Files
pytorch/test/distributed/optim/test_zero_redundancy_optimizer.py
PyTorch MergeBot 4c152a71ad Revert "add device generalization support for distributed tests (#165067)"
This reverts commit 96a4c4b3d1c533b36cfa7259524b91a0eaf4254f.

Reverted https://github.com/pytorch/pytorch/pull/165067 on behalf of https://github.com/jeanschmidt due to breaks internal tests see D87036515, @albanD please help the author get this PR merged ([comment](https://github.com/pytorch/pytorch/pull/165067#issuecomment-3542820651))
2025-11-17 16:37:07 +00:00

1405 lines
51 KiB
Python

# Owner(s): ["oncall: distributed"]
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import copy
import sys
from contextlib import nullcontext
from typing import Any, cast
import numpy as np
import torch
import torch.distributed as dist
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
from torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook import (
hook_with_zero_step,
hook_with_zero_step_interleaved,
)
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import allreduce_hook
from torch.distributed.algorithms.join import Join, Joinable, JoinHook
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import AdamW, SGD
from torch.testing._internal.common_distributed import (
DistributedTestBase,
logger,
requires_accelerator_dist_backend,
requires_ddp_rank,
requires_gloo,
skip_if_lt_x_gpu,
skip_if_no_gpu,
skip_if_rocm_multiprocess,
skip_if_win32,
)
from torch.testing._internal.common_fsdp import get_devtype
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
skipIfHpu,
)
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
device_type = str(get_devtype())
class TestZeroRedundancyOptimizer(DistributedTestBase):
@property
def device(self):
return device_type
@property
def world_size(self):
return 1
class TestZeroRedundancyOptimizerSingleRank(TestZeroRedundancyOptimizer):
def test_state_dict(self):
"""Check that ZeroRedundancyOptimizer exposes the expected state dict
interface, irrespective of the sharding."""
self.create_pg(self.device)
LR1 = 0.1
LR2 = 0.01
MOMENTUM = 0.9
RECIPIENT_RANK = 0 # rank 0 is the only rank since the world size is 1
x = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer(
[x],
optimizer_class=SGD,
lr=LR1,
momentum=MOMENTUM,
)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=self.device))
self.assertEqual(
o.optim.state[x]["momentum_buffer"],
torch.tensor([1.0], device=self.device),
)
o.zero_grad()
o.consolidate_state_dict(to=RECIPIENT_RANK)
state_dict = o.state_dict()
# Check that the state dict has keys compliant with PyTorch
self.assertIn("param_groups", state_dict.keys())
self.assertIn("state", state_dict.keys())
# Check that the state has the expected keys
self.assertEqual(state_dict["param_groups"][0]["lr"], 0.1)
self.assertEqual(state_dict["param_groups"][0]["momentum"], 0.9)
self.assertFalse(state_dict["param_groups"][0]["nesterov"])
self.assertEqual(state_dict["param_groups"][0]["weight_decay"], 0.0)
self.assertEqual(state_dict["param_groups"][0]["dampening"], 0.0)
# Check that the state and the `param_groups` attribute are in sync
for k in state_dict["param_groups"][0]:
if k != "params":
self.assertEqual(
state_dict["param_groups"][0][k],
o.param_groups[0][k],
)
# Check that the state is reloaded with the correct values and device
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=LR2)
o.load_state_dict(state_dict)
self.assertEqual(
o.optim.state[x]["momentum_buffer"],
torch.tensor([1.0], device=self.device),
)
# We should we using `LR1` and not `LR2` after reloading, both within
# the optimizer and as exposed by the `param_groups` attribute
self.assertEqual(o.param_groups[0]["lr"], LR1)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.71], device=self.device))
self.assertEqual(
o.optim.state[x]["momentum_buffer"],
torch.tensor([1.9], device=self.device),
)
# Check that the exposed `param_groups`` are on the proper device
self.assertEqual(o.param_groups[0]["params"][0].device, x.device)
def test_lr_scheduler(self):
"""Check that a normal PyTorch ``lr_scheduler`` is usable with
ZeroRedundancyOptimizer."""
self.create_pg(self.device)
NUM_ITERS = 5
LR = 0.01
x = torch.tensor([1.0], device=self.device, requires_grad=True)
x2 = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=LR)
o2 = torch.optim.SGD([x2], lr=LR)
s = torch.optim.lr_scheduler.StepLR(o, 1)
s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
for _ in range(NUM_ITERS):
x.backward()
o.zero_grad()
o.step()
s.step()
x2.backward()
o2.zero_grad()
o2.step()
s2.step()
self.assertEqual(x, x2)
def test_step_with_kwargs(self):
"""Check that the ``step(**kwargs)`` interface is properly exposed."""
self.create_pg(self.device)
LR = 0.1
class SGDWithStepKWArg(torch.optim.SGD):
def step(self, closure=None, kwarg=None):
super().step()
kwarg.append(5)
kwarg: list[Any] = []
x = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer(
[x],
optimizer_class=SGDWithStepKWArg,
lr=LR,
)
x.backward()
o.step(0, kwarg=kwarg)
self.assertEqual(kwarg, [5])
self.assertEqual(x, torch.tensor([0.9], device=self.device))
def test_step_with_extra_inner_key(self):
"""Check that ZeroRedundancyOptimizer wrapping an optimizer that adds
extra keys to ``param_groups`` exposes those keys through ZeRO's own
``param_groups``."""
