD_ATTR/LOAD_SUPER_ATTR
is not set, due to an expected CALL_FUNCTION_EX instruction.
"""
if isinstance(inst_or_insts, Instruction):
insts = [inst_or_insts]
else:
insts = inst_or_insts
if sys.version_info < (3, 11):
return insts
idx = -1 if sys.version_info >= (3, 13) else 0
if insts[idx].opname == "LOAD_GLOBAL":
assert insts[idx].arg is not None
if insts[idx].arg & 1 == 0: # type: ignore[operator]
insts[idx].arg |= 1 # type: ignore[operator]
return insts
if sys.version_info >= (3, 13):
insts = insts + [create_instruction("PUSH_NULL")]
else:
insts = [create_instruction("PUSH_NULL")] + insts
return insts
def create_call_function(nargs, push_null) -> list[Instruction]:
"""
Creates a sequence of instructions that makes a function call.
`push_null` is used in Python 3.11+ only. It is used in codegen when
a function call is intended to be made with the NULL + fn convention,
and we know that the NULL has not been pushed yet. We will push a
NULL and rotate it to the correct position immediately before making
the function call.
`push_null` should be True if no NULL is pushed for the callable.
Conversely, `push_null` should be False if a NULL was pushed for the callable.
Prefer using `push_null=False` when possible since we will not need to rotate
NULL to the right place, which is less efficient.
Generally, you should codegen a function by using `add_push_null` then
`create_call_function` with `push_null=False`.
Example of when to set push_null False:
insts = [
create_instruction("LOAD_GLOBAL", argval="torch"),
create_instruction("LOAD_ATTR", argval="nn"),
create_instruction("LOAD_ATTR", argval="functional"),
create_instruction("LOAD_ATTR", argval="relu"),
]
insts = add_push_null(insts)
insts.append(create_instruction("LOAD_FAST", argval="x"))
insts.extend(create_call_function(1, False))
Example of when to set push_null True:
insts = [create_instruction("LOAD_FAST", x)]
for should_wrap, wrapper_name in wrappers:
if should_wrap:
insts.extend([
create_instruction("LOAD_GLOBAL", argval="wrapper1"),
create_instruction("SWAP", arg=2),
*create_call_function(1, True),
)
"""
if sys.version_info >= (3, 11):
output = []
if push_null:
output.append(create_instruction("PUSH_NULL"))
# 3.13 swapped NULL and callable
rots = nargs + 1 if sys.version_info >= (3, 13) else nargs + 2
output.extend(create_rot_n(rots))
if sys.version_info < (3, 12):
output.append(create_instruction("PRECALL", arg=nargs))
output.append(create_instruction("CALL", arg=nargs))
return output
return [create_instruction("CALL_FUNCTION", arg=nargs)]
def create_call_method(nargs) -> list[Instruction]:
if sys.version_info >= (3, 12):
return [create_instruction("CALL", arg=nargs)]
if sys.version_info >= (3, 11):
return [
create_instruction("PRECALL", arg=nargs),
create_instruction("CALL", arg=nargs),
]
return [create_instruction("CALL_METHOD", arg=nargs)]
def create_load_method(name) -> Instruction:
if sys.version_info >= (3, 12):
# in 3.12, create a LOAD_ATTR instruction with the low bit set
return create_instruction("LOAD_ATTR", arg=1, argval=name)
return create_instruction("LOAD_METHOD", argval=name)
def create_setup_with(target) -> Instruction:
opname = "BEFORE_WITH" if sys.version_info >= (3, 11) else "SETUP_WITH"
return create_instruction(opname, target=target)
def create_swap(n) -> list[Instruction]:
if sys.version_info >= (3, 11):
return [create_instruction("SWAP", arg=n)]
# in Python < 3.11, SWAP is a macro that expands to multiple instructions
if n == 1:
return []
"""
e.g. swap "a" and "b" in this stack:
0 a 1 2 3 b
0 a [1 2 3 b]
0 a [1 2 3 b] [1 2 3 b]
0 a [1 2 3 b] [1 2 3 b] -1
0 a [1 2 3 b] b
0 b a [1 2 3 b]
0 b a [1 2 3 b] [1 2 3 b]
0 b [1 2 3 b] a [1 2 3 b]
0 b [1 2 3 b] a [1 2 3 b] -1
0 b [1 2 3 a]
0 b [1 2 3 a] [1 2 3 a]
0 b [1 2 3 a] [1 2 3 a] reverse
0 b [a 3 2 1] None
0 b [a 3 2 1]
0 b 1 2 3 a
"""
return [
create_instruction("BUILD_LIST", arg=n - 1),
create_instruction("DUP_TOP"),
create_instruction("LOAD_CONST", argval=-1),
create_instruction("BINARY_SUBSCR"),
create_instruction("ROT_THREE"),
create_instruction("DUP_TOP"),
create_instruction("ROT_THREE"),
create_instruction("LOAD_CONST", argval=-1),
create_instruction("STORE_SUBSCR"),
create_instruction("DUP_TOP"),
create_load_method("reverse"),
*create_call_method(0),
create_instruction("POP_TOP"),
create_instruction("UNPACK_SEQUENCE", arg=n - 1),
]
def lnotab_writer(
lineno: int, byteno: int = 0
) -> tuple[list[int], Callable[[int, int], None]]:
"""
Used to create typing.CodeType.co_lnotab
See https://github.com/python/cpython/blob/main/Objects/lnotab_notes.txt
This is the internal format of the line number table if Python < 3.10
"""
assert sys.version_info < (3, 10)
lnotab: list[int] = []
def update(lineno_new, byteno_new):
nonlocal byteno, lineno
while byteno_new != byteno or lineno_new != lineno:
byte_offset = max(0, min(byteno_new - byteno, 255))
