mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Summary: C416: Unnecessary (list/set) comprehension - rewrite using list/set(). See https://pypi.org/project/flake8-comprehensions/ Pull Request resolved: https://github.com/pytorch/pytorch/pull/33429 Differential Revision: D19972858 Pulled By: ezyang fbshipit-source-id: faac042a94c59d737bd5ae983121a0a029346e23
408 lines
18 KiB
Python
408 lines
18 KiB
Python
import torch
|
|
from torch._six import container_abcs, istuple
|
|
import torch.testing
|
|
from itertools import product
|
|
import warnings
|
|
|
|
def zero_gradients(x):
|
|
if isinstance(x, torch.Tensor):
|
|
if x.grad is not None:
|
|
x.grad.detach_()
|
|
x.grad.zero_()
|
|
elif isinstance(x, container_abcs.Iterable):
|
|
for elem in x:
|
|
zero_gradients(elem)
|
|
|
|
|
|
def make_jacobian(input, num_out):
|
|
if isinstance(input, torch.Tensor):
|
|
if not input.is_floating_point():
|
|
return None
|
|
if not input.requires_grad:
|
|
return None
|
|
return torch.zeros(input.nelement(), num_out, dtype=input.dtype)
|
|
elif isinstance(input, container_abcs.Iterable) and not isinstance(input, str):
|
|
jacobians = list(filter(
|
|
lambda x: x is not None, (make_jacobian(elem, num_out) for elem in input)))
|
|
if not jacobians:
|
|
return None
|
|
return type(input)(jacobians)
|
|
else:
|
|
return None
|
|
|
|
|
|
def iter_tensors(x, only_requiring_grad=False):
|
|
if isinstance(x, torch.Tensor):
|
|
if x.requires_grad or not only_requiring_grad:
|
|
yield x
|
|
elif isinstance(x, container_abcs.Iterable) and not isinstance(x, str):
|
|
for elem in x:
|
|
for result in iter_tensors(elem, only_requiring_grad):
|
|
yield result
|
|
|
|
|
|
def get_numerical_jacobian(fn, input, target=None, eps=1e-3):
|
|
"""
|
|
input: input to `fn`
|
|
target: the Tensors wrt whom Jacobians are calculated (default=`input`)
|
|
|
|
Note that `target` may not even be part of `input` to `fn`, so please be
|
|
**very careful** in this to not clone `target`.
|
|
"""
|
|
if target is None:
|
|
target = input
|
|
output_size = fn(input).numel()
|
|
jacobian = make_jacobian(target, output_size)
|
|
|
|
# It's much easier to iterate over flattened lists of tensors.
|
|
# These are reference to the same objects in jacobian, so any changes
|
|
# will be reflected in it as well.
|
|
x_tensors = iter_tensors(target, True)
|
|
j_tensors = iter_tensors(jacobian)
|
|
|
|
# TODO: compare structure
|
|
for x_tensor, d_tensor in zip(x_tensors, j_tensors):
|
|
if x_tensor.is_sparse:
|
|
def get_stride(size):
|
|
dim = len(size)
|
|
tmp = 1
|
|
stride = [0] * dim
|
|
for i in reversed(range(dim)):
|
|
stride[i] = tmp
|
|
tmp *= size[i]
|
|
return stride
|
|
|
|
x_nnz = x_tensor._nnz()
|
|
x_size = list(x_tensor.size())
|
|
x_indices = x_tensor._indices().t()
|
|
x_values = x_tensor._values()
|
|
x_stride = get_stride(x_size)
|
|
|
|
# Use .data here to get around the version check
|
|
x_values = x_values.data
|
|
|
|
for i in range(x_nnz):
|
|
x_value = x_values[i]
|
|
for x_idx in product(*[range(m) for m in x_values.size()[1:]]):
|
|
indices = x_indices[i].tolist() + list(x_idx)
|
|
d_idx = sum(indices[k] * x_stride[k] for k in range(len(x_size)))
|
|
orig = x_value[x_idx].item()
|
|
x_value[x_idx] = orig - eps
|
|
outa = fn(input).clone()
|
|
x_value[x_idx] = orig + eps
|
|
outb = fn(input).clone()
|
|
x_value[x_idx] = orig
|
|
r = (outb - outa) / (2 * eps)
|
|
d_tensor[d_idx] = r.detach().reshape(-1)
|
|
elif x_tensor.layout == torch._mkldnn:
|
|
# Use .data here to get around the version check
|
|
x_tensor = x_tensor.data
|
|
if len(input) != 1:
|
|