self.create_pg(self.device)
LR = 0.1
class SGDWithNewKey(torch.optim.SGD):
# Dummy optimizer which adds a new key to the param groups
def step(self, closure=None):
super().step()
self.param_groups[0]["new_key"] = 0.1
x = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithNewKey, lr=LR)
x.backward()
o.step()
self.assertEqual(o.param_groups[0]["new_key"], 0.1)
self.assertEqual(x, torch.tensor([0.9], device=self.device))
def test_step_without_closure(self):
"""Check that the ``step()`` method (without closure) is handled as
expected."""
self.create_pg(self.device)
LR = 0.1
class SGDWithoutClosure(torch.optim.SGD):
def step(self):
return super().step()
x = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer(
[x],
optimizer_class=SGDWithoutClosure,
lr=LR,
)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=self.device))
def test_zero_grad(self):
"""Check that the ``zero_grad`` method is properly handled."""
self.create_pg(self.device)
LR = 0.01
x = torch.rand(1)
m = torch.nn.Linear(1, 1)
o = ZeroRedundancyOptimizer(m.parameters(), optimizer_class=SGD, lr=LR)
y = m(x)
y.backward(x)
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
o.zero_grad()
self.assertIsNone(m.weight.grad)
self.assertIsNone(m.bias.grad)
def test_constructor(self):
"""Check the robustness of the ZeroRedundancyOptimizer constructor by
passing different values for the ``params`` argument."""
self.create_pg(self.device)
LR = 0.01
m = torch.nn.Sequential(
torch.nn.Linear(5, 10),
torch.nn.Linear(10, 10),
torch.nn.Linear(10, 10),
)
# Test various constructor inputs in the form: (input, expected error)
ctor_inputs = [
([], ValueError), # empty parameter list
(torch.randn(1), TypeError), # non-iterable: `torch.Tensor`
(1.2, TypeError), # non-iterable: `float`
(
[
{"params": [l.weight for l in m]},
{"params": [l.bias for l in m]},
],
None,
), # iterable of dict
(
list(m.parameters()) + [42],
TypeError,
), # iterable containing invalid type
(m.parameters(), None), # `params` as a generator
(list(m.parameters()), None), # `params` as a list
]
for ctor_input, error in ctor_inputs:
context = self.assertRaises(error) if error else nullcontext()
with context:
ZeroRedundancyOptimizer(
ctor_input,
optimizer_class=SGD,
lr=LR,
)
# Test constructing with multiple parameter groups more thoroughly
WD = 0.01
BETAS = (0.9, 0.999)
EPS = 1e-8
params = [
{"params": [l.weight for l in m], "weight_decay": 0.0},
{"params": [l.bias for l in m], "weight_decay": WD},
]
o = ZeroRedundancyOptimizer(
params,
optimizer_class=AdamW,
lr=LR,
betas=BETAS,
eps=EPS,
)
assert len(o.param_groups) == 2, (
f"Expected 2 ZeRO param groups, but got {len(o.param_groups)}"
)
assert len(o.optim.param_groups) == 2, (
"Expected 2 local optimizer param groups, but got "
f"{len(o.optim.param_groups)}"
)
def test_same_dense_param_type(self):
"""Check that ZeroRedundancyOptimizer raises an exception if the input
parameters include sparse tensors or different dense types.
NOTE: This test should be removed once support for sparse parameters
and varying parameter types is added.
"""
self.create_pg(self.device)
LR = 0.01
inputs = [
[torch.sparse_coo_tensor(size=(2, 3))],
[torch.FloatTensor(1), torch.DoubleTensor(1)],
[
torch.FloatTensor(1),
torch.FloatTensor(1),
torch.sparse_coo_tensor(size=(2, 3)),
],
]
for input in inputs:
with self.assertRaises(ValueError):
ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=LR)
class TestZeroRedundancyOptimizerDistributed(TestZeroRedundancyOptimizer):
@property
def world_size(self):
return min(4, max(2, torch.get_device_module(self.device).device_count()))
@property
def context(self):
if requires_ddp_rank(self.device):
return torch.get_device_module(self.device).device(self.rank)
else:
return nullcontext()
def _check_same_model_params(
self,
model_a: torch.nn.Module,
model_b: torch.nn.Module,
message: str = "",
) -> None:
# Check that model parameters match
for p_a, p_b in zip(model_a.parameters(), model_b.parameters()):
torch.testing.assert_close(
p_a,
p_b,
atol=1e-3,
rtol=1e-5,
msg=f"Model parameters differ:\n{p_a} {p_b}\n" + message,
)
# Check that model buffers match
for b_a, b_b in zip(model_a.buffers(), model_b.buffers()):
torch.testing.assert_close(
b_a,
b_b,
msg=f"Model buffers differ:\n{b_a} {b_b}\n" + message,
)
@skip_if_no_gpu
@skip_if_rocm_multiprocess
def test_step(self):
"""Check that ZeroRedundancyOptimizer properly exposes the ``step()``
interface."""