line_offset = max(-128, min(lineno_new - lineno, 127))
assert byte_offset != 0 or line_offset != 0
byteno += byte_offset
lineno += line_offset
lnotab.extend((byte_offset, line_offset & 0xFF))
return lnotab, update
def linetable_310_writer(first_lineno):
"""
Used to create typing.CodeType.co_linetable
See https://github.com/python/cpython/blob/main/Objects/lnotab_notes.txt
This is the internal format of the line number table for Python 3.10
"""
assert sys.version_info >= (3, 10) and sys.version_info < (3, 11)
linetable: list[int] = []
lineno = first_lineno
lineno_delta = 0
byteno = 0
def _update(byteno_delta, lineno_delta):
while byteno_delta != 0 or lineno_delta != 0:
byte_offset = max(0, min(byteno_delta, 254))
line_offset = max(-127, min(lineno_delta, 127))
assert byte_offset != 0 or line_offset != 0
byteno_delta -= byte_offset
lineno_delta -= line_offset
linetable.extend((byte_offset, line_offset & 0xFF))
def update(lineno_new, byteno_new):
nonlocal lineno, lineno_delta, byteno
byteno_delta = byteno_new - byteno
byteno = byteno_new
_update(byteno_delta, lineno_delta)
lineno_delta = lineno_new - lineno
lineno = lineno_new
def end(total_bytes):
_update(total_bytes - byteno, lineno_delta)
return linetable, update, end
def encode_varint(n: int) -> list[int]:
"""
6-bit chunk encoding of an unsigned integer
See https://github.com/python/cpython/blob/3.11/Objects/locations.md
"""
assert n >= 0
b = [n & 63]
n >>= 6
while n > 0:
b[-1] |= 64
b.append(n & 63)
n >>= 6
return b
def linetable_311_writer(first_lineno: int):
"""
Used to create typing.CodeType.co_linetable
See https://github.com/python/cpython/blob/3.11/Objects/locations.md
This is the internal format of the line number table for Python 3.11
"""
assert sys.version_info >= (3, 11)
linetable = []
lineno = first_lineno
def update(positions: "dis.Positions", inst_size):
nonlocal lineno
lineno_new = positions.lineno if positions else None
def _update(delta, size):
assert 0 < size <= 8
# first byte - use 13 (no column info) is positions is
# malformed, otherwise use 14 (long form)
other_varints: tuple[int, ...] = ()
if (
positions
and positions.lineno is not None
and positions.end_lineno is not None
and positions.col_offset is not None
and positions.end_col_offset is not None
):
linetable.append(0b1_1110_000 + size - 1)
# for whatever reason, column offset needs `+ 1`
# https://github.com/python/cpython/blob/1931c2a438c50e6250725c84dff94fc760b9b951/Python/compile.c#L7603
other_varints = (
positions.end_lineno - positions.lineno,
positions.col_offset + 1,
positions.end_col_offset + 1,
)
else:
linetable.append(0b1_1101_000 + size - 1)
# encode signed int
if delta < 0:
delta = ((-delta) << 1) | 1
else:
delta <<= 1
# encode unsigned int
linetable.extend(encode_varint(delta))
for n in other_varints:
linetable.extend(encode_varint(n))
if lineno_new is None:
lineno_delta = 0
else:
lineno_delta = lineno_new - lineno
lineno = lineno_new
while inst_size > 8:
_update(lineno_delta, 8)
inst_size -= 8
_update(lineno_delta, inst_size)
return linetable, update
@dataclass_slots
@dataclasses.dataclass
class ExceptionTableEntry:
start: int
end: int
target: int
depth: int
lasti: bool
def encode_exception_table_varint(n: int) -> list[int]:
"""
Similar to `encode_varint`, but the 6-bit chunks are ordered in reverse.
"""
assert n >= 0
b = [n & 63]
n >>= 6
while n > 0:
b.append(n & 63)
n >>= 6
b.reverse()
for i in range(len(b) - 1):
b[i] |= 64
return b
def decode_exception_table_varint(bytes_iter: Iterator[int]) -> int:
"""
Inverse of `encode_exception_table_varint`.
"""
b = next(bytes_iter)
val = b & 63
while b & 64:
val <<= 6
b = next(bytes_iter)
val |= b & 63
return val
def check_exception_table(tab: list[ExceptionTableEntry]) -> None:
"""
Verifies that a list of ExceptionTableEntries will make a well-formed
jump table: entries are non-empty, sorted, and do not overlap.
"""
for i in range(len(tab) - 1):
assert (
tab[i].start <= tab[i].end
and tab[i].end < tab[i + 1].start
and tab[i + 1].start <= tab[i + 1].end
)
def parse_exception_table(exntab: bytes) -> list[ExceptionTableEntry]:
"""
Parse the exception table according to
https://github.com/python/cpython/blob/3.11/Objects/exception_handling_notes.txt
"""
exntab_iter = iter(exntab)
tab = []
try:
while True:
start = decode_exception_table_varint(exntab_iter) * 2
length = decode_exception_table_varint(exntab_iter) * 2
end = start + length - 2
target = decode_exception_table_varint(exntab_iter) * 2
dl = decode_exception_table_varint(exntab_iter)
depth = dl >> 1
lasti = bool(dl & 1)
tab.append(ExceptionTableEntry(start, end, target, depth, lasti))
except StopIteration:
check_exception_table(tab)
return tab
def assemble_exception_table(tab: list[ExceptionTableEntry]) -> bytes:
"""
Inverse of parse_exception_table - encodes list of exception
table entries into bytes.