raise ValueError('gradcheck currently only supports functions with 1 input, but got: ',
|
|
len(input))
|
|
for d_idx, x_idx in enumerate(product(*[range(m) for m in x_tensor.size()])):
|
|
# this is really inefficient, but without indexing implemented, there's
|
|
# not really a better way than converting back and forth
|
|
x_tensor_dense = x_tensor.to_dense()
|
|
orig = x_tensor_dense[x_idx].item()
|
|
|
|
x_tensor_dense[x_idx] = orig - eps
|
|
x_tensor_mkl = x_tensor_dense.to_mkldnn()
|
|
outa = fn([x_tensor_mkl])
|
|
|
|
x_tensor_dense[x_idx] = orig + eps
|
|
x_tensor_mkl = x_tensor_dense.to_mkldnn()
|
|
outb = fn([x_tensor_mkl])
|
|
|
|
r = (outb - outa) / (2 * eps)
|
|
d_tensor[d_idx] = r.detach().reshape(-1)
|
|
else:
|
|
# Use .data here to get around the version check
|
|
x_tensor = x_tensor.data
|
|
for d_idx, x_idx in enumerate(product(*[range(m) for m in x_tensor.size()])):
|
|
orig = x_tensor[x_idx].item()
|
|
x_tensor[x_idx] = orig - eps
|
|
outa = fn(input).clone()
|
|
x_tensor[x_idx] = orig + eps
|
|
outb = fn(input).clone()
|
|
x_tensor[x_idx] = orig
|
|
r = (outb - outa) / (2 * eps)
|
|
d_tensor[d_idx] = r.detach().reshape(-1)
|
|
|
|
return jacobian
|
|
|
|
|
|
def get_analytical_jacobian(input, output, nondet_tol=0.0):
|
|
# it is easier to call to_dense() on the sparse output than
|
|
# to modify analytical jacobian
|
|
if output.is_sparse:
|
|
raise ValueError('Sparse output is not supported at gradcheck yet. '
|
|
'Please call to_dense() on the output of fn for gradcheck.')
|
|
if output.layout == torch._mkldnn:
|
|
raise ValueError('MKLDNN output is not supported at gradcheck yet. '
|
|
'Please call to_dense() on the output of fn for gradcheck.')
|
|
diff_input_list = list(iter_tensors(input, True))
|
|
jacobian = make_jacobian(input, output.numel())
|
|
jacobian_reentrant = make_jacobian(input, output.numel())
|
|
grad_output = torch.zeros_like(output, memory_format=torch.legacy_contiguous_format)
|
|
flat_grad_output = grad_output.view(-1)
|
|
reentrant = True
|
|
correct_grad_sizes = True
|
|
|
|
for i in range(flat_grad_output.numel()):
|
|
flat_grad_output.zero_()
|
|
flat_grad_output[i] = 1
|
|
for jacobian_c in (jacobian, jacobian_reentrant):
|
|
grads_input = torch.autograd.grad(output, diff_input_list, grad_output,
|
|
retain_graph=True, allow_unused=True)
|
|
for jacobian_x, d_x, x in zip(jacobian_c, grads_input, diff_input_list):
|
|
if d_x is not None and d_x.size() != x.size():
|
|
correct_grad_sizes = False
|
|
elif jacobian_x.numel() != 0:
|
|
if d_x is None:
|
|
jacobian_x[:, i].zero_()
|
|
else:
|
|
d_x_dense = d_x.to_dense() if not d_x.layout == torch.strided else d_x
|
|
assert jacobian_x[:, i].numel() == d_x_dense.numel()
|
|
jacobian_x[:, i] = d_x_dense.contiguous().view(-1)
|
|
|
|
for jacobian_x, jacobian_reentrant_x in zip(jacobian, jacobian_reentrant):
|
|
if jacobian_x.numel() != 0 and (jacobian_x - jacobian_reentrant_x).abs().max() > nondet_tol:
|
|
reentrant = False
|
|
|
|
return jacobian, reentrant, correct_grad_sizes
|
|
|
|
|
|
def _as_tuple(x):
|
|
if istuple(x):
|
|
return x
|
|
elif isinstance(x, list):
|
|
return tuple(x)
|
|
else:
|
|
return x,
|
|
|
|
|
|
def _differentiable_outputs(x):
|
|
return tuple(o for o in _as_tuple(x) if o.requires_grad)
|
|
|
|
|
|
def gradcheck(func, inputs, eps=1e-6, atol=1e-5, rtol=1e-3, raise_exception=True, check_sparse_nnz=False, nondet_tol=0.0):
|
|
r"""Check gradients computed via small finite differences against analytical
|
|
gradients w.r.t. tensors in :attr:`inputs` that are of floating point type
|
|
and with ``requires_grad=True``.