self.create_pg(self.device)
LR = 0.01
with self.context:
x = torch.tensor([float(self.rank + 1)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[1.0]])
m.bias.data = torch.tensor([2.0])
m = m.to(self.device)
m_zero = copy.deepcopy(m).to(self.device)
o = SGD(m.parameters(), lr=LR)
o_zero = ZeroRedundancyOptimizer(
m_zero.parameters(),
optimizer_class=SGD,
lr=LR,
)
y = m(x)
y.backward(x)
y_zero = m_zero(x)
y_zero.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
o.step()
for p in m_zero.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
o_zero.step()
self.assertEqual(m.weight, m_zero.weight)
self.assertEqual(m.bias, m_zero.bias)
@skip_if_no_gpu
@skip_if_rocm_multiprocess
def test_step_with_closure(self):
"""Check that ZeroRedundancyOptimizer properly exposes the
``step(closure)`` interface."""
self.create_pg(self.device)
with self.context:
for bucket_view in [False, True]:
x_val = self.rank + 1
weight = 1.0
bias = 2.0
error = 1.0
target = torch.tensor(
[x_val * weight + bias + error],
device=self.device,
)
loss_fn = torch.nn.L1Loss()
x = torch.tensor([float(x_val)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[weight]])
m.bias.data = torch.tensor([bias])
m.to(self.device)
o = ZeroRedundancyOptimizer(
m.parameters(),
optimizer_class=SGD,
parameters_as_bucket_view=bucket_view,
lr=0.1,
)
y = m(x)
y.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
def closure():
o.zero_grad()
output = m(x)
loss = loss_fn(output, target)
loss.backward()
return loss
loss = o.step(closure=closure)
self.assertEqual(loss, torch.tensor(error))
self.assertEqual(m.weight, torch.tensor([[1.1]]))
self.assertEqual(m.bias, torch.tensor([2.1]))
@skip_if_no_gpu
def test_lr_scheduler(self):
"""Check that a normal PyTorch ``lr_scheduler`` is usable with
ZeroRedundancyOptimizer."""
self.create_pg(self.device)
x = torch.tensor([1.0], device=self.device, requires_grad=True)
x2 = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01)
o2 = torch.optim.SGD([x2], lr=0.01)
s = torch.optim.lr_scheduler.StepLR(o, 1)
s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
for _ in range(5):
x.backward()
o.zero_grad()
o.step()
s.step()
x2.backward()
o2.zero_grad()
o2.step()
s2.step()
self.assertEqual(x, x2)
def test_sharding(self):
"""
Check ZeroRedundancyOptimizer's parameter sharding at construction
time.
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
``ZeroRedundancyOptimizer._partition_parameters()`` in
zero_redundancy_optimizer.py.
"""
self.create_pg(self.device)
LR = 0.01
sizes = [9, 7, 5, 3]
params = []
for size in sizes * self.world_size:
params.append(torch.rand(size, 1))
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(
sum(x.numel() for x in o.optim.param_groups[0]["params"]),
sum(sizes),
)
def test_add_param_group(self):
"""Check that ZeroRedundancyOptimizer properly handles adding a new
parameter group a posteriori and that all ranks get a shard of the
contained parameters.
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
``ZeroRedundancyOptimizer._partition_parameters()`` in
zero_redundancy_optimizer.py.
"""
self.create_pg(self.device)
LR = 0.01
# Test with all parameters trainable to begin with
def all_trainable():
params = []
sizes = [9, 7, 5, 3]
sizes_world = sizes * self.world_size
for size in sizes_world[:-1]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable so that they are factored
# into the size-based parameter partitioning
for p in params:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(len(o.param_groups), 1)
o.add_param_group({"params": [torch.rand(3, 1)]})
# Verify that new group is added to the correct partition, making
# all partitions have the same elements
self.assertEqual(len(o.param_groups), 2)
self.assertEqual(
sum(x.numel() for g in o.optim.param_groups for x in g["params"]),
sum(sizes),
)
self.assertEqual(len(o.optim.param_groups), 2)
# Test a pathological config with a first big non-trainable param
def some_trainable():
params = []
for size in [100, 3, 5, 2, 6, 4]:
params.append(torch.rand(size, 1))
# Make sure that all but the first param are trainable so that they
# are factored into the size-based parameter partitioning
for p in params[1:]:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(len(o.param_groups), 1)
o.add_param_group({"params": [torch.rand(3, 1)]})
self.assertEqual(len(o.param_groups), 2)
self.assertEqual(len(o.optim.param_groups), 2)
all_trainable()
some_trainable()
@skip_if_no_gpu
def test_multiple_param_groups(self):
"""
Check parity between constructing ZeRO with multiple parameter groups
upfront versus adding parameter groups to ZeRO after construction
versus a non-sharded optimizer.