"""
b = []
for entry in tab:
first_entry = encode_exception_table_varint(entry.start // 2)
first_entry[0] |= 1 << 7
b.extend(first_entry)
length = entry.end - entry.start + 2
b.extend(encode_exception_table_varint(length // 2))
b.extend(encode_exception_table_varint(entry.target // 2))
dl = (entry.depth << 1) + entry.lasti
b.extend(encode_exception_table_varint(dl))
return bytes(b)
def assemble(instructions: list[Instruction], firstlineno: int) -> tuple[bytes, bytes]:
"""Do the opposite of dis.get_instructions()"""
code: list[int] = []
if sys.version_info >= (3, 11):
lnotab, update_lineno = linetable_311_writer(firstlineno)
num_ext = 0
for i, inst in enumerate(instructions):
if inst.opname == "EXTENDED_ARG":
inst_size = 1
num_ext += 1
# copy positions from the actual instruction
for j in (1, 2, 3):
if instructions[i + j].opname != "EXTENDED_ARG":
inst.positions = instructions[i + j].positions
break
else:
inst_size = instruction_size(inst) // 2 + num_ext
num_ext = 0
update_lineno(inst.positions, inst_size)
num_ext = 0
arg = inst.arg or 0
code.extend((inst.opcode, arg & 0xFF))
for _ in range(instruction_size(inst) // 2 - 1):
code.extend((0, 0))
else:
if sys.version_info < (3, 10):
lnotab, update_lineno = lnotab_writer(firstlineno)
else:
lnotab, update_lineno, end = linetable_310_writer(firstlineno)
for inst in instructions:
if inst.starts_line is not None:
update_lineno(inst.starts_line, len(code))
arg = inst.arg or 0
code.extend((inst.opcode, arg & 0xFF))
if sys.version_info >= (3, 10):
end(len(code))
return bytes(code), bytes(lnotab)
def _get_instruction_by_offset(offset_to_inst: dict[int, Instruction], offset: int):
"""
Get the instruction located at a given offset, accounting for EXTENDED_ARGs
"""
for n in (0, 2, 4, 6):
if offset_to_inst[offset + n].opcode != dis.EXTENDED_ARG:
return offset_to_inst[offset + n]
return None
def virtualize_jumps(instructions) -> None:
"""Replace jump targets with pointers to make editing easier"""
jump_targets = {inst.offset: inst for inst in instructions}
for inst in instructions:
if inst.opcode in dis.hasjabs or inst.opcode in dis.hasjrel:
inst.target = _get_instruction_by_offset(jump_targets, inst.argval)
_REL_JUMPS = set(dis.hasjrel)
def flip_jump_direction(instruction: Instruction) -> None:
if sys.version_info < (3, 11):
raise RuntimeError("Cannot flip jump direction in Python < 3.11")
if "FORWARD" in instruction.opname:
instruction.opname = instruction.opname.replace("FORWARD", "BACKWARD")
elif "BACKWARD" in instruction.opname:
instruction.opname = instruction.opname.replace("BACKWARD", "FORWARD")
else:
raise AttributeError("Instruction is not a forward or backward jump")
instruction.opcode = dis.opmap[instruction.opname]
assert instruction.opcode in _REL_JUMPS
def _get_instruction_front(instructions: list[Instruction], idx: int):
"""
i.e. get the first EXTENDED_ARG instruction (if any) when targeting
instructions[idx] with a jump.
"""
target = instructions[idx]
for offset in (1, 2, 3):
if idx >= offset and instructions[idx - offset].opcode == dis.EXTENDED_ARG:
target = instructions[idx - offset]
else:
break
return target
def devirtualize_jumps(instructions):
"""Fill in args for virtualized jump target after instructions may have moved"""
jumps = set(dis.hasjabs).union(set(dis.hasjrel))
# check for negative jump args and fix them
for inst in instructions:
if inst.opcode in jumps:
if inst.opcode not in dis.hasjabs:
if inst.target.offset < inst.offset:
if sys.version_info < (3, 11):
raise RuntimeError("Got negative jump offset for Python < 3.11")
# forward jumps become backward
if "FORWARD" in inst.opname:
flip_jump_direction(inst)
else:
# backward jumps become forward
if sys.version_info >= (3, 11) and "BACKWARD" in inst.opname:
flip_jump_direction(inst)
# jump instruction size may have changed due to flips
update_offsets(instructions)
indexof = get_indexof(instructions)
# compute jump instruction arg
for inst in instructions:
if inst.opcode in jumps:
target = _get_instruction_front(instructions, indexof[inst.target])
if inst.opcode in dis.hasjabs:
if sys.version_info < (3, 10):
inst.arg = target.offset
elif sys.version_info < (3, 11):