|
|
|
|
The check between numerical and analytical gradients uses :func:`~torch.allclose`.
|
|
|
|
.. note::
|
|
The default values are designed for :attr:`input` of double precision.
|
|
This check will likely fail if :attr:`input` is of less precision, e.g.,
|
|
``FloatTensor``.
|
|
|
|
.. warning::
|
|
If any checked tensor in :attr:`input` has overlapping memory, i.e.,
|
|
different indices pointing to the same memory address (e.g., from
|
|
:func:`torch.expand`), this check will likely fail because the numerical
|
|
gradients computed by point perturbation at such indices will change
|
|
values at all other indices that share the same memory address.
|
|
|
|
Args:
|
|
func (function): a Python function that takes Tensor inputs and returns
|
|
a Tensor or a tuple of Tensors
|
|
inputs (tuple of Tensor or Tensor): inputs to the function
|
|
eps (float, optional): perturbation for finite differences
|
|
atol (float, optional): absolute tolerance
|
|
rtol (float, optional): relative tolerance
|
|
raise_exception (bool, optional): indicating whether to raise an exception if
|
|
the check fails. The exception gives more information about the
|
|
exact nature of the failure. This is helpful when debugging gradchecks.
|
|
check_sparse_nnz (bool, optional): if True, gradcheck allows for SparseTensor input,
|
|
and for any SparseTensor at input, gradcheck will perform check at nnz positions only.
|
|
nondet_tol (float, optional): tolerance for non-determinism. When running
|
|
identical inputs through the differentiation, the results must either match
|
|
exactly (default, 0.0) or be within this tolerance.
|
|
|
|
Returns:
|
|
True if all differences satisfy allclose condition
|
|
"""
|
|
def fail_test(msg):
|
|
if raise_exception:
|
|
raise RuntimeError(msg)
|
|
return False
|
|
|
|
tupled_inputs = _as_tuple(inputs)
|
|
if any(t.is_sparse for t in tupled_inputs if isinstance(t, torch.Tensor)) and not check_sparse_nnz:
|
|
return fail_test('gradcheck expects all tensor inputs are dense when check_sparse_nnz is set to False.')
|
|
|
|
# Make sure that gradients are saved for all inputs
|
|
any_input_requiring_grad = False
|
|
some_input_not_requiring_grad = False
|
|
for inp in tupled_inputs:
|
|
if isinstance(inp, torch.Tensor):
|
|
if inp.requires_grad:
|
|
if inp.dtype != torch.float64:
|
|
warnings.warn(
|
|
'At least one of the inputs that requires gradient '
|
|
'is not of double precision floating point. '
|
|
'This check will likely fail if all the inputs are '
|
|
'not of double precision floating point. ')
|
|
any_input_requiring_grad = True
|
|
inp.retain_grad()
|
|
else:
|
|
some_input_not_requiring_grad = True
|
|
if not any_input_requiring_grad:
|
|
raise ValueError(
|
|
'gradcheck expects at least one input tensor to require gradient, '
|
|
'but none of the them have requires_grad=True.')