"""
self.create_pg(self.device)
BATCH_SIZE, NUM_ITERS = 8, 3
INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM = 5, 10, 5
WD, LR = 0.01, 0.01
model1 = torch.nn.Sequential(
torch.nn.Linear(INPUT_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, OUTPUT_DIM),
)
model2 = copy.deepcopy(model1)
model3 = copy.deepcopy(model1)
model1 = model1.to(self.device)
model2 = model2.to(self.device)
model3 = model3.to(self.device)
inputs = [
torch.randn(BATCH_SIZE, INPUT_DIM).to(self.device) for _ in range(NUM_ITERS)
]
# Construct `optim1` with both parameter groups upfront
optim1 = ZeroRedundancyOptimizer(
[
{"params": [l.weight for l in model1], "weight_decay": 0.0},
{"params": [l.bias for l in model1], "weight_decay": WD},
],
optimizer_class=AdamW,
lr=LR,
)
# Construct `optim2` by adding the second parameter after
optim2 = ZeroRedundancyOptimizer(
[l.weight for l in model2],
optimizer_class=AdamW,
lr=LR,
weight_decay=0.0,
)
optim2.add_param_group({"params": [l.bias for l in model2], "weight_decay": WD})
# Construct `optim3` as a non-sharded optimizer
optim3 = AdamW(
[
{"params": [l.weight for l in model3], "weight_decay": 0.0},
{"params": [l.bias for l in model3], "weight_decay": WD},
],
lr=LR,
)
# Check parity over a few iterations
for input in inputs:
for model, optim in (
(model1, optim1),
(model2, optim2),
(model3, optim3),
):
optim.zero_grad()
out = model(input)
loss = out.sum()
loss.backward()
optim.step()
for layer1, layer2, layer3 in zip(model1, model2, model3):
torch.testing.assert_close(layer1.weight, layer2.weight)
torch.testing.assert_close(layer1.weight, layer3.weight)
torch.testing.assert_close(layer1.bias, layer2.bias)
torch.testing.assert_close(layer1.bias, layer3.bias)
@skip_if_no_gpu
@skip_if_rocm_multiprocess
def test_collect_shards(self):
"""Check the state consolidation mechanism and the state dict exposed
by ZeroRedundancyOptimizer."""
self.create_pg(self.device)
LR = 1e-3
MOMENTUM = 0.99
BATCH_SIZE, INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM = 3, 20, 10, 5
REFERENCE_RANK = 0
target = torch.rand((BATCH_SIZE, OUTPUT_DIM), device=self.device)
inputs = torch.rand((BATCH_SIZE, INPUT_DIM), device=self.device)
model = torch.nn.Sequential(
torch.nn.Linear(INPUT_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, OUTPUT_DIM),
).to(self.device)
loss_fn = torch.nn.L1Loss()
loss_fn.to(self.device)
optimizer = ZeroRedundancyOptimizer(
model.parameters(),
optimizer_class=SGD,
lr=LR,
momentum=MOMENTUM, # ensure there exists state to shard
)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss.backward()
return loss
# Run a dummy step so that the optimizer state dict exists
_ = optimizer.step(closure=closure)
# Get the optimizer state on the reference rank
optimizer.consolidate_state_dict(to=REFERENCE_RANK)
if self.rank == REFERENCE_RANK:
# Check that the state has the correct size
optimizer_state_dict = optimizer.state_dict()
self.assertEqual(
len(optimizer_state_dict["state"]),
len(list(model.parameters())),
)
else:
optimizer_state_dict = {}
# Load the optimizer state on all ranks without any exceptions
optimizer_state_dict = _broadcast_object(
optimizer_state_dict,
src_rank=REFERENCE_RANK,
group=dist.group.WORLD,
device=self.device,
)
optimizer.load_state_dict(optimizer_state_dict)
def test_nondefault_process_group(self):
"""Check that ZeroRedundancyOptimizer works with a non-default process
group consisting only of even ranks."""