# `arg` is expected to be bytecode offset, whereas `offset` is byte offset.
# Divide since bytecode is 2 bytes large.
inst.arg = int(target.offset / 2)
else:
raise RuntimeError("Python 3.11+ should not have absolute jumps")
else: # relative jump
# byte offset between target and next instruction
inst.arg = abs(
int(target.offset - inst.offset - instruction_size(inst))
)
if sys.version_info >= (3, 10):
# see bytecode size comment in the absolute jump case above
inst.arg //= 2
inst.argval = target.offset
inst.argrepr = f"to {target.offset}"
def virtualize_exception_table(exn_tab_bytes: bytes, instructions: list[Instruction]):
"""Replace exception table entries with pointers to make editing easier"""
exn_tab = parse_exception_table(exn_tab_bytes)
offset_to_inst = {cast(int, inst.offset): inst for inst in instructions}
offsets = sorted(offset_to_inst.keys())
end_offset_idx = 0
exn_tab_iter = iter(exn_tab)
try:
def step():
nonlocal end_offset_idx
entry = next(exn_tab_iter)
# find rightmost offset <= entry.end, since entry.end may not be
# an actual instruction, e.g. if the end instruction is LOAD_GLOBAL,
# which takes more than 2 bytes, then entry.end points to the end
# of the LOAD_GLOBAL instruction, not the beginning.
while (
end_offset_idx < len(offsets) and offsets[end_offset_idx] <= entry.end
):
end_offset_idx += 1
assert end_offset_idx > 0
end_offset = offsets[end_offset_idx - 1]
inst_entry = InstructionExnTabEntry(
_get_instruction_by_offset(offset_to_inst, entry.start),
_get_instruction_by_offset(offset_to_inst, end_offset),
_get_instruction_by_offset(offset_to_inst, entry.target),
entry.depth,
entry.lasti,
)
return entry, inst_entry
entry, inst_entry = step()
for inst in instructions:
while inst.offset > entry.end:
entry, inst_entry = step()
if inst.offset >= entry.start:
inst.exn_tab_entry = copy.copy(inst_entry)
except StopIteration:
pass
def compute_exception_table(
instructions: list[Instruction],
) -> list[ExceptionTableEntry]:
"""Compute exception table in list format from instructions with exn_tab_entries"""
exn_dict: dict[tuple[int, int], tuple[int, int, bool]] = {}
indexof = get_indexof(instructions)
for inst in instructions:
if inst.exn_tab_entry:
# account for prefixed EXTENDED_ARGS
start = _get_instruction_front(
instructions, indexof[inst.exn_tab_entry.start]
).offset
# point to the last 2 bytes of the end instruction
end = (
cast(int, inst.exn_tab_entry.end.offset)
+ instruction_size(inst.exn_tab_entry.end)
- 2
)
target = _get_instruction_front(
instructions, indexof[inst.exn_tab_entry.target]
).offset
key = (start, end)
val = (target, inst.exn_tab_entry.depth, inst.exn_tab_entry.lasti)
if key in exn_dict:
assert exn_dict[key] == val
exn_dict[key] = val
# Dynamo may construct nested exception table entries for convenience,
# but Python expects exception table entries to not overlap.
# NOTE: below, "keys" refer to old instruction entries' starts and ends,
# and "entries" refer to the generated exception table entries.
# Sort keys by increasing start, then decreasing end
keys_sorted = sorted(exn_dict.keys(), key=lambda t: (t[0], -t[1]))
# smallest byte that the next exception table entry can start at
nexti = 0
# stack of current nested keys
key_stack: list[tuple[int, int]] = []
exn_tab: list[ExceptionTableEntry] = []
def pop():
"""
Pop the key_stack and append an exception table entry if possible.
"""
nonlocal nexti
if key_stack:
key = key_stack.pop()
if nexti <= key[1]:
exn_tab.append(
ExceptionTableEntry(max(key[0], nexti), key[1], *exn_dict[key])
)
nexti = key[1] + 2
for key in keys_sorted:
# pop keys that are no longer nested over the current key
while key_stack and key_stack[-1][1] < key[0]:
pop()
if key_stack:
# create an entry covering to the current key, if possible
assert key_stack[-1][0] <= key[0] <= key[1] <= key_stack[-1][1]
left = max(nexti, key_stack[-1][0])
if left < key[0]:
exn_tab.append(
ExceptionTableEntry(left, key[0] - 2, *exn_dict[key_stack[-1]])
)
nexti = key[0]
key_stack.append(key)
while key_stack:
pop()
check_exception_table(exn_tab)
return exn_tab
def check_inst_exn_tab_entries_nested(
tab: list[InstructionExnTabEntry], indexof
) -> None:
"""
Checks `tab` is a properly sorted list of nested InstructionExnTabEntry's,
i.e. no entries partially overlap.
"Properly sorted" means entries are sorted by increasing starts, then
decreasing ends.
"""
entry_stack: list[tuple[int, int]] = []
for entry in tab:
key = (indexof[entry.start], indexof[entry.end])
while entry_stack and entry_stack[-1][1] < key[0]:
entry_stack.pop()
if entry_stack:
assert entry_stack[-1][0] <= key[0] <= key[1] <= entry_stack[-1][1]
entry_stack.append(key)
def propagate_inst_exn_table_entries(instructions: list[Instruction]) -> None:
"""
Copies exception table entries to all instructions in an entry's range.
Supports nested exception table entries.
"""
indexof = get_indexof(instructions)
entries: dict[tuple[int, int], InstructionExnTabEntry] = {}
for inst in instructions:
if inst.exn_tab_entry:
key = (
indexof[inst.exn_tab_entry.start],
indexof[inst.exn_tab_entry.end],
)
if key in entries:
assert inst.exn_tab_entry == entries[key]
entries[key] = inst.exn_tab_entry
sorted_entries = [
entries[key] for key in sorted(entries.keys(), key=lambda t: (t[0], -t[1]))
]
check_inst_exn_tab_entries_nested(sorted_entries, indexof)
# Propagation of nested entries works since nested entries come later
# in sorted order.
for entry in sorted_entries:
for i in range(indexof[entry.start], indexof[entry.end] + 1):
instructions[i].exn_tab_entry = copy.copy(entry)
def check_inst_exn_tab_entries_valid(instructions: list[Instruction]):
"""
Checks that exn_tab_entries of instructions are valid.