|
|
if some_input_not_requiring_grad:
|
|
raise ValueError(
|
|
'gradcheck expects if at least one input tensor is required gradient, '
|
|
'then all other inputs should have requires_grad=True.')
|
|
|
|
func_out = func(*tupled_inputs)
|
|
output = _differentiable_outputs(func_out)
|
|
|
|
if not output:
|
|
for i, o in enumerate(func_out):
|
|
def fn(input):
|
|
return _as_tuple(func(*input))[i]
|
|
numerical = get_numerical_jacobian(fn, tupled_inputs, eps=eps)
|
|
for n in numerical:
|
|
if len(torch.nonzero(n)) > 0:
|
|
return fail_test('Numerical gradient for function expected to be zero')
|
|
return True
|
|
|
|
for i, o in enumerate(output):
|
|
if not o.requires_grad:
|
|
continue
|
|
|
|
def fn(input):
|
|
return _as_tuple(func(*input))[i]
|
|
|
|
analytical, reentrant, correct_grad_sizes = get_analytical_jacobian(tupled_inputs, o, nondet_tol=nondet_tol)
|
|
numerical = get_numerical_jacobian(fn, tupled_inputs, eps=eps)
|
|
|
|
if not correct_grad_sizes:
|
|
return fail_test('Analytical gradient has incorrect size')
|
|
|
|
for j, (a, n) in enumerate(zip(analytical, numerical)):
|
|
if a.numel() != 0 or n.numel() != 0:
|
|
if not torch.allclose(a, n, rtol, atol):
|
|
return fail_test('Jacobian mismatch for output %d with respect to input %d,\n'
|
|
'numerical:%s\nanalytical:%s\n' % (i, j, n, a))
|
|
|
|
if not reentrant:
|
|
return fail_test('Backward is not reentrant, i.e., running backward with same '
|
|
'input and grad_output multiple times gives different values, '
|
|
'although analytical gradient matches numerical gradient. '
|
|
'The tolerance for nondeterminism was {}.'.format(nondet_tol))
|
|
|
|
# check if the backward multiplies by grad_output
|
|
output = _differentiable_outputs(func(*tupled_inputs))
|
|
if any([o.requires_grad for o in output]):
|
|
diff_input_list = list(iter_tensors(tupled_inputs, True))
|
|
if not diff_input_list:
|
|
raise RuntimeError("no Tensors requiring grad found in input")
|
|
grads_input = torch.autograd.grad(output, diff_input_list,
|
|
[torch.zeros_like(o, memory_format=torch.legacy_contiguous_format) for o in output],
|
|
allow_unused=True)
|
|
for gi, i in zip(grads_input, diff_input_list):
|
|
if gi is None:
|
|
continue
|
|
if isinstance(gi, torch.Tensor) and gi.layout != torch.strided:
|
|
if gi.layout != i.layout:
|
|
return fail_test('grad is incorrect layout (' + str(gi.layout) + ' is not ' + str(i.layout) + ')')
|
|
if gi.layout == torch.sparse_coo:
|
|
if gi.sparse_dim() != i.sparse_dim():
|
|
return fail_test('grad is sparse tensor, but has incorrect sparse_dim')
|
|
if gi.dense_dim() != i.dense_dim():
|
|
return fail_test('grad is sparse tensor, but has incorrect dense_dim')
|
|
gi = gi.to_dense()
|
|
i = i.to_dense()
|
|
if not gi.eq(0).all():
|
|
return fail_test('backward not multiplied by grad_output')
|
|
if gi.type() != i.type():
|
|
return fail_test("grad is incorrect type")
|
|
if gi.size() != i.size():
|
|
return fail_test('grad is incorrect size')
|
|
|
|
return True
|
|
|
|
|
|
def gradgradcheck(func, inputs, grad_outputs=None, eps=1e-6, atol=1e-5, rtol=1e-3,
|
|
gen_non_contig_grad_outputs=False, raise_exception=True,
|
|
nondet_tol=0.0):
|
|
r"""Check gradients of gradients computed via small finite differences
|
|
against analytical gradients w.r.t. tensors in :attr:`inputs` and
|
|
:attr:`grad_outputs` that are of floating point type and with
|
|
``requires_grad=True``.