# Skip the test if below the minimum world size since then the test is
# trivial
MIN_WORLD_SIZE = 4
if self.world_size < MIN_WORLD_SIZE:
logger.info(
"Skipping `test_nondefault_process_group()` since world size "
"of %s is less than %s",
self.world_size,
MIN_WORLD_SIZE,
)
return
# Use GPU if enough are available, or fall back to CPU otherwise
if torch.get_device_module(self.device).device_count() < self.world_size:
device = torch.device("cpu")
else:
device = torch.device(self.device)
self.create_pg(device.type)
# Create a new process group consisting of the even ranks to exercise
# the case where the global and local ranks do not necessarily match
subgroup_ranks = [r for r in range(self.world_size) if r % 2 == 0]
process_group = dist.new_group(
ranks=subgroup_ranks,
backend=self.backend(device.type),
)
# Ranks not participating in the new process group are no longer needed
if self.rank not in subgroup_ranks:
return
# Set different seeds across ranks so that each rank gets different
# training data and hence the model sync check is meaningful
torch.manual_seed(self.rank)
np.random.seed(self.rank)
EPOCHS, BATCH_SIZE, INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM = 5, 3, 20, 10, 5
LR = 1e-3
MOMENTUM = 0.99
REFERENCE_RANK = 0
assert REFERENCE_RANK in subgroup_ranks, (
"Reference rank must be in the new process group"
)
loss_fn = torch.nn.L1Loss().to(device)
def check(optimizer):
for _ in range(EPOCHS):
target = torch.rand((BATCH_SIZE, OUTPUT_DIM), device=device)
inputs = torch.rand((BATCH_SIZE, INPUT_DIM), device=device)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss /= self.world_size
loss.backward()
dist.all_reduce(loss, group=process_group)
return loss
_ = optimizer.step(closure=closure)
# Check that the parameters match across ranks after a step
for pg in optimizer.param_groups:
for p in pg["params"]:
receptacle = (
[p.clone() for _ in subgroup_ranks]
if self.rank == REFERENCE_RANK
else []
)
dist.gather(
p,
receptacle,
dst=REFERENCE_RANK,
group=process_group,
)
if self.rank == REFERENCE_RANK:
reference_param = receptacle[0]
for param in receptacle[1:]:
torch.testing.assert_close(
reference_param,
param,
msg="Models differ between ranks",
)
model = torch.nn.Sequential(
torch.nn.Linear(INPUT_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, OUTPUT_DIM),
).to(device)
optimizer = ZeroRedundancyOptimizer(
model.parameters(),
optimizer_class=SGD,
lr=LR,
momentum=MOMENTUM, # ensure there exists state to shard
process_group=process_group,
)
check(optimizer)
@skip_if_no_gpu
@parametrize(
"optimizer_class_str",
["Adam", "AdamW", "SGD"],
# Use string to appease the internal test name parser
)
@parametrize(
"maximize",
[False, True],
)
def test_local_optimizer_parity(
self,
optimizer_class_str: str,
maximize: bool,
):
"""When combined with DDP, check that a local optimizer gives the same
results as wrapping that optimizer with ZeroRedundancyOptimizer."""
self.create_pg(self.device)
BATCHES = 20
BATCH_SIZE = 64
LR = 1e-3
INPUT_DIM = 2
HIDDEN_DIM = 3
OUTPUT_DIM = 3
torch.manual_seed(self.rank)
np.random.seed(self.rank)
if optimizer_class_str == "Adam":
optimizer_class = torch.optim.Adam
elif optimizer_class_str == "AdamW":
optimizer_class = torch.optim.AdamW
elif optimizer_class_str == "SGD":
optimizer_class = torch.optim.SGD
else:
assert 0, f"Unsupported optimizer class: {optimizer_class_str}"
with self.context:
# Define a base model with a different buffer for each rank
model = torch.nn.Sequential(
torch.nn.Linear(INPUT_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, OUTPUT_DIM),
).to(self.device)
model.test_buffer = torch.nn.Buffer(
torch.ones((1), device=self.device) * self.rank,
)
# Define models/optimizers for DDP with ZeRO and DDP with local
# optimizer
defaults = {"maximize": True} if maximize else {}
sharded_optimizer = ZeroRedundancyOptimizer(
params=model.parameters(),
optimizer_class=optimizer_class,
lr=LR,
**defaults,
)
sharded_ddp_model = DDP(
module=model,
device_ids=[self.rank] if requires_ddp_rank(self.device) else None,
broadcast_buffers=True,
find_unused_parameters=True,
)
local_model = copy.deepcopy(model).to(self.device)
ddp_optimizer = optimizer_class(
local_model.parameters(),
lr=LR,
**defaults,
)
ddp_model = DDP(
local_model,
device_ids=[self.rank] if requires_ddp_rank(self.device) else None,
broadcast_buffers=True,
find_unused_parameters=True,
)
# Check that the model is properly synchronized between ranks
# at construction time
self._check_same_model_params(
sharded_ddp_model,
ddp_model,
"Models differ from the start",
)
def check_step():
input_tensor = torch.rand((BATCH_SIZE, INPUT_DIM)).to(self.device)
def closure_ddp(input_tensor=input_tensor):
ddp_optimizer.zero_grad()
ddp_loss = ddp_model(input_tensor).abs().sum()
ddp_loss.backward()
return ddp_loss
def closure_sharded(input_tensor=input_tensor):
sharded_optimizer.zero_grad()
sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
sharded_loss.backward()
return sharded_loss
loss_ddp = cast(
torch.Tensor,
ddp_optimizer.step(closure=closure_ddp),
)
loss_sharded_optim = cast(
torch.Tensor,
sharded_optimizer.step(closure=closure_sharded),
)
torch.testing.assert_close(
loss_ddp,
loss_sharded_optim,
msg="Losses differ between local optimizer and ZeRO",
)
self._check_same_model_params(
sharded_ddp_model,
ddp_model,
"Models differ after a step",
)
# Check that parity is maintained
for i in range(BATCHES):
check_step()
# For the second half of batches, change the parameter
# trainability to further test parity
if i > BATCHES // 2:
next(ddp_model.parameters()).requires_grad = bool(i % 2)
next(sharded_ddp_model.parameters()).requires_grad = bool(i % 2)
# Check that the `state_dict` checkpoints are compatible between
# the local optimizer and ZeRO
REFERENCE_RANK = 0
# - Get states
ddp_state_dict = ddp_optimizer.state_dict()
sharded_optimizer.consolidate_state_dict(to=REFERENCE_RANK)
sharded_optim_state_dict = [
sharded_optimizer.state_dict() if self.rank == REFERENCE_RANK else {}
]
dist.broadcast_object_list(
sharded_optim_state_dict,
src=REFERENCE_RANK,
group=dist.group.WORLD,
)
sharded_optim_state_dict = sharded_optim_state_dict[0]
# - Cross-load the states
# Run one step and check that the models are still the same
ddp_state_dict_ref = copy.deepcopy(ddp_state_dict)
ddp_optimizer.load_state_dict(sharded_optim_state_dict)
sharded_optimizer.load_state_dict(ddp_state_dict)
check_step()
# - Reload their respective states
# Run one step and check that the models are still the same
ddp_optimizer.load_state_dict(ddp_state_dict_ref)
sharded_optimizer.load_state_dict(sharded_optim_state_dict)
check_step()
def _test_zero_join(self, device):
"""Check that the ZeRO join hook allows training with uneven inputs
when using the given device."""