An entry's start, end, and target must be in instructions.
Instructions with an exn_tab_entry are located within
the entry's start and end instructions.
Instructions do not share exn_tab_entries.
Implicitly checks for no duplicate instructions.
"""
indexof = get_indexof(instructions)
exn_tab_entry_set = set()
for i, inst in enumerate(instructions):
if inst.exn_tab_entry:
assert sys.version_info >= (3, 11)
assert id(inst.exn_tab_entry) not in exn_tab_entry_set
exn_tab_entry_set.add(id(inst.exn_tab_entry))
entry = inst.exn_tab_entry
assert entry.start in indexof
assert entry.end in indexof
assert entry.target in indexof
assert indexof[entry.start] <= i <= indexof[entry.end]
def strip_extended_args(instructions: list[Instruction]) -> None:
instructions[:] = [i for i in instructions if i.opcode != dis.EXTENDED_ARG]
# Overwrites old_inst with a sequence of new instructions.
# This is necessary in order to preserve jump targets to the old
# instruction, exception table entries, and positions.
# Returns the modified sequence of instructions (including the modified
# old instruction!) that can be manipulated elsewhere.
def overwrite_instruction(old_inst, new_insts):
# update old_inst.exnt_tab_entry.end if necessary
if (
old_inst.exn_tab_entry
and old_inst.exn_tab_entry.end is old_inst
and len(new_insts) > 1
):
old_inst.exn_tab_entry.end = new_insts[-1]
# preserve exception table entries and positions
for inst in new_insts[1:]:
inst.exn_tab_entry = copy.copy(old_inst.exn_tab_entry)
inst.positions = old_inst.positions
# modify old_inst in-place to preserve jump target
old_inst.opcode = new_insts[0].opcode
old_inst.opname = new_insts[0].opname
old_inst.arg = new_insts[0].arg
old_inst.argval = new_insts[0].argval
old_inst.target = new_insts[0].target
return [old_inst] + new_insts[1:]
def remove_load_call_method(instructions: list[Instruction]) -> list[Instruction]:
"""LOAD_METHOD puts a NULL on the stack which causes issues, so remove it"""
assert sys.version_info < (3, 11)
rewrites = {"LOAD_METHOD": "LOAD_ATTR", "CALL_METHOD": "CALL_FUNCTION"}
for inst in instructions:
if inst.opname in rewrites:
inst.opname = rewrites[inst.opname]
inst.opcode = dis.opmap[inst.opname]
return instructions
def remove_jump_if_none(instructions: list[Instruction]) -> None:
new_insts = []
for inst in instructions:
if "_NONE" in inst.opname:
is_op = create_instruction("IS_OP", arg=int("NOT" in inst.opname))
# need both argval and arg set correctly now (not later)
is_op.argval = is_op.arg
if sys.version_info < (3, 12):
jump_op = create_instruction(
(
"POP_JUMP_FORWARD_IF_TRUE"
if "FORWARD" in inst.opname
else "POP_JUMP_BACKWARD_IF_TRUE"
),
target=inst.target,
)
else:
jump_op = create_instruction("POP_JUMP_IF_TRUE", target=inst.target)
replace_insts = [
create_instruction("LOAD_CONST", argval=None),
is_op,
jump_op,
]
new_insts.extend(overwrite_instruction(inst, replace_insts))
else:
new_insts.append(inst)
instructions[:] = new_insts
def remove_binary_store_slice(instructions: list[Instruction]) -> None:
new_insts = []
for inst in instructions:
new_insts.append(inst)
if inst.opname in ("BINARY_SLICE", "STORE_SLICE"):
# new instruction
subscr_inst = create_instruction(inst.opname.replace("SLICE", "SUBSCR"))
if inst.exn_tab_entry and inst.exn_tab_entry.end is inst:
inst.exn_tab_entry.end = subscr_inst
subscr_inst.exn_tab_entry = copy.copy(inst.exn_tab_entry)
subscr_inst.positions = inst.positions
# modify inst in-place to preserve jump target
inst.opcode = dis.opmap["BUILD_SLICE"]
inst.opname = "BUILD_SLICE"
inst.arg = 2
inst.argval = 2
new_insts.append(subscr_inst)
instructions[:] = new_insts
FUSED_INSTS = {
"LOAD_FAST_LOAD_FAST": ("LOAD_FAST", "LOAD_FAST"),
"STORE_FAST_STORE_FAST": ("STORE_FAST", "STORE_FAST"),
"STORE_FAST_LOAD_FAST": ("STORE_FAST", "LOAD_FAST"),
}
def remove_fused_load_store(instructions: list[Instruction]) -> None:
new_insts = []
for inst in instructions:
if inst.opname in FUSED_INSTS:
inst0, inst1 = FUSED_INSTS[inst.opname]
argval0, argval1 = inst.argval
replace_insts = [
create_instruction(inst0, argval=argval0),
create_instruction(inst1, argval=argval1),
]
new_insts.extend(overwrite_instruction(inst, replace_insts))
else:
new_insts.append(inst)
instructions[:] = new_insts
def explicit_super(code: types.CodeType, instructions: list[Instruction]) -> None:
"""convert super() with no args into explicit arg form"""
cell_and_free = (code.co_cellvars or ()) + (code.co_freevars or ())
if not len(code.co_varnames):
# A function with no argument cannot contain a valid "super()" call
return
output = []
for idx, inst in enumerate(instructions):
output.append(inst)
if inst.opname == "LOAD_GLOBAL" and inst.argval == "super":
nexti = instructions[idx + 1]
if nexti.arg == 0 and (
(sys.version_info >= (3, 12) and nexti.opname == "CALL")
or (
sys.version_info >= (3, 11)
and sys.version_info < (3, 12)
and nexti.opname == "PRECALL"
)
or (sys.version_info < (3, 11) and nexti.opname == "CALL_FUNCTION")
):