|
|
|
|
This function checks that backpropagating through the gradients computed
|
|
to the given :attr:`grad_outputs` are correct.
|
|
|
|
The check between numerical and analytical gradients uses :func:`~torch.allclose`.
|
|
|
|
.. note::
|
|
The default values are designed for :attr:`input` and
|
|
:attr:`grad_outputs` of double precision. This check will likely fail if
|
|
they are of less precision, e.g., ``FloatTensor``.
|
|
|
|
.. warning::
|
|
If any checked tensor in :attr:`input` and :attr:`grad_outputs` has
|
|
overlapping memory, i.e., different indices pointing to the same memory
|
|
address (e.g., from :func:`torch.expand`), this check will likely fail
|
|
because the numerical gradients computed by point perturbation at such
|
|
indices will change values at all other indices that share the same
|
|
memory address.
|
|
|
|
Args:
|
|
func (function): a Python function that takes Tensor inputs and returns
|
|
a Tensor or a tuple of Tensors
|
|
inputs (tuple of Tensor or Tensor): inputs to the function
|
|
grad_outputs (tuple of Tensor or Tensor, optional): The gradients with
|
|
respect to the function's outputs.
|
|
eps (float, optional): perturbation for finite differences
|
|
atol (float, optional): absolute tolerance
|
|
rtol (float, optional): relative tolerance
|
|
gen_non_contig_grad_outputs (bool, optional): if :attr:`grad_outputs` is
|
|
``None`` and :attr:`gen_non_contig_grad_outputs` is ``True``, the
|
|
randomly generated gradient outputs are made to be noncontiguous
|
|
raise_exception (bool, optional): indicating whether to raise an exception if
|
|
the check fails. The exception gives more information about the
|
|
exact nature of the failure. This is helpful when debugging gradchecks.
|
|
nondet_tol (float, optional): tolerance for non-determinism. When running
|
|
identical inputs through the differentiation, the results must either match
|
|
exactly (default, 0.0) or be within this tolerance. Note that a small amount
|
|
of nondeterminism in the gradient will lead to larger inaccuracies in
|
|
the second derivative.
|
|
|
|
Returns:
|
|
True if all differences satisfy allclose condition
|
|
"""
|
|
tupled_inputs = _as_tuple(inputs)
|
|
|
|
if grad_outputs is None:
|
|
# If grad_outputs is not specified, create random Tensors of the same
|
|
# shape, type, and device as the outputs
|
|
def randn_like(x):
|
|
y = torch.testing.randn_like(x if x.is_floating_point() else x.double(), memory_format=torch.legacy_contiguous_format)
|
|
if gen_non_contig_grad_outputs:
|
|
y = torch.testing.make_non_contiguous(y)
|
|
return y.requires_grad_()
|
|
outputs = _as_tuple(func(*tupled_inputs))
|
|
tupled_grad_outputs = tuple(randn_like(x) for x in outputs)
|
|
else:
|
|
tupled_grad_outputs = _as_tuple(grad_outputs)
|
|
|
|
num_outputs = len(tupled_grad_outputs)
|
|
|
|
def new_func(*args):
|
|
input_args = args[:-num_outputs]
|
|
grad_outputs = args[-num_outputs:]
|
|
outputs = _differentiable_outputs(func(*input_args))
|
|
input_args = tuple(x for x in input_args if isinstance(x, torch.Tensor) and x.requires_grad)
|
|
grad_inputs = torch.autograd.grad(outputs, input_args, grad_outputs, create_graph=True)
|
|
return grad_inputs
|
|
|
|
return gradcheck(new_func, tupled_inputs + tupled_grad_outputs, eps, atol, rtol, raise_exception,
|
|
nondet_tol=nondet_tol)
|