NUM_INPUTS = 3
NUM_EPOCHS = 2
LR = 0.01
torch.manual_seed(0)
if "cpu" not in device:
torch.get_device_module(device).manual_seed(0)
rank = self.rank
world_size = self.world_size
self.create_pg(device)
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Linear(3, 3),
torch.nn.Linear(3, 3),
)
model.to(device)
# DDP ensures correct gradients in data parallel training, so DDP with
# local optimizers on uneven inputs should be equivalent to ZeRO on
# uneven inputs with gradients being manually set
ddp_model = (
DDP(model, device_ids=[rank]) if requires_ddp_rank(device) else DDP(model)
)
local_optim = torch.optim.Adam(ddp_model.parameters(), lr=LR)
zero_model = copy.deepcopy(model)
zero_model.to(device)
zero_optim = ZeroRedundancyOptimizer(
zero_model.parameters(),
torch.optim.Adam,
lr=LR,
)
loss_fn = torch.nn.MSELoss()
# Use uneven inputs: rank i has i extra inputs
inputs = [torch.randn(20, 2).to(device) for _ in range(NUM_INPUTS + rank)]
labels = torch.randn(20, 3).to(device)
# Save the gradients and parameters from DDP as the ground truth; do
# so on the last-joining rank (in this case, the largest rank)
grads_at_each_iter = []
params_at_each_iter = []
with ddp_model.join():
for _ in range(NUM_EPOCHS):
for input in inputs:
output = ddp_model(input)
loss_fn(output, labels).backward()
if rank == world_size - 1:
grads = []
for p in ddp_model.parameters():
grads.append(p.grad.detach().clone().to(device))
local_optim.step()
if rank == world_size - 1:
params = []
for p in ddp_model.parameters():
params.append(p.detach().clone().to(device))
grads_at_each_iter.append(grads)
params_at_each_iter.append(params)
# Broadcast the saved gradients and parameters to all of the other
# ranks (which joined early)
grads_and_params = [grads_at_each_iter, params_at_each_iter]
grads_and_params = _broadcast_object(
grads_and_params,
src_rank=world_size - 1,
group=dist.group.WORLD,
device=device,
)
grads_at_each_iter = grads_and_params[0]
params_at_each_iter = grads_and_params[1]
# TODO: Replace this `_broadcast_object` with `broadcast_object_list`
# once the latter supports loading to the destination device instead
# of the source device
# A process must still set the remaining gradients after joining, so we
# define a join hook to do this before the ZeRO join hook
class _JoinGradInfo:
def __init__(self, grads):
self.grads = grads # remaining gradients to set (in order)
self.index = 0
class _SetGradsJoinHook(JoinHook):
def __init__(self, zero_optim, grads):
zero_optim._join_grad_info = _JoinGradInfo(grads)
self.zero = zero_optim
super().__init__()
def main_hook(self):
join_grad_info = self.zero._join_grad_info
grads = self.zero._join_grad_info.grads[join_grad_info.index]
join_grad_info.index += 1
for p, grad in zip(self.zero._all_params, grads):
p.grad = grad.detach().clone().to(device)
class _GradientSetter(Joinable):
def __init__(self) -> None:
super().__init__()
def join_hook(self, **kwargs):
assert "zero_optim" in kwargs
assert "grads" in kwargs
zero_optim = kwargs["zero_optim"]
grads = kwargs["grads"]
return _SetGradsJoinHook(zero_optim, grads)
@property
def join_device(self):
return device
@property
def join_process_group(self):
return dist.group.WORLD
num_grads_after_joining = NUM_EPOCHS * (world_size - rank - 1)
grads = grads_at_each_iter[-num_grads_after_joining:]
gradient_setter = _GradientSetter()
iter = 0
with Join(
[gradient_setter, zero_optim],
zero_optim=zero_optim,
grads=grads,
):
for _ in range(NUM_EPOCHS):
for _input in inputs:
# Notify join context that this process has not joined
Join.notify_join_context(gradient_setter)
# Set gradients manually
for p, grad in zip(
zero_model.parameters(),
grads_at_each_iter[iter],
):
p.grad = grad.detach().clone().to(device)
# Perform optimizer step and check parity
zero_optim.step()
for p, ddp_p in zip(
zero_model.parameters(),
params_at_each_iter[iter],
):
torch.testing.assert_close(
p,
ddp_p,
msg="Parameters differ between using ZeRO and "
"local optimizer",
)
iter += 1
@requires_accelerator_dist_backend()
@skip_if_no_gpu
def test_zero_join_gpu(self):
"""Check that the ZeRO join hook allows training with uneven inputs
on GPU."""