assert "__class__" in cell_and_free
output.append(create_instruction("LOAD_DEREF", argval="__class__"))
first_var = code.co_varnames[0]
if first_var in cell_and_free:
output.append(create_instruction("LOAD_DEREF", argval=first_var))
else:
output.append(create_instruction("LOAD_FAST", argval=first_var))
nexti.arg = 2
nexti.argval = 2
if nexti.opname == "PRECALL":
# also update the following CALL instruction
call_inst = instructions[idx + 2]
call_inst.arg = 2
call_inst.argval = 2
instructions[:] = output
def fix_extended_args(instructions: list[Instruction]) -> int:
"""Fill in correct argvals for EXTENDED_ARG ops"""
output: list[Instruction] = []
def maybe_pop_n(n):
for _ in range(n):
if output and output[-1].opcode == dis.EXTENDED_ARG:
output.pop()
for inst in instructions:
if inst.opcode == dis.EXTENDED_ARG:
# Leave this instruction alone for now so we never shrink code
inst.arg = 0
elif inst.arg and inst.arg > 0xFFFFFF:
maybe_pop_n(3)
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 24))
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 16))
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8))
elif inst.arg and inst.arg > 0xFFFF:
maybe_pop_n(2)
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 16))
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8))
elif inst.arg and inst.arg > 0xFF:
maybe_pop_n(1)
output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8))
output.append(inst)
added = len(output) - len(instructions)
assert added >= 0
instructions[:] = output
return added
def instruction_size(inst) -> int:
import torch
if sys.version_info >= (3, 11):
return 2 * (torch._C._dynamo.eval_frame.py_opcode_caches[inst.opcode] + 1)
return 2
def check_offsets(instructions) -> None:
offset = 0
for inst in instructions:
assert inst.offset == offset
offset += instruction_size(inst)
def update_offsets(instructions) -> None:
offset = 0
for inst in instructions:
inst.offset = offset
offset += instruction_size(inst)
def debug_bytes(*args) -> str:
index = range(max(map(len, args)))
result = [
" ".join(f"{x:03}" for x in arg)
for arg in [index]
+ list(args)
+ [[int(a != b) for a, b in zip(args[-1], args[-2])]]
]
return "bytes mismatch\n" + "\n".join(result)
def debug_checks(code):
"""Make sure our assembler produces same bytes as we start with"""
dode = transform_code_object(code, lambda x, y: None, safe=True)
assert code.co_code == dode.co_code, debug_bytes(code.co_code, dode.co_code)
assert code.co_lnotab == dode.co_lnotab, debug_bytes(code.co_lnotab, dode.co_lnotab)
HAS_LOCAL = set(dis.haslocal)
HAS_NAME = set(dis.hasname)
HAS_FREE = set(dis.hasfree)
HAS_CONST = set(dis.hasconst)
def get_const_index(code_options, val) -> int:
for i, v in enumerate(code_options["co_consts"]):
# NOTE: stronger comparison is required, since we have
# examples where two values compare equal but have
# different semantic meaning in some cases, e.g.
# 0.0 == -0.0 but have different effects in torch.copysign.
if val is v:
return i
code_options["co_consts"] += (val,)
return len(code_options["co_consts"]) - 1
def fix_vars(instructions: list[Instruction], code_options, varname_from_oparg=None):
# compute instruction arg from argval if arg is not provided
names = {name: idx for idx, name in enumerate(code_options["co_names"])}
def get_name_index(name) -> int:
try:
idx = names[name]
except KeyError:
# Add a missing item to co_names
idx = names[name] = len(names)
code_options["co_names"] = (*code_options["co_names"], name)
assert len(code_options["co_names"]) == len(names)
return idx
if sys.version_info < (3, 11):
assert varname_from_oparg is None
varnames = {name: idx for idx, name in enumerate(code_options["co_varnames"])}
freenames = {
name: idx
for idx, name in enumerate(
code_options["co_cellvars"] + code_options["co_freevars"]
)
}
else:
assert callable(varname_from_oparg)
allnames = {}
for idx in itertools.count():
try:
name = varname_from_oparg(idx)
allnames[name] = idx
except IndexError:
break
varnames = {name: allnames[name] for name in code_options["co_varnames"]}
freenames = {
name: allnames[name]
for name in code_options["co_cellvars"] + code_options["co_freevars"]
}
for i in range(len(instructions)):
def should_compute_arg():
# argval is prioritized over arg
return instructions[i].argval is not _NotProvided
if instructions[i].opname == "LOAD_GLOBAL":
# 3.11 LOAD_GLOBAL requires both arg and argval - see create_instruction
assert instructions[i].argval is not _NotProvided
if sys.version_info >= (3, 11):
assert instructions[i].arg is not None
instructions[i].arg = (get_name_index(instructions[i].argval) << 1) + (
cast(int, instructions[i].arg) % 2
)
else:
instructions[i].arg = get_name_index(instructions[i].argval)
elif instructions[i].opname == "LOAD_ATTR":
# 3.12 LOAD_ATTR requires both arg and argval, like LOAD_GLOBAL
assert instructions[i].argval is not _NotProvided
if sys.version_info >= (3, 12):
assert instructions[i].arg is not None
instructions[i].arg = (get_name_index(instructions[i].argval) << 1) + (