self._test_zero_join(self.device)
@requires_gloo()
def test_zero_join_cpu(self):
"""Check that the ZeRO join hook allows training with uneven inputs
on CPU."""
self._test_zero_join("cpu")
def _test_zero_model_parallel(self, parameters_as_bucket_view: bool, device: str):
# Use two processes each with two GPUs
assert self.rank < 2
NUM_EPOCHS = 2
NUM_INPUTS = 4
LR = 0.01
torch.manual_seed(0)
if "cpu" not in device:
torch.get_device_module(device).manual_seed(0)
class ModelParallelModel(torch.nn.Module):
def __init__(self, dev0, dev1):
super().__init__()
self.dev0 = dev0
self.dev1 = dev1
self.net0 = torch.nn.Linear(10, 10).to(dev0)
self.relu = torch.nn.ReLU()
self.net1 = torch.nn.Linear(10, 5).to(dev1)
def forward(self, x):
x = x.to(self.dev0)
x = self.relu(self.net0(x))
x = x.to(self.dev1)
return self.net1(x)
class LocalModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.net0 = torch.nn.Linear(10, 10)
self.relu = torch.nn.ReLU()
self.net1 = torch.nn.Linear(10, 5)
def forward(self, x):
return self.net1(self.relu(self.net0(x)))
dev0 = torch.device(2 * self.rank)
dev1 = torch.device(2 * self.rank + 1)
mp_model = ModelParallelModel(dev0, dev1)
ddp_model = DDP(mp_model)
local_model = LocalModel().to(dev0)
# Ensure the parameters are the same across the two models
def copy_param(p):
return torch.nn.Parameter(p.detach().clone().to(dev0))
local_model.net0.weight = copy_param(mp_model.net0.weight)
local_model.net0.bias = copy_param(mp_model.net0.bias)
local_model.net1.weight = copy_param(mp_model.net1.weight)
local_model.net1.bias = copy_param(mp_model.net1.bias)
# Compare parity between DDP with model parallelism using ZeRO and
# a local model using a local optimizer
zero_optim = ZeroRedundancyOptimizer(
ddp_model.parameters(),
optimizer_class=torch.optim.Adam,
parameters_as_bucket_view=parameters_as_bucket_view,
lr=LR,
)
local_optim = torch.optim.Adam(local_model.parameters(), lr=LR)
inputs = [torch.randn(20, 10).to(dev0) for _ in range(NUM_INPUTS)]
for _ in range(NUM_EPOCHS):
for input in inputs:
def closure_local():
local_optim.zero_grad()
local_loss = local_model(input).abs().sum()
local_loss.backward()
return local_loss
def closure_ddp():
zero_optim.zero_grad()
ddp_loss = ddp_model(input).abs().sum()
ddp_loss.backward()
return ddp_loss
local_loss = cast(torch.Tensor, local_optim.step(closure=closure_local))
ddp_loss = cast(torch.Tensor, zero_optim.step(closure=closure_ddp))
# Increased tolerances are needed to pass when using TF32
# See: https://github.com/pytorch/pytorch/issues/67764
torch.testing.assert_close(
local_loss.cpu(),
ddp_loss.cpu(),
rtol=1e-03,
atol=1e-08,
msg="Losses differ between local optimizer and ZeRO",
)
for local_p, ddp_p in zip(
local_model.parameters(), ddp_model.parameters()
):
torch.testing.assert_close(
local_p.cpu(),
ddp_p.cpu(),
rtol=1e-03,
atol=1e-04,
msg="Models differ after a step",
)
@skipIfHpu
@skip_if_lt_x_gpu(4)
@parametrize(
"parameters_as_bucket_view",
[False, True],
)
def test_zero_model_parallel(
self,
parameters_as_bucket_view: bool,
):
"""Check that ZeRO works with model parallelism where the model's
layers are assigned to different devices."""
if self.rank >= 2:
return
self.create_pg(self.device, world_size=2)
self._test_zero_model_parallel(parameters_as_bucket_view, self.device)
def _test_ddp_zero_overlap(
self,
device,
hook_constructor,
gradient_as_bucket_view,
static_graph,
**kwargs,
):
SGD_LR = 0.01
SGD_MOMENTUM = 0.9
SGD_WEIGHT_DECAY = 0.001
NUM_INPUTS = 5
torch.manual_seed(0)
if "cpu" not in device:
torch.get_device_module(device).manual_seed(0)
rank = self.rank
models_to_test = [
(
torch.nn.Sequential(
torch.nn.Linear(1000, 2000),
torch.nn.Linear(2000, 500),
),
[torch.randn(1, 1000).to(device) for _ in range(NUM_INPUTS)],
)
]
if HAS_TORCHVISION:
models_to_test.append(
(
torchvision.models.resnet50(),
[torch.randn(1, 3, 3, 1000).to(device) for _ in range(NUM_INPUTS)],
)
)
for model, inputs in models_to_test:
# Select deterministic context based on device
det_ctx = (
torch.backends.cudnn.flags(
enabled=True, deterministic=True, benchmark=False
)
if "cuda" in device
else torch.use_deterministic_algorithms(True)
)
with det_ctx:
device_ids = [rank] if requires_ddp_rank(device) else None
# Set up the DDP model overlapping with ZeRO
ddp_model_overlap = DDP(
copy.deepcopy(model).to(device),
device_ids=device_ids,
gradient_as_bucket_view=gradient_as_bucket_view,
)
if static_graph:
ddp_model_overlap._set_static_graph()
zero_optim = ZeroRedundancyOptimizer(
ddp_model_overlap.parameters(),
optimizer_class=torch.optim.SGD,
overlap_with_ddp=True,
lr=SGD_LR,
momentum=SGD_MOMENTUM,
weight_decay=SGD_WEIGHT_DECAY,
)
ddp_model_overlap.register_comm_hook(
None,
hook_constructor(
allreduce_hook,
ddp_model_overlap,
zero_optim,
**kwargs,
),
)
# Set up the DDP model with local optimizer
ddp_model_local = DDP(
copy.deepcopy(model).to(device),
device_ids=device_ids,
gradient_as_bucket_view=gradient_as_bucket_view,
)
if static_graph:
ddp_model_local._set_static_graph()
local_optim = torch.optim.SGD(
ddp_model_local.parameters(),
lr=SGD_LR,
momentum=SGD_MOMENTUM,
weight_decay=SGD_WEIGHT_DECAY,
)
# Check that the parameters match initially
for p1, p2 in zip(
ddp_model_overlap.parameters(), ddp_model_local.parameters()
):
self.assertEqual(p1, p2)
# Save the parameters to ensure they were updated
init_params_overlap = copy.deepcopy(
list(ddp_model_overlap.parameters())
)
# Ensure that this test runs independently
dist.barrier()
# Run the DDP model overlapping with ZeRO
# NOTE: Overlapping currently requires 2 or 3 warmup iterations
# to ensure DDP buckets have been rebuilt (depending on the
# value of `static_graph`)
num_warmup_inputs = 2 if not static_graph else 3
for input in inputs[:num_warmup_inputs]:
output = ddp_model_overlap(input)
loss = output.sum()
loss.backward()
for input in inputs:
zero_optim.zero_grad()
output = ddp_model_overlap(input)
loss = output.sum()
loss.backward()
# Run the DDP model with local optimizer
for input in inputs:
local_optim.zero_grad()
output = ddp_model_local(input)
loss = output.sum()
loss.backward()
local_optim.step()
dist.barrier()
# Check that the parameters are equal
for p1, p2 in zip(
ddp_model_overlap.parameters(), ddp_model_local.parameters()
):
self.assertEqual(p1, p2)
# Check that the parameters were updated
self.assertNotEqual(
init_params_overlap,
list(ddp_model_overlap.parameters()),
)
# Ensure that this test runs independently
dist.barrier()
# NOTE: The test is skipped if using Windows since functional optimizers
# are not currently supported.
@skip_if_win32()
@requires_accelerator_dist_backend()
@skip_if_no_gpu
@skip_if_rocm_multiprocess
@parametrize(
"use_gpu",
[True],
# Add `False` once the Gloo sync issue causing hangs is fixed
# See: https://github.com/pytorch/pytorch/issues/62300
)
@parametrize(
"use_interleaved_hook",
[False, True],
)
@parametrize(
"gradient_as_bucket_view",
[False, True],
)
@parametrize(
"static_graph",
[False, True],
)
@parametrize(
"shard_buckets",
[False, True],
)
def test_ddp_zero_overlap(
self,
use_gpu: bool,
use_interleaved_hook: bool,
gradient_as_bucket_view: bool,
static_graph: bool,
shard_buckets: bool,
):
"""
Check that overlapping DDP with ZeRO using the given method determined
by ``hook_constructor`` and ``shard_buckets`` and using the given ZeRO
and DDP arguments achieves parity with DDP using a local optimizer.
"""
self.create_pg(self.device)
hook_constructor = (
hook_with_zero_step
if not use_interleaved_hook
else hook_with_zero_step_interleaved
)
self._test_ddp_zero_overlap(
self.device if use_gpu else "cpu",
hook_constructor,
gradient_as_bucket_view,
static_graph,
shard_buckets=shard_buckets,
)
instantiate_parametrized_tests(TestZeroRedundancyOptimizerSingleRank)
instantiate_parametrized_tests(TestZeroRedundancyOptimizerDistributed)
if __name__ == "__main__":
# ! unittest should not be used here, else the tests are not properly registered
run_tests()