cast(int, instructions[i].arg) % 2
)
else:
instructions[i].arg = get_name_index(instructions[i].argval)
elif instructions[i].opname == "LOAD_SUPER_ATTR":
assert instructions[i].arg is not None
assert instructions[i].argval is not _NotProvided
# Copy low bit, force second bit on for explicit super (the "+ 2")
instructions[i].arg = (
(get_name_index(instructions[i].argval) << 2)
+ (cast(int, instructions[i].arg) % 2)
+ 2
)
elif instructions[i].opname in FUSED_INSTS:
assert sys.version_info >= (3, 13)
assert isinstance(instructions[i].argval, tuple)
assert len(instructions[i].argval) == 2
arg_tuple = tuple(
varnames[name] if name in varnames else freenames[name]
for name in instructions[i].argval
)
instructions[i].arg = (arg_tuple[0] << 4) + (arg_tuple[1] & 15)
elif instructions[i].opcode in HAS_LOCAL:
if should_compute_arg():
if (
sys.version_info >= (3, 13)
and instructions[i].argval not in varnames
):
# instructions like LOAD_FAST used for both local and free vars
instructions[i].arg = freenames[instructions[i].argval]
else:
instructions[i].arg = varnames[instructions[i].argval]
elif instructions[i].opcode in HAS_NAME:
if should_compute_arg():
instructions[i].arg = get_name_index(instructions[i].argval)
elif instructions[i].opcode in HAS_FREE:
if should_compute_arg():
instructions[i].arg = freenames[instructions[i].argval]
elif instructions[i].opcode in HAS_CONST:
# NOTE: only update argval if arg is not provided. This assumes
# that any additions to co_consts are appended.
if instructions[i].arg is None:
# cannot use a dictionary since consts may not be hashable
idx = get_const_index(code_options, instructions[i].argval)
assert idx >= 0
instructions[i].arg = idx
def clear_instruction_args(instructions):
# Clear the instruction arg for instructions that have argvals.
# Useful for using dis'd bytecode within generated bytecode.
for inst in instructions:
if (
inst.argval is not _NotProvided
and (
inst.opcode in HAS_LOCAL
or inst.opcode in HAS_NAME
or inst.opcode in HAS_FREE
or inst.opcode in HAS_CONST
)
and inst.opname not in ("LOAD_GLOBAL", "LOAD_ATTR", "LOAD_SUPER_ATTR")
):
inst.arg = None
@functools.lru_cache
def get_code_keys() -> list[str]:
# Python 3.11 changes to code keys are not fully documented.
# See https://github.com/python/cpython/blob/3.11/Objects/clinic/codeobject.c.h#L24
# for new format.
keys = ["co_argcount"]
keys.append("co_posonlyargcount")
keys.extend(
[
"co_kwonlyargcount",
"co_nlocals",
"co_stacksize",
"co_flags",
"co_code",
"co_consts",
"co_names",
"co_varnames",
"co_filename",
"co_name",
]
)
if sys.version_info >= (3, 11):
keys.append("co_qualname")
keys.append("co_firstlineno")
if sys.version_info >= (3, 10):
keys.append("co_linetable")
else:
keys.append("co_lnotab")
if sys.version_info >= (3, 11):
# not documented, but introduced in https://github.com/python/cpython/issues/84403
keys.append("co_exceptiontable")
keys.extend(
[
"co_freevars",
"co_cellvars",
]
)
return keys
def transform_code_object(code, transformations, safe=False) -> types.CodeType:
keys = get_code_keys()
code_options = {k: getattr(code, k) for k in keys}
assert len(code_options["co_varnames"]) == code_options["co_nlocals"]
instructions = cleaned_instructions(code, safe)
propagate_line_nums(instructions)
transformations(instructions, code_options)
return clean_and_assemble_instructions(instructions, keys, code_options)[1]
def clean_and_assemble_instructions(
instructions: list[Instruction], keys: list[str], code_options: dict[str, Any]
) -> tuple[list[Instruction], types.CodeType]:
# also implicitly checks for no duplicate instructions
check_inst_exn_tab_entries_valid(instructions)
code_options["co_nlocals"] = len(code_options["co_varnames"])
varname_from_oparg = None
if sys.version_info >= (3, 11):
# temporary code object with updated names
tmp_code = types.CodeType(*[code_options[k] for k in keys])
varname_from_oparg = tmp_code._varname_from_oparg # type: ignore[attr-defined]
fix_vars(instructions, code_options, varname_from_oparg=varname_from_oparg)
dirty = True
while dirty:
update_offsets(instructions)
devirtualize_jumps(instructions)
# this pass might change offsets, if so we need to try again
dirty = bool(fix_extended_args(instructions))
remove_extra_line_nums(instructions)
bytecode, lnotab = assemble(instructions, code_options["co_firstlineno"])
if sys.version_info < (3, 10):
code_options["co_lnotab"] = lnotab
else:
code_options["co_linetable"] = lnotab
code_options["co_code"] = bytecode
code_options["co_stacksize"] = stacksize_analysis(instructions)
assert set(keys) - {"co_posonlyargcount"} == set(code_options.keys()) - {
"co_posonlyargcount"
}
if sys.version_info >= (3, 11):
code_options["co_exceptiontable"] = assemble_exception_table(
compute_exception_table(instructions)
)
return instructions, types.CodeType(*[code_options[k] for k in keys])
def populate_kw_names_argval(instructions, consts):
for inst in instructions:
if inst.opname == "KW_NAMES":
inst.argval = consts[inst.arg]
# If safe=True, we do not make any bytecode modifications.
# Mainly used for debugging bytecode_transformation (see debug_checks)
def cleaned_instructions(code, safe=False) -> list[Instruction]:
instructions = _cached_cleaned_instructions(code, safe)
# We have a lot of code that implicitly mutates the instruction array. We
# could do better here by making the copies explicit when necessary.
return _clone_instructions(instructions)
# Copy an instructions array, making sure to remap the individual instruction targets.
def _clone_instructions(instructions):
# This is super hot and this is the fastest way to do this (tried copy.copy
# and dataclasses.replace).
copied = [
Instruction(
i.opcode,
i.opname,
i.arg,
i.argval,
i.offset,
i.starts_line,
i.is_jump_target,
i.positions,
i.target,
i.exn_tab_entry,
i.argrepr,
)
for i in instructions
]
remap = dict(zip(instructions, copied))
# Handle `None` in the remapper so we don't need an extra `if`.
remap[None] = None
for i in copied:
i.target = remap[i.target]
if entry := i.exn_tab_entry:
i.exn_tab_entry = InstructionExnTabEntry(
remap[entry.start],
remap[entry.end],
remap[entry.target],
entry.depth,
entry.lasti,
)
return copied
@functools.lru_cache
def _cached_cleaned_instructions(code, safe=False) -> Sequence[Instruction]:
instructions = list(map(convert_instruction, dis.get_instructions(code)))
check_offsets(instructions)
if sys.version_info >= (3, 11):
populate_kw_names_argval(instructions, code.co_consts)
virtualize_exception_table(code.co_exceptiontable, instructions)
virtualize_jumps(instructions)
strip_extended_args(instructions)
if not safe:
if sys.version_info < (3, 11):
remove_load_call_method(instructions)
if sys.version_info < (3, 12):
explicit_super(code, instructions)
if sys.version_info >= (3, 11):
remove_jump_if_none(instructions)
if sys.version_info >= (3, 12):
remove_binary_store_slice(instructions)
if sys.version_info >= (3, 13):
remove_fused_load_store(instructions)
if sys.version_info >= (3, 11):
update_offsets(instructions)
devirtualize_jumps(instructions)
return instructions
_unique_id_counter = itertools.count()
def unique_id(name, with_uuid=False) -> str:
ret = f"{name}_{next(_unique_id_counter)}"
if with_uuid:
ret += f"_{uuid.uuid4()}".replace("-", "_")
return ret
def is_generator(code: types.CodeType) -> bool:
co_generator = 0x20
return (code.co_flags & co_generator) > 0
def bytecode_from_template(fn, varname_map=None, noreturn=True, noprefix=True):
"""Generates bytecode from a template function `fn` for use in
dynamo bytecode generation.
For example, we can generate Python-version-independent bytecode
for looping through a dictionary and copying the values to a new dictionary.
def template(d1, d2):
for k, v in d1.items():
d2[k] = v
or a try block:
def template():
try:
dummy1
except:
dummy2
raise
dummy3
Args:
fn: a function template to generate bytecode from
varname_map: a mapping of `fn`'s varnames to new names. This
map will be applied to the generated bytecode's varnames.
For example, local variables in `fn` can be replaced with
new names that are generated by `OutputGraph.new_var`.
noreturn: remove all RETURN_* bytecodes and replace them with a jump
to the end of the bytecode. NOTE: any items pushed to the stack
for return WILL remain on the stack! Append a POP_TOP if you don't want
that item to be present.
noprefix: remove prefix bytecodes (all bytecode before the first RESUME, inclusive).
"""
insts = cleaned_instructions(fn.__code__)
clear_instruction_args(insts)
if noprefix:
for i, inst in enumerate(insts):
if inst.opname == "RESUME":
insts = insts[i + 1 :]
break
for inst in insts:
# If we don't reset starts_line, then the generated
# bytecode's line number will be based on fn's.
inst.starts_line = None
if varname_map and inst.argval in varname_map:
inst.argval = varname_map[inst.argval]
if noreturn:
if sys.version_info >= (3, 12):
# replace RETURN_CONST with LOAD_CONST RETURN_VALUE
new_insts = []
for inst in insts:
if inst.opname == "RETURN_CONST":
inst.opcode = dis.opmap["LOAD_CONST"]
inst.opname = "LOAD_CONST"
new_insts.append(inst)
# no need to propagate target/exn table
new_insts.append(create_instruction("RETURN_VALUE"))
else:
new_insts.append(inst)
insts = new_insts
returns = []
for inst in insts:
if inst.opname == "RETURN_VALUE":
returns.append(inst)
if len(returns) == 1 and returns[0] is insts[-1]:
# only 1 return at the end - just pop it
insts.pop(-1)
elif len(returns) > 0:
# create jump target - if the last inst is a return,
# we can replace it with a NOP and make that the jump target.
if insts[-1] is returns[-1]:
insts[-1].opname = "NOP"
insts[-1].opcode = dis.opmap["NOP"]
insts[-1].arg = None
insts[-1].argval = _NotProvided
returns.pop(-1)
else:
insts.append(create_instruction("NOP"))
# replace returns with jumps
for inst in returns:
# don't replace inst with new instruction
# due to targetting/exn table/etc.
jump_inst = create_jump_absolute(insts[-1])
inst.opname = jump_inst.opname
inst.opcode = jump_inst.opcode
inst.arg = jump_inst.arg
inst.argval = jump_inst.argval
inst.target = jump_inst.target
return